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Supplementary Results: 
 
Univariate finger selectivity including D2 
When D2 was included among non-target fingers, there was a significant decrease in selectivity across 
the finger clusters in the active task (F(1,112)=5.00, p=.0273), but not in the passive task (F(1,112)=3.62, 
p=.059). The session x cluster interaction was not significant in either task (F(3,112)=0.61, p=.607; and 
F(3,112)=0.41, p=.745, respectively). 
 
Supplementary figures and tables: 
 

 
Figure S1: Univariate and multivariate results from the active condition. Related to Figures 2B and 3B-C. All other 
figure annotation is as detailed in the main figures. A) In the block session, active stimulation elicited positive activity 
in the deprived cluster C2 (μ=2.13; t(14)=4.40, p=.001), but activity was significantly reduced compared to the baseline 
session (t(14)=-2.22, p=.044). Mean activity in cluster C2 for the neighbouring fingers D1 and D3 was decreased in the 
block session (t(14)=-2.51, p=.025). B-C) In line with the passive results, dissimilarity from rest during the active task 
shows a strong effect of session (B: F(1,140)=10.7, p=.001; C: F(1,140)=15.92, p<.001) and no session x finger interaction 
(B: F(4,140)=0.21, p =.930; C: F(4,140)=0,28, p=.891). 
 
 



   
Figure S2: Quantification of ‘remapping’, using unthresholded voxels. Related to Figure 2D. All other figure 
annotations are as detailed in the main figure. As with the thresholded voxels, when D2 was ignored in both sessions 
(i.e. excluded from the winner-takes-all analysis), no significant difference in neighbouring fingers remapping was 
found between the baseline and block sessions (t(14)=1.61, p=0.131). 

 

 
Figure S3: Representational dissimilarity matrix for all conditions, entire hand map. Related to Figure 3. Colours 
indicate Mahalanobis distance (arbitrary unit), please note scales vary between blocks. Each block compares finger 
activity patterns across conditions and sessions, assuming equal “rest state” (i.e. no activity) between sessions.  

 



 
 

 
Figure S4: Distribution of finger clusters over S1 sub-areas. Related to Methods. Each dot depicts one participant. 
The y-axis indicates what proportion of each finger’s finger cluster is assigned to each sub-area by the Freesurfer 
anatomical parcellation. This parcellation can assign each voxel multiple times (see Methods).  Note both the high 
similarity between areas and the slight preference for areas 3b and 1.  

 
 
 
 
 
  



Table S1. Number of voxels per cluster. For the RSA analysis of individual clusters (e.g. in Figure 3A), clusters with 
fewer than 50 voxels were excluded; these have been highlighted in cursive. 

  C1 C2 C3 C4 C5 
Total hand 

area 
P1 481 155 43 324 211 12818 
P2 456 229 268 391 197 7839 
P3 468 151 388 380 124 7080 
P4 284 290 252 358 54 6054 
P5 610 213 219 598 241 5483 
P6 694 425 221 42 368 6461 
P7 136 336 276 260 66 5903 
P8 351 96 162 225 1 5778 
P9 92 176 50 154 253 6150 

P10 719 270 65 292 302 8411 
P11 374 398 304 609 235 7100 
P12 194 187 109 284 212 5350 
P13 230 76 21 331 249 5802 
P14 368 140 54 416 127 5629 
P15 771 235 222 172 83 5271 

 
 
Table S2. GABA and Glutamate (GLu) values. GABA and Glu estimates of all individual subjects, together with their 
Cramér-Rao lower bounds (CRLBs), signal to noise ratio (SNR) and full width half maximum (FWHM). Note that 
subjects P1 and P12 were excluded from the analysis, due to unreliable GABA readings. 
 Baseline Block 
 GABA (CRLB) Glu (CRLB) SNR FWHM GABA (CRLB) Glu (CRLB) SNR FWHM 
P1 - (999) 6.75 (6) 34 0.03 1.90 (29) 8.24 (4) 43 0.03 
P2 1.80 (41) 8.48 (5) 42 0.04 2.04 (23) 7.87 (4) 45 0.03 
P3 1.77 (34) 7.43 (6) 38 0.03 2.04 (18) 5.45 (5) 54 0.03 
P4 2.39 (17) 6.85 (4) 54 0.04 4.49 (10) 7.50 (3) 57 0.04 
P5 1.71 (24) 7.48 (4) 51 0.03 1.53 (29) 7.10 (4) 48 0.03 
P6 3.50 (16) 7.14 (4) 48 0.04 3.70 (15) 8.41 (4) 46 0.03 
P7 4.07 (15) 8.61 (4) 47 0.04 2.49 (22) 7.81 (4) 45 0.04 
P8 1.62 (29) 6.43 (4) 47 0.03 2.62 (18) 7.49 (4) 52 0.04 
P9 2.12 (22) 7.53 (4) 48 0.03 2.50 (17) 6.32 (4) 48 0.03 
P10 1.31 (34) 7.10 (4) 49 0.03 2.57 (26) 6.72 (6) 34 0.03 
P11 0.78 (40) 5.99 (4) 57 0.03 1.47 (26) 6.77 (4) 55 0.03 
P12 1.4 (30) 7.01 (4) 51 0.03 0.59 (55) 6.55 (4) 55 0.03 
         

 
 



Supplementary Methods: 
 
MRI acquisition & pre-processing 
MRI acquisition 
All MRI measurements were acquired using a Siemens 7 Tesla Magnetom scanner with a 32-channel head 
coil. Task fMRI data was acquired using a multiband EPI sequence with an acceleration factor of 2 (82,83). 
A limited field-of-view was used for fMRI acquisition, consisting of 56 slices of 1mm thick, centred over S1 
with a 192x192mm in-plane FOV (TR 2000ms, TE 25ms, FA 85deg, GRAPPA 3). This resulted in a spatial 
resolution of 1mm isotropic. A whole brain anatomical T1-weighted image was also collected with 1mm 
isotropic spatial resolution (TR 2200ms, TE 2.82ms, FA 7deg, TI 1050ms). 
 
1H MRS data was acquired and pre-processed as described in (84). A 2 x 1 x 1 cm voxel was placed 
manually over the hand knob in S1 using the collected T1-weighted anatomical scan. Three guidelines 
were followed to motivate correct placement (in order of importance): 1) the voxel avoided the dura 
mater, to prevent signal issues; 2) the voxel was placed posterior to the central sulcus, to limit the 
influence of M1; and 3) the voxel was placed as superior as possible to focus on the hand region. Due to 
data acquisition errors, data from three participants has been excluded from analysis. Two further 
participants were excluded from the analysis due to unreliable GABA quantification in one of the sessions 
(Cramér-Rao lower bounds higher than 50%). As such, the placement and resulting data quality was 
sufficient in both sessions to produce reliable spectra for 10 participants. 
 
MRI pre-processing 
All MRI data pre-processing and analysis was carried out using FMRIB Software Library (FSL; version 6.0) 
as well as Matlab scripts (version R2016a) which were developed in-house. Surface reconstruction was 
carried out using Freesurfer (85; www.freesurfer.net) and results from the task and travelling wave 
analysis were projected onto the cortical surface for visualisation purposes using Connectome Workbench 
software (www.humanconnectome.org). 
 
Standard pre-processing steps were carried out for the fMRI data using FSL (86). FSL's Expert Analysis Tool 
(FEAT) was used to carry out motion correction (using MCFLIRT; 87, brain extraction (BET; 88), spatial 
smoothing of all fMRI data using a 1mm full width at half maximum (FWHM) Gaussian kernel and high 
pass filtering using a cut-off of 100s. The output from the MCFLIRT analysis was visually inspected for 
excessive motion (defined as >1mm absolute mean displacement). No participants had an absolute mean 
displacement greater than 1mm. 
 
Image registration 
For each participant, a mid-space was calculated between the four active and four passive runs, i.e. the 
average space in which the images are minimally reoriented. Each scan was then aligned to this session 
mid-space using FMRIB’s Linear Image Registration Tool (FLIRT; 6 DOF; 86, 89). The two runs of the 
functional localiser were also registered to the mid-space of the baseline session (but first to each other). 
The structural scans from both sessions were also combined by finding a mid-space. The functional mid-
spaces from both sessions were registered to this anatomical mid-space using FLIRT together with manual 



adjustments to ensure an accurate co-registration of the central sulcus (specifically, the “hand knob”). 
Once co-registration was satisfactory, all functional scans across both sessions were aligned to this 
anatomical mid-space. 
 
MRI tasks 
Passive task 
In the passive stimulation task, we asked the participants to rest their right hand in a comfortable, 
supine position on a foam cushion. An experimenter stimulated each finger by tapping a plastic probe 
against the distal pad of the finger. Such manual stimulation is commonly used in somatosensory studies 
to limit “contamination” from the motor system. Although manual stimulation may be less localised 
than other (e.g. pneumatic) methods, it has previously shown to robustly activate finger maps (32, 90. 
Also, even highly precise (1 mm) vibrational stimulation fails to remain localised due to  indirect 
stimulation (i.e. skin ripples discussed earlier) (see 7; http://movie-
usa.glencoesoftware.com/video/10.1073/pnas.1704856114/video-1). 
 
The experimenter was instructed through headphones. Any slight variations produced by the 
experimenter were meant to account for variations in the active task (below) and were not likely to differ 
between the baseline and block sessions. During the passive task, participants were shown dots flashing 
synchronously with the tactile stimulation to indicate when and where a touch occurred. This way, the 
passive and active task both featured task-related visual input. 
 
To further promote engagement across the duration of the task, double taps were administered 
sporadically (one double tap per finger condition in each run). Participants were asked to press a button 
with their left hand when they felt a double tap. Participants correctly identified these catch trials in 93.3% 
of the cases in the baseline session (excluding D2 trials). This percentage was 94.2% in the block session. 
There was no significant difference in double tap detection between (non-blocked) fingers (F(3,112)=1.97, 
p=.123) or between sessions (F(1,112)=0.10, p=.748). Detection of D2 double taps was impaired in the 
block session (66.7%) compared to baseline (98.3%, t(14)=3.68, p=.002). We note that this task was 
designed to maintain the participants’ engagement throughout the scan and was not suitable as a tactile 
perceptual test. Most notably, we cannot guarantee participants did not use alternative cues (e.g., based 
on peripheral vision; skin ripples on neighbouring skin) to detect double taps. More rigorous tests of 
perception suggest an effective attenuation of input (see Fig 1D and Methods - Tactile perceptual 
analysis). Overall, the high detection rate for all unblocked fingers suggests the participants remained 
attentive throughout the passive task. 
 
Active task 
The active task was a visually cued (motor) task. In an intact sensorimotor system, movement recruits a 
combination of peripheral receptors, encoding a range of somatosensory modalities (e.g., surface and 
deeper mechanoreceptors; proprioceptors), as well as efferent information from the motor system. Using 
an active task, we have previously shown high consistency of S1 finger topography across multiple 
scanning sessions (91, see also 9 for validation using RSA). Participants were presented with five vertical 
bars, corresponding to the five fingers, shown on a visual display projected into the scanner bore. To cue 



the participant which finger should be moved, the bar corresponding to this finger changed (i.e., by 
flashing in a different colour). 
 
The participants performed the tasks well. The instructed finger produced the strongest press force in 
94.6% of the trials (92.2% in the worst participant). Consequently, there was a clear difference in average 
force output between the instructed and non-instructed fingers: In the baseline session, 1.44 N (+/- 0.09 
SEM) for the instructed finger and 0.27 N (+/- 0.03) for non-instructed fingers; and in the block session, 
1.39 N (+/- 0.07) and 0.24 N (+/- 0.03) respectively. There was no difference in force output between 
sessions (F(1,140)=0.28, p=.596). This was also the case when only D2 output was compared (t(14)=1.31, 
p=.211), suggesting any differences between sessions are not due to impaired motor performance. 
 
Finger-selective cluster localiser 
We also conducted a functional localiser before the active task in the baseline session to independently 
identify finger-selective regions of interest (here termed clusters C1-C5). This localiser was also organised 
into finger-specific blocks, but with a set inter-finger sequence design (‘travelling wave design’; 28, 91-
94). This approach is particularly useful for identifying voxels that show an enhanced response to one 
finger compared to all other fingers and has previously been used to identify S1 finger somatotopy (e.g., 
91). 
 
Two runs were acquired, with a reversed order from each other, each consisting of 108 volumes, covering 
5 cycles around the hand. The travelling wave protocol involves a set finger cycle. Participants used the 
same keyboard and visual display as in the active task. Two separate runs, with a reverse order of 
conditions (i.e., a forward and a backward cycle), were used to overcome potential order-related biases 
due to the sluggish haemodynamic response. In the forward run, the order of finger blocks cycled from 
finger 1 to finger 5 (D1-D2-D3-D4-D5) whereas a reverse order of finger blocks was used in the backward 
run (D5-D4-D3-D2-D1). In each run, the cycle was repeated five times with no rest periods in between. 
During the cycles, each finger was moved 8 times (at 1Hz) before the instructions for the next finger were 
shown. As in the active task, the finger to be used in the upcoming block was visually cued at the start of 
each block, followed by 8 finger presses of that same finger. 
 
Resting state scan 
Participants were instructed to keep their eyes open and gaze at a fixation cross. Otherwise, they were 
instructed to let their mind wander and not think of anything in particular. 150 volumes were acquired. 
 
Magnetic resonance spectroscopy 
1H MRS was acquired using 2x1x1 voxel placed manually over the hand knob in S1, using the collected 
T1-weighted anatomical scan. Three guidelines were followed to motivate correct placement (in order 
of importance): 1) the voxel avoided the dura matter, to prevent signal issues; 2) the voxel was placed 
posterior to the central sulcus, to limit the influence of M1; and 3) the voxel was placed as far superior 
as possible, to focus on the hand region.   
 
Spectra were measured with a semi-adiabatic localization by adiabatic selective refocusing (semi-LASER) 



sequence (TE=36ms, TR = 5s, 64 averages) with variable power RF pulses with optimized relaxation 
delays (VAPOR), water suppression and outer volume saturation (95,96). Unsuppressed water spectra 
acquired from the same volume of interest were used to remove residual eddy current effects and to 
reconstruct the phased array spectra (97). 
 
MRS metabolites were quantified using LCmodel. The model spectra of alanine (Ala), aspartate (Asp), 
ascorbate/vitamin C (Asc), glycerophosphocholine (GPC), phosphocholine (PC), creatine (Cr), 
phosphocreatine (PCr), GABA, glucose, glutamine (Gln), glutamate (Glu), glutathione, lactate (Lac), myo-
Inositol (myo-Ins), NAA, N-acetylaspartylglutamate, phosphoethanolamine (PE), scyllo-Inositol (scyllo-Ins) 
and taurine were generated based on previously reported chemical shifts and coupling constants by the 
GAMMA/PyGAMMA simulation library of VeSPA (Versatile Simulation, Pulses and Analysis) according to 
a density matrix formalism. Simulations were performed with the same RF pulses and sequence timings 
as those on the 7T system in use. Resonances were assigned according to their known 1H chemical shift 
along the spectrum (x-axis, in parts per million). The T2 relaxation of tissue water content (80 ms; 95) was 
taken into account in the LCmodel fitting. Absolute neurochemical concentrations of GABA and Glutamate 
were extracted from the spectra of the greater S1 hand area while correcting for voxel tissue content (84). 
Metabolites quantified with Cramér-Rao lower bounds higher than 50% (estimated error of the 
metabolite quantification) were classified as not detected. The Glutamate/GABA ratios for all participants 
were compared across sessions using a paired t-test. 
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