Supplementary information

A single-cell atlas of non-haematopoietic cells in human lymph nodes and lymphoma reveals a landscape of stromal remodelling

In the format provided by the authors and unedited

Supplementary Notes

A single-cell atlas of non-haematopoietic cells in human lymph nodes and lymphoma reveals a landscape of stromal remodelling

Yoshiaki Abe¹, Mamiko Sakata-Yanagimoto^{2,3,4}*, Manabu Fujisawa², Hiroaki Miyoshi⁵, Yasuhito Suehara³, Keiichiro Hattori³, Manabu Kusakabe^{2,3}, Tatsuhiro Sakamoto^{2,3}, Hidekazu Nishikii^{2,3}, Tran B. Nguyen², Yohei Owada⁶, Tsuyoshi Enomoto⁶, Aya Sawa⁷, Hiroko Bando⁸, Chikashi Yoshida⁹, Rikako Tabata¹⁰, Toshiki Terao¹⁰, Masahiro Nakayama¹¹, Koichi Ohshima⁵, Kensuke Usuki¹², Tatsuya Oda⁶, Kosei Matsue¹⁰, and Shigeru Chiba^{2,3}*

¹ Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba.

² Department of Hematology, Faculty of Medicine, University of Tsukuba.

³ Department of Hematology, University of Tsukuba Hospital.

⁴ Division of Advanced Hemato-Oncology, Transborder Medical Research Center, University of Tsukuba.

⁵ Department of Pathology, School of Medicine, Kurume University.

⁶ Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba.

⁷ Department of Breast-Thyroid-Endocrine Surgery, University of Tsukuba Hospital.

⁸ Department of Breast and Endocrine Surgery, Faculty of Medicine, University of Tsukuba.

⁹ Department of Hematology, National Hospital Organization, Mito Medical Center.

¹⁰ Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center.

¹¹ Department of Otolaryngology, Head and Neck Surgery, University of Tsukuba.

¹² Department of Hematology, NTT Medical Center Tokyo.

* Correspondence

1 Related to "Human LN BECs: ten subclusters"

2	The following is a comment regarding BEC subcluster-specific marker genes.
3	ABECs are characterized by selective expression of GJA5 (Fig. 2h,i; Extended Data Fig. 2a),
4	defined as a marker of larger arteries in murine tissues, including LNs ^{1,2} . By contrast, caBECs
5	specifically express SSUH2 (Fig. 2h,i; Extended Data Fig. 2a), a marker of arteries of varying size in
6	different mouse tissues ¹ . aBECs are characterized by expression of <i>INSR</i> (Fig. 2h; Extended Data
7	Fig. 2a) and <i>EDNRB</i> (Fig. 2i), both capillary markers in mouse livers, lungs, and colon ¹ . tBECs
8	belong to a small but highly distinct subcluster that selectively expresses PGF and LY6H (Fig. 2h,i;
9	Extended Data Fig. 2a). <i>PGF</i> is described as an endothelial tip cell marker in human lung cancer ³ ,
10	whereas $LY6H$ has not been shown to be a specific marker in mice or humans ¹ . Other human tip cell
11	markers, including CXCL4, PXDN, and LXN ³ , were identified as DEGs in tBECs (Fig. 2h;
12	Supplementary Table 5). cBECs are characterized by abundant <i>PLVAP</i> and <i>CA4</i> expression (Fig.
13	2h,i; Extended Data Fig. 2a), in agreement with mouse data describing them both as capillary
14	markers in multiple tissues ¹ . C-aHEVs express DEGs of cBECs (including CA4) and aHEVs (Fig.
15	2h,i; Supplementary Table 5), indicative of the transitioning nature of C-aHEVs. Also, HES1, a
16	capillary marker in several mouse tissues, was highly expressed in C-aHEVs (Fig. 2h) ¹ . C-aHEVs
17	and aHEVs express genes encoding heat shock proteins (HSPA1A, HSP90AA1, and HSPA1B), as
18	well as those involved in NFkB (NFKBIA and NFKBIZ) and JNK (JUN, JUNB, JUND, FOS, and

19	FOSB) activation. They also express genes associated with oscillatory shear stress (EGR1, ICAM1,
20	MT2A, MT2X, and ADM) at higher levels than do cBECs and hHEVs (Extended Data Fig. 2b;
21	Supplementary Tables 5,6) ⁴ . aHEVs, hHEVs, and CXCL10-HEVs all express genes specific to
22	HEVs, including ACKR1, C7, and CH25H (Supplementary Table 5) ⁵ . CXCL10-HEVs are unique in
23	their expression of the chemokines CXCL9, CXCL10, and CXCL11 (Fig. 2h,i). Some suggest that a
24	subset of HEVs express CXCL10, which facilitates trafficking of activated T cells and monocytes
25	across HEVs ^{6,7} , though others have not detected CXCL10 mRNA in HEVs ⁸ . Therefore, the CXCL10
26	function in HEVs remains unclear ⁹ . Mouse LNs have a BEC subpopulation with highly similar
27	phenotypes to CXCL10-HEVs that exhibit a prominent interferon signalling signature, although they
28	were classified as capillary BECs ² . VBECs are characterized by high expression of <i>CPE</i> and
29	VCAM1 (Fig. 2h; Extended Data Fig. 2a; Supplementary Table 5), which are markers of large
30	veins ^{1,2} .
31	We examined the expression of marker genes for mouse LN BEC subclusters ² in our human
32	BEC data and summarized an assumed correspondence relationship between mouse and human LN
33	(Extended Data Fig. 2k,l).
34	
35	Related to "Human LN LECs: eight subclusters"

36 The following discussion addresses results of unsupervised clustering in MFLN LECs, DEG

37 analysis across subclusters, trajectory analysis, and IF staining.

38	Putative cLECs (LEC I), particular SCS ceiling LECs that cover medullary regions (III),
39	capillary LECs in surrounding tissues (IV), and valve LECs (V) were observed in our clustering, as
40	suggested by Takeda et al and Xiang et al ^{10,11} , though we annotated LECs III and IV as collectLECs
41	and msLECs, respectively (Fig. 3a). We observed several slight differences between our analysis and
42	previous analyses ^{10,11} . First, our analysis detected a subcluster in which gene expression patterns
43	matched those seen in bLECs, a cell type proposed by Xiang et al (e.g. intermediate BMP2
44	expression between cLECs and fLECs) (Fig. 3c; Extended Data Fig. 3a) ¹¹ , although bLECs were not
45	detected by Takeda et al (Fig. 3e) ¹⁰ . Second, we initially could not identify fLECs and pfsLECs as
46	distinct subclusters ^{10,11} . Lastly, two valve LEC subclusters (Up- and Down-valves) were identified as
47	distinct, in contrast to a previous study that identified them after applying sub-clustering analysis to
48	an initially-identified valve cluster (LEC V) (Fig. 3e) ¹⁰ . We speculate that these inconsistencies are
49	due to the fact that previous studies collected LEC-enriched cells based on PDPN positivity in flow
50	cytometric analysis, and thus LECs with relatively low PDPN expression may have been
51	overlooked. Indeed, PDPN expression was particularly low in bLECs and down-valves (Extended
52	Data Fig. 3a).
53	DEG analysis has revealed that the "fLEC and pfsLEC" subcluster is unique in harbouring
54	more than twice as many DEGs as other LEC subclusters (Extended Data Fig. 3b). These DEGs

55	include chemokine genes such as CXCL1, CXCL5, and CCL20, and genes associated with immune
56	cell adhesion, including ICAM1, VCAM1, and SELE (Extended Data Fig. 3a,c; Supplementary Table
57	8), supporting the immunological function of fLECs in cell trafficking and migration. Genes
58	reportedly specific to pfsLECs (e.g. $MARCO$ and $CLEC4G^{11}$) were also detected as top DEGs for the
59	"fLEC and pfsLEC" subcluster (Extended Data Fig. 3a,c; Supplementary Table 8) ^{10,11} . ACKR4,
60	MFAP4, CCL21, CLDN11, and GJA4 were also consistently identified as top DEGs for cLECs,
61	collectLECs, msLEC, valve LECs (both Up- and Down-valves), and down-valves, respectively (Fig.
62	3c; Extended Data Fig. 3a,c) ¹⁰ .
63	To verify that a single "fLEC and pfsLEC" subcluster consists of both fLECs and pfsLECs,
64	we applied unbiased sub-clustering analysis to the "fLEC and pfsLEC" subcluster. As expected, it
65	comprised two transcriptionally distinct populations (Extended Data Fig. 3d). In agreement with the
66	findings of Takeda et al, the proportion of pfsLECs was smaller than that of fLECs (Extended Data
67	Fig. 3e) ¹⁰ . Notably, in DEG analysis between fLECs and pfsLECs, genes described as specific to
68	LEC II and VI ¹⁰ were separately detected as top DEGs for fLECs and pfsLECs, respectively
69	(Extended Data Fig. 3f; Supplementary Table 9).
70	Next, we performed trajectory analysis on integrated LEC data. We identified all LEC
71	subclusters in a Monocle 3-generated cell object (Extended Data Fig. 3g). As expected, bLECs and
72	collectLECs were adjacent to cLECs (Extended Data Fig. 3h). Remarkably, a trajectory from fLEC

5

73	and pfsLEC subclusters connected with remaining LEC subclusters in the middle region of bLECs
74	and msLECs, and a direct trajectory connection was observed between pfsLECs and msLECs
75	(Extended Data Fig. 3h), supporting positional relationships inferred across these subclusters ¹¹ . Both
76	Up- and Down-valves were connected to collectLECs (Extended Data Fig. 3h), supporting the
77	annotation of collectLECs (Fig. 3d).
78	IF staining showed that PAI1- (encoded by SERPINE1) positive bLECs were exclusively
79	embedded in the intermediate area of the SCS (Extended Data Fig. 3i). PTX3-positive LECs
80	(msLECs) were preferentially located at the medulla (Extended Data Fig. 3j), although a small
81	proportion of cLECs also showed PTX3 positivity (Fig. 3c; Extended Data Fig. 3j). MARCO-
82	positive LECs (pfsLECs) were preferentially situated at perifollicular sinuses (Extended Data Fig.
83	3k), as shown in mice ¹¹ . MFAP4-positive LECs (collectLECs) were observed only in afferent and
84	efferent collecting vessels (Extended Data Fig. 31).
85	
86	Related to "Human LN NESCs: twelve subclusters"
87	The following discussion addresses results regarding the annotation of TRCs, PCs, MRCs, and
88	FDCs.
89	DEG analysis showed that TRCs were marked by high CCL19 and CCL21 expression (Fig.
90	4d,e; Supplementary Table 10) ¹² , and PCs by specific expression of <i>NDUFA4L2</i> and <i>HIGD1B</i> (Fig.

91	4d,e; Supplementary Table 10) ¹³ . Approximately half of MRC DEGs were seen in FDC DEGs
92	(Supplementary Table 10), consistent with the idea that MRCs differentiate into FDCs ¹⁴ . FDC
93	markers FDCSP, CR2, and FCER2 were correctly detected as FDC-specific DEGs (Fig. 4d,e;
94	Supplementary Table 10).
95	GO analysis revealed that TRCs were enriched with GOs related to leukocyte and dendritic
96	cell migration (Fig. 4i; Supplementary Table 12), in accordance with their reported function in
97	recruiting naive T cells and dendritic cells to the T-cell zone to facilitate interaction ¹² . Genes
98	associated with smooth muscle structure or contraction were enriched in PCs and in SMC
99	subclusters, whereas PCs abundantly expressed genes associated with blood vessel development
100	(Fig. 4i; Supplementary Table 12). MRCs and FDCs were highly enriched with GOs relevant to
101	cytokine- and chemokine-mediated signalling and antigen processing and presentation (Fig. 4i;
102	Supplementary Table 12), consistent with their role in positioning and presenting antigens to B
103	cells ¹² . Finally, FDCs expressed genes involved in immunoglobulin-mediated immune response and
104	B-cell-mediated immunity (Fig. 4i; Supplementary Table 12) ¹² .
105	IF staining showed HIGD1B-positive cells (PCs) were observed around BECs, including
106	arteries and HEVs (Extended Data Fig. 4n), and were more prevalent around HEVs in IFRs (aHEVs)
107	than around hHEVs (Extended Data Fig. 4n), indicating that they may support lymphocyte
108	recruitment and maintain endothelial cell integrity ¹² . MRCs and FDCs were identified as BAFF- and

7

109 CR2 (also known as CD21)-positive, respectively (Extended Data Fig. 40).

110	We examined the expression of key genes for mouse LN NESC subclusters ¹⁵ in our human
111	NESC data and assumed a correspondence relationship between mouse and human LNs. Although
112	some degree of correlation was detected between mouse and human LN NESCs, we observed more
113	complicated heterogeneity in human LN NESCs than in mouse LNs and found that mouse NESC
114	markers were not necessarily specific to human NESC counterparts (Extended Data Fig. 4q,r).
115	
116	Additional basic information of the single-cell LNNHC atlas
117	All subclusters identified in the single-cell LNNHC atlas included cells from all MFLN samples
118	with some variations in cell proportion (Extended Data Fig. 5a). Notably, NHCs from a patient with
119	a benign tumour (MFLN 8) were distributed uniformly among NHCs from all MFLN samples
120	(Extended Data Fig. 5b). Furthermore, in NHC subclusters harbouring at least 50 cells from the
121	sample MFLN 8, 80–100% of the top DEGs for all MFLN sample subclusters matched MFLN 8
122	DEGs (Extended Data Fig. 5c).
123	We also profiled DEGs between mLN and pLN NHC subclusters using MFLN data
124	(Supplementary Table 13). In this dataset, we observed markedly higher expression of MADCAM1
125	in mLN HEV subclusters (aHEVs and hHEVs) compared with pLN counterparts (Extended Data
126	Fig. 6a; Supplementary Table 13), in agreement with MADCAM1-dependent manners of

127	lymphocyte homing in mLN HEVs ⁷ . Consistently, GO analysis of DEGs between mLN and pLN
128	subclusters showed that mLN HEV subclusters were enriched with MADCAM1-containing GO
129	terms associated with cell adhesion and interactions with integrin (Extended Data Fig. 6b;
130	Supplementary Table 14). We also found that multiple mLN NHC subclusters (particularly, NESC
131	subclusters) highly expressed genes associated with inflammatory response including PTX3, CCL2,
132	and <i>TNFAIP6</i> relative to pLN counterparts (Extended Data Fig. 6a,b; Supplementary Table 13).
133	Consistent with the constant exposure of mLNs to enterobacteria-derived factors, GO terms
134	associated with inflammatory response, TNF-signalling, and response to molecules of bacterial
135	origin were enriched in mLN LEC and NESC subclusters (Extended Data Fig. 6b; Supplementary
136	Table 14). Additionally, pLN LEC and NESC subclusters abundantly expressed genes associated
137	with the maintenance of LN homeostasis and structures (Extended Data Fig. 6a,b; Supplementary
138	Tables 13,14).
139	
140	Additional prognostic analyses
141	We tested the prognostic value of the markers proposed in our analyses (LY6H, LOX, TDO2, and
142	<i>REM1</i>) in the intermediate prognosis group of FL. Notably, we found that elevated <i>LOX</i> and <i>TDO2</i>

143 expressions were prognostic even in the intermediate prognosis group, while the prognostic

efficiency of LY6H expression was slightly not significant and that of REM1 expression was not

- 145 prognostic (Extended Data Fig. 9f).
- 146 Since these prognostic markers were derived primarily from TRCs or tBECs, we developed a
- 147 FL TRC signature (Supplementary Table 19) and evaluated its prognostic proficiency. However, we
- 148 could not extract sufficient number of genes for developing a FL tBEC signature. As a result, we
- 149 observed no significant difference in the overall survival of patients with high and low FL TRC
- 150 signature (data not shown).
- 151 The upregulation of tip cell markers (*LY6H* and *LOX*) was prognostic in FL (Fig. 7a,b),
- 152 suggesting that enhanced tumour angiogenesis might affect FL prognosis, hence we also examined
- 153 the prognostic impact of conventional pan-BEC markers, *PECAM1* and *CDH5*¹⁶. However, we did
- 154 not detect any adverse prognostic impact of these markers in the microarray dataset¹⁷ (Extended
- 155 Data Fig. 9g).
- 156

157 Related to "Observation of NHC subclusters across lymphomas"

- 158 The following addresses findings observed in scRNA-seq analysis of PTCL and tDLBCL stroma.
- 159 Unsupervised clustering analysis of integrated MFLN and lymphoma NHC data detected
- almost all NHC subclusters in both PTCL and tDLBCL (Extended Data Fig. 10a-d). Furthermore,
- 161 we found that BECs and LECs in these lymphomas consistently increased and decreased,

162	respectively, as observed in FL (Extended Data Fig. 10b,d). tDLBCL BECs contained abundant
163	arterial subclusters and CXCL10-HEVs (Extended Data Fig. 10d), suggesting accelerated
164	angiogenesis and elevated HEV activities. Furthermore, we observed considerable alterations in the
165	tDLBCL NESC proportions compared with the MFLN counterparts: the proportion of advSCs,
166	medullary SCs, TNF-SCs, C7-SCs, AGT-SCs, and TRCs decreased considerably, whereas that of
167	FSCs (MRCs and FDCs) increased drastically in tDLBCL, and the perivascular cell subcluster
168	compositions remained relatively comparable (Extended Data Fig. 10d). Representative DEGs
169	upregulated in FL subclusters, including LY6H and LOX at tBECs, SELE at HEV subclusters, and
170	VCAM1 at FSCs, were also observed in tDLBCL stroma, although some key DEGs were not
171	validated, probably because of the small sample size of tDLBCL cohort (Extended Data Fig. 10e). In
172	line with the findings of analyses on MFLN and FL NESCs (Fig. 4g,h, 5a), trajectories in tDLBCL
173	NESCs indicated that non-FSC subclusters had differentiated into FSCs (Extended Data Fig. 10f-h),
174	likely representing a terminal form of stromal remodelling in FL.

175 Supplementary references

176	1.	Kalucka, J., et al. Single-Cell Transcriptome Atlas of Murine Endothelial Cells. Cell 180,
177		764-779.e720 (2020).
178	2.	Brulois, K., et al. A molecular map of murine lymph node blood vascular endothelium at
179		single cell resolution. Nature communications 11, 3798 (2020).
180	3.	Goveia, J., et al. An Integrated Gene Expression Landscape Profiling Approach to Identify
181		Lung Tumor Endothelial Cell Heterogeneity and Angiogenic Candidates. Cancer cell 37, 21-
182		36.e13 (2020).
183	4.	Bondareva, O., et al. Identification of atheroprone shear stress responsive regulatory elements
184		in endothelial cells. Cardiovascular research 115, 1487-1499 (2019).
185	5.	Lee, M., et al. Transcriptional programs of lymphoid tissue capillary and high endothelium
186		reveal control mechanisms for lymphocyte homing. <i>Nature immunology</i> 15 , 982-995 (2014).
187	6.	Nagakubo, D., et al. A high endothelial venule secretory protein, mac25/angiomodulin,
188		interacts with multiple high endothelial venule-associated molecules including chemokines.
189		Journal of immunology (Baltimore, Md. : 1950) 171, 553-561 (2003).
190	7.	von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nature
191		reviews. Immunology 3 , 867-878 (2003).
192	8.	Janatpour, M.J., Hudak, S., Sathe, M., Sedgwick, J.D. & McEvoy, L.M. Tumor necrosis

193		factor-dependent segmental control of MIG expression by high endothelial venules in
194		inflamed lymph nodes regulates monocyte recruitment. The Journal of experimental medicine
195		194 , 1375-1384 (2001).
196	9.	Miyasaka, M. & Tanaka, T. Lymphocyte trafficking across high endothelial venules: dogmas
197		and enigmas. Nature reviews. Immunology 4, 360-370 (2004).
198	10.	Takeda, A., et al. Single-Cell Survey of Human Lymphatics Unveils Marked Endothelial Cell
199		Heterogeneity and Mechanisms of Homing for Neutrophils. Immunity 51, 561-572.e565
200		(2019).
201	11.	Xiang, M., et al. A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph
202		Node Lymphatic Vasculature. Frontiers in cardiovascular medicine 7, 52 (2020).
203	12.	Krishnamurty, A.T. & Turley, S.J. Lymph node stromal cells: cartographers of the immune
204		system. Nature immunology 21, 369-380 (2020).
205	13.	Vanlandewijck, M., et al. A molecular atlas of cell types and zonation in the brain vasculature.
206		Nature 554 , 475-480 (2018).
207	14.	Fletcher, A.L., Acton, S.E. & Knoblich, K. Lymph node fibroblastic reticular cells in health
208		and disease. Nature reviews. Immunology 15, 350-361 (2015).
209	15.	Rodda, L.B., et al. Single-Cell RNA Sequencing of Lymph Node Stromal Cells Reveals
210		Niche-Associated Heterogeneity. Immunity 48, 1014-1028.e1016 (2018).

- 211 16. Taskinen, M., et al. Prognostic impact of CD31-positive microvessel density in follicular
- 212 lymphoma patients treated with immunochemotherapy. *European journal of cancer (Oxford,*
- 213 *England* : *1990*) **46**, 2506-2512 (2010).
- 214 17. Leich, E., *et al.* Follicular lymphomas with and without translocation t(14;18) differ in gene
- expression profiles and genetic alterations. *Blood* **114**, 826-834 (2009).