Detection of urinary microRNA biomarkers using diazo sulfonamidemodified screen printed carbon electrodes⁺

Electronic supplementary information

Daniel A. Smith^{a,b}, Kate Simpson^a, Matteo Lo-Cicero^c, Lucy J. Newbury^{a,b}, Philip Nicholas^d, Donald J. Fraser^{a,b}, Nigel Caiger^d, James E. Redman^{b,c,1}, Timothy Bowen^{a,b,*,1}

¹ These authors contributed equally to this work.

*Corresponding author

Table of Contents

Figure S1: Oligonucleotides used in the study
Figure S2: CV changes over fabrication steps2
Figure S3: Reductive coulometry changes over fabrication steps3
Figure S4: Oxidative coulometry changes over fabrication steps3
Figure S5: CV deposition cycles4
Figure S6: Example oxidative coulometry response following hybridisation with decreasing concentrations of miR-214
Figure S7: Oxidative coulometry calibration plot for miR-21. Data are expressed as mean +/- SEM.5
Figure S8: Example differential pulse voltammetry (DPV) response following hybridisation with decreasing concentrations of miR-21
Figure S9: Differential pulse voltammetry (DPV) calibration plot for miR-21. Data are expressed as mean +/- SEM.
Figure S10: Oxidative coulometry (Echem) and RT-qPCR (PCR) analysis of urinary miR-192 in DKD patients and control subjects. Data were normalised to miR-191 and are expressed as mean as +/-SEM (n = 6 each group). * = P < 0.056
Figure S11: Reductive coulometry analysis of miR-21 in serial dilutions (1/10 th , 1/50 th , 1/100 th , 1/500 th , 1/100 th , 1/5000 th) of control urine following proteinase K treatment. Data are expressed as mean +/- SEM (n = 3)
Figure S12: Reductive coulometry measurements investigating uric acid interference, uric acid solutions without microRNA in blue followed by addition of 10^{-11} M miR-21. Data are expressed as means +/- SEM (n = 3)
Figure S13: Oxidative coulometry measurements investigating uric acid interference, uric acid solutions without microRNA in blue followed by addition of 10^{-11} M miR-21. Data are expressed as means +/- SEM (n = 3)
Figure S14: Additional AFM images captured during SPCE modification.

^a Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK. E-mail: bowent@cf.ac.uk

^{b.} Cardiff Institute of Tissue Engineering and Repair, Museum Place, Cardiff CF10 3BG, UK

^c School of Chemistry, College of Physical Sciences and Engineering, Cardiff University, Cardiff CF10 3AT, UK

^d Sun Chemical Ltd, Midsomer Norton, Radstock, Bath BA3 4RT, UK

Oligonucleotide Name	Oligonucleotide Sequence
comp-miR-21 (DNA)	5'NH ₂ -C ₆ -TCA ACA TCA GTC TGA TAA GCT A
miR-21 (RNA)	5'-UAG CUU AUC AGA CUG AUG UUG A
comp-miR-192 (DNA)	5' NH ₂ -C ₆ -GGC TGT CAA TTG ATA GGT CAG
miR-192 (RNA)	5'-CUG ACC UAU GAA UUG ACA GCC
comp-miR-191 (DNA)	5'NH ₂ -C ₆ -CAG CTG CTT TTG GGA TTC CGT TG
miR-191 (RNA)	5'-CAA CGG AAU CCC AAA AGC AGC UG
comp-miR-223 (DNA)	5'NH ₂ -C ₆ -TGG GGT ATT TGA CAA ACT GAC A
miR-16 (RNA)	5'-UAG CAG CAC GUA AAU AUU GGC G
3'-bio-comp-miR-21 (DNA)	5'NH ₂ -C ₆ -TCA ACA TCA GTC TGA TAA GCT A-Biotin
5'-bio-miR-21 (RNA)	5'Biotin-UAG CUU AUC AGA CUG AUG UUG A

*Comp = complementary, bio = biotin label.

Figure S2: CV changes over fabrication steps.

Figure S3: Reductive coulometry changes over fabrication steps.

Figure S4: Oxidative coulometry changes over fabrication steps.

Figure S5: CV deposition cycles.

Figure S6: Example oxidative coulometry response following hybridisation with decreasing concentrations of miR-21.

Figure S7: Oxidative coulometry calibration plot for miR-21. Data are expressed as mean +/- SEM (n = 11).

Figure S8: Example differential pulse voltammetry (DPV) response following hybridisation with decreasing concentrations of miR-21.

Figure S9: Differential pulse voltammetry (DPV) calibration plot for miR-21. Data are expressed as mean +/- SEM (n = 11).

Figure S10: Oxidative coulometry (Echem) and RT-qPCR (PCR) analysis of urinary miR-192 in DKD patients and control subjects. Data were normalised to miR-191 and are expressed as mean as +/- SEM (n = 6 each group). * = P < 0.05.

Figure S11: Reductive coulometry analysis of miR-21 in serial dilutions $(1/10^{th}, 1/50^{th}, 1/100^{th}, 1/100^{th}, 1/500^{th})$ of control urine following proteinase K treatment. Data are expressed as mean +/- SEM (n = 3).

Figure S12: Reductive coulometry measurements investigating uric acid interference, uric acid solutions without miR-21 in blue followed by addition of 10^{-11} M miR-21. Data are expressed as mean +/- SEM (n = 3).

Figure S13: Oxidative coulometry measurements investigating uric acid interference, uric acid solutions without miR-21 in blue followed by addition of 10^{-11} M miR-21. Data are expressed as mean +/- SEM (n = 3).

Figure S14: Additional TM-AFM images captured during SPCE modification.

Fig. S14-1 TM-AFM images of untreated SPCE surface, blue boxes highlight areas of increased magnification.

Fig. S14-2 TM-AFM images of the SPCE surface following ANSA deposition, blue boxes highlight areas of increased magnification.

Fig. S14-3 TM-AFM images of the SPCE surface following DNA oligonucleotide attachment, blue boxes highlight areas of increased magnification.

Fig. S14-4 TM-AFM images of the SPCE biosensor surface following miRNA hybridisation, blue box highlights area of increased magnification.

Fig. S14-5 TM-AFM images of the SPCE biosensor surface following exposure to unprocessed urine, blue boxes highlight areas of increased magnification.

Figure S14-6 TM-AFM images of the SPCE biosensor surface following exposure to proteinase K treated urine, blue boxes highlight areas of increased magnification.