Lipid alterations in chronic liver disease and liver cancer

Bichitra Paul, Monika Lewinska, Jesper B. Andersen

 Table S1. Therapeutic targets of interest in pre-malignant liver diseases (cancer prevention) and primary liver cancer (cancer treatment).

Ń	t			CANCER PRE	VENTION	CANCER TREATMENT						
Pathwa	Targe	Drug	Setting	Phase	Result	Ref	Drug	Setting	Disease	Result	Ref	
		PF- 05221304	305 NAFLD 350 NASH with Liver Fibrosis	2	44% reduction in hepatic steatosis	NCT03248882 NCT04321031	AICAR	<i>In vitr</i> o human hepatoma	HCC	Strong and cancer specific anti- growth effect	1,2	
		socostat	Patients with NASH and fibrosis)	2	Significant reduction in liver fat by 29%	NTC03449446 ³	ND-654	Male mice received oral dose of the drug	HCC	Improved survival when either used alone or in combination with sorafenib	4	
	ACC	GS-0976 Fi	127 NAFLD	2	22% reduction of hepatic DNL decreased by 22%	NCT02856555⁵						
pogenesis			Overweight males	1	Dose-dependent reduction of DNL was observed	NCT02876796 ⁶						
De novo li		MK-4074	11 healthy volunteers and murine model		Reduces hepatic steatosis but increases plasma triglycerides in mice	2						
		Q	142 NASH	2	Reduced steatosis, improved biochemical, inflammatory, and fibrotic markers	NCT03938246 ⁷	Orlistat	Cell models and murine models	НСС	antiproliferative efficacy HCC - most beneficial in AKT/mTOR related NAFLD-HCC cases	8	
	NSA ⁵	B-264	330 NASH	2	Recruiting	NCT04906421		HCC cell line model	HCC	Displays antitumor activity	9	
	FI	2	12 Obese Men	1/2	Reduced hepatic DNL and decreased IHTG	NCT02948569 ¹⁰	C75	<i>In vitro</i> human HCC models	НСС	Growth arrest was seen which was partially modulated by p38 MAPK	11	

		Cerulenin		Ob/Ob mice – injected intraperitoneally		Hepatic function in ob/ob mice was significantly improved	12	losan		<i>In vitro</i> hepatoma	НСС	The inhibitor succesfully downregulated FASN expression	13
								Tric		HSC models	НСС	Reverted activated HSCs to a queiscent phenotype	14
								EGCG		<i>In vitr</i> o human hepatoma models	нсс	The inhibitor has chemopreventative and anti- lipogenesis potential	15
	SCD1	Aramchol		60 participants with NAFLD	2	Reduced steatosis NAFLD, improved metabolic fitness	NCT01094158 16	CAY 10566		Human HCC cells	НСС	Reduced viablity, induced autophagy and apoptosis of human HCC cells	17
		CAY10566		HFD C57BL/6 mice		decreased hepatic steatosis	18	CAY10566		Human hepatoma (HepG2) cells	HCC	decreased proliferation and survival in cells; decreased concentration of MUFAs	19
	АТ2	PF- Deress	71	350 NASH patients with Liver Fibrosis	2	Recruiting	NCT04321031						
G synthesis	DG	PF 05221	304/	99 NAFLD	2	35% reduction in hepatic steatosis	NCT03776175 ²⁰						
T	DGAT1								gone	<i>In vitr</i> o human hepatoma cell line	НСС	Reduced triglyceride synthesis in the cell line	21
FFA Uptake	CD36							Sulfo-N-	succinimidyl	Human liver cancer cell lines	НСС	Migration rate was reduced in these cells	22
/ Acid	PT4							moxir		HFD and DEN- induced HCC	НСС	Ras-driven HCC was significantly ameliorated	23
Fatty	ö							Etor		Human hepatoma (HepG2) cells	НСС	Oxidative stress was caused in the cells	24

									I		Xenograft nude mice		Etomoxir in combination with	
											injected with human	НСС	SOAT1 inhibitor significantly	25
											hepatoma (HepG2)	nee	reduced tumour growth over 14	
											cells		days	
											Mice with β-catenin-		3 weeks administration with	
											activated HCC orally	НСС	etomoxir dropped the tumour	26
											administered	нее	bearing rate to 3% compared to	
											Etomoxir		12% in controls	
		0			20 section este Turc 2		Reduced steatosis, and	NOT0000500527	÷				Inhibited the HIF-1α/PPAR-	
		eglitaz	Je	38 participants Type	38 participants Type 2	4	improved glycemic, liver, and	NC10228520527	/astai n		In vitro HCC cell lines	НСС	γ/PKM2 axis and reduced	28
		Lobe	-		Diabetes NAFLD		lipid profiles		Sim				proliferation in HCC cells	
					184 NAFLD patients		A decrease in							
		e			with impaired glucose		aminotransferase (ALT)	NCT00633282						
		tazor			regulation (IGR) or	2	values to within the normal	29						
		ilogli			T2DM with pioglitazone		range was observed in 7							
ion					or BBR		(58.3%) of the patients							
gulat		а			15 participants Liver			1						
al re	٩R	glitaz			Transplant;	2	Recruiting	NCT03639623						
iption	Чd	Saro			Complications NAFLD									
nscr							Liver enzyme levels							
Tra		37	anor)			0	decreased, levels of majority	NCT03008070 ³⁰						
		IVA3	nifibra		247 NASH	2	of lipid, inflammatory, fibrosis							
			(la				biomarkers improved							
		≥	A3	37	2000 NASH	3	Recruiting	NCT04849728	1					
			ò				Resolved NASH, improved	NCT0160404031						
		T505	ibran	Ē	270 NASH	2	patients' cardiometabolic risk	101094849						
		GF	(Elaf				profile.							

SREBP	Fatostatin	Zebrafish model	NA	Highlights the importance of LXRα and SREBP1 in Cu- induced hepatic lipid deposition	32	Betulin		In vitro HCC cell lines	нсс	Helped to enhance the antitumor activity of Sorafenib by restricting glycolytic activity	33
LXR	Oltipraz	60 participants 283 participants	2	Twenty-four-week treatment significantly reduced the liver fat content in patients with NAFLD No results published	NCT01373554 ³⁴						
	cacid	283 NAFLD	2	Improved the histological features of NASH	NCT01265498 ³⁵	197-TNI		Mice with oral administration of inhibitor in the diet	НСС	Tumour number and size were significantly reduced	36
	Obeticholi	70 NAFLD	NA	Recruiting	NCT03836937	Obeticholic	acid	Primary mixed iCCA cell cultures	CCA	Decreased proliferation, induced apoptosis, decreased spheroid formation	37
	Px- 104	12 NAFLD	2	Improved insulin sensitivity and liver enzymes	NCT01999101 ³⁸						
FXR	LMB7 63	350 NASH	2	Reduction of ALT, hepatic steatosis, weight and BMI	NCT02855164						
	EYP0 01a	16 NASH	1	No results published	NCT03976687						
	MET409	120 NAFLD	2	Reduced steatosis delivered	NCT04702490 ³⁹						
	TERN-101	101 NASH	2	The overall safety, pharmacokinetics, and pharmacodynamics profiles of the inhibitor was assessed	NCT04328077 ⁴⁰						

		Tropif	exor		380 NASH	2	Recruiting	NCT04065841					
		Obetich	olic	acid	76 PSC	2	Reduced serum alkaline phosphatase	NCT02177136 ⁴¹					
		EYP0	01a		11 chronic HBV infection	1	No results published	NCT03320616					
		Cilofe	xor		419 non-cirrhotic adults with PSC	3	Ongoing	NCT03890120					
		Atorvastatin			84 NASH	2	LDLc in patients with NASH were mitigated with atorvastatin	NCT02633956 ⁴²	atin	34 HCC patients on sorafenib	HCC	Terminated (slow enrolement)	NCT0327 5376
					150 NAFLD	NA	Withdrawn	NCT01987310	Atorvast	240 BCLC 0 HCC receiving complete ablation or tumour resection	нсс	Recruiting	NCT0302 4684
ynthesis	GCR				70 participants	2	Recruiting	NCT04679376		160 HCC	HCC	Neither sorafenib nor pravastatin seemed to provide benefit	NCT0135 7486 ⁴³
Sterol s	MH	Simvast	atin		700 PSC	3	Recruiting	NCT04133792		474 patients with HCC	HCC	No results published	NCT0190 3694
		Pitavastatin			50 overweight, insulin- resistant men	NA	Compared with placebo, pitavastatin did not affect hepatic or whole-body insulin sensitivity, and it did not reduce liver fat.	NCT0229010644	Pravastatir	216 patients, advanced HCC	нсс	No results published	NCT0141 8729
		Rosuva	statin		64 NAFLD	4	No results published	NCT03434613		1 HCC patient	НСС	No results published	NCT0321 9372

						Statin	350 participants, patients who received liver transplant as treatment for HCC 3 participants	нсс	No results published No results published	NCT0349 0461 NCT0281 9869	
			200 participants having itching associated with PSC	2	Recruiting	NCT04663308	Bamet-	Subcutaneous injection into nude mice	ССА	Tumour growth inhibition in cells expressing ASBT more efficiently than cisplatin	45
	ASBT/IBAT	Volixibat / SHP626	197 participants with more than 5 % steatosis and NASH without cirrhosis 84 overweight and	2	Terminated as the inhibitor did not meet the interim endpoint, and due to diarrhea being the most common side effects in patients Initial success in improvement	NCT02787304 ⁴⁶					
			obese adults	1	of the patients' conditions						
L		K145	Intraperitoneal injection to ob/ob mice		Reduced steatosis and liver function recovery	48		21 solid tumour patients (1 CCA)	CCA	Partial response at 250 mg qd	NCT0148 8513 ⁴⁹
metabolisn	2						4640	105 participants with CCA	CCA	Ongoing	NCT0337 7179
Sphingolipid	SK						ABC26	Human CCA cells	CCA	Inhibited proliferation and caspase-dependent apoptosis in CCA cells	50
								Human CCA cells	CCA	Inhibits CCA cell growth	51

						Mouse xenograft models	HCC	Decrease in S1P levels in mice after treatment for 5 weeks	52	
S1P1R	FTY720/ fingolimod	Oral administration to diet-induced mouse model of NAFLD	Reduced steatosis, liver TGs, ceramides	53	FTY720/	fingolimod	HCC-bearing rats subjected to orthotropic liver transplantation	HCC	Tumour recurrence was suppressed, and survival increased significantly	54
SK1					Icaritin		<i>In vitr</i> o HCC cell lines, xenograft SCID mice	НСС	Potent antitumor activity <i>in vitro</i> , inhibition of tumour growth in mice	NCT2820 6952 ⁵⁵

Supplementary references

- 1. Jose C, Hebert-Chatelain E, Bellance N, Larendra A, Su M, Nouette-Gaulain K, et al. AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. Biochim Biophys Acta. 2011;1807:707-718.
- 2. Kim CW, Addy C, Kusunoki J, Anderson NN, Deja S, Fu X, et al. Acetyl CoA Carboxylase Inhibition Reduces Hepatic Steatosis but Elevates Plasma Triglycerides in Mice and Humans: A Bedside to Bench Investigation. Cell Metab. 2017;26:394-406 e396.
- 3. Alkhouri N, Lawitz E, Noureddin M, DeFronzo R, Shulman GI. GS-0976 (Firsocostat): an investigational liver-directed acetyl-CoA carboxylase (ACC) inhibitor for the treatment of non-alcoholic steatohepatitis (NASH). Expert Opin Investig Drugs. 2020;29:135-141.
- 4. Lally JSV, Ghoshal S, DePeralta DK, Moaven O, Wei L, Masia R, et al. Inhibition of Acetyl-CoA Carboxylase by Phosphorylation or the Inhibitor ND-654 Suppresses Lipogenesis and Hepatocellular Carcinoma. Cell Metab. 2019;29:174-182 e175.
- 5. Lawitz EJ, Coste A, Poordad F, Alkhouri N, Loo N, McColgan BJ, et al. Acetyl-CoA Carboxylase Inhibitor GS-0976 for 12 Weeks Reduces Hepatic De Novo Lipogenesis and Steatosis in Patients With Nonalcoholic Steatohepatitis. Clin Gastroenterol Hepatol. 2018;16:1983-1991 e1983.
- 6. Stiede K, Miao W, Blanchette HS, Beysen C, Harriman G, Harwood HJ, Jr., et al. Acetyl-coenzyme A carboxylase inhibition reduces de novo lipogenesis in overweight male subjects: A randomized, double-blind, crossover study. Hepatology. 2017;66:324-334.
- Loomba R, Mohseni R, Lucas KJ, Gutierrez JA, Perry RG, Trotter JF, et al. TVB-2640 (FASN Inhibitor) for the Treatment of Nonalcoholic Steatohepatitis: FASCINATE-1, a Randomized, Placebo-Controlled Phase 2a Trial. Gastroenterology. 2021;161:1475-1486.
- 8. Zhang C, Sheng L, Yuan M, Hu J, Meng Y, Wu Y, et al. Orlistat delays hepatocarcinogenesis in mice with hepatic co-activation of AKT and c-Met. Toxicol Appl Pharmacol. 2020;392:114918.
- 9. You BJ, Chen LY, Hsu PH, Sung PH, Hung YC, Lee HZ. Orlistat Displays Antitumor Activity and Enhances the Efficacy of Paclitaxel in Human Hepatoma Hep3B Cells. Chem Res Toxicol. 2019;32:255-264.
- 10. Syed-Abdul MM, Parks EJ, Gaballah AH, Bingham K, Hammoud GM, Kemble G, et al. Fatty Acid Synthase Inhibitor TVB-2640 Reduces Hepatic de Novo Lipogenesis in Males With Metabolic Abnormalities. Hepatology. 2020;72:103-118.
- 11. Gao Y, Lin LP, Zhu CH, Chen Y, Hou YT, Ding J. Growth arrest induced by C75, A fatty acid synthase inhibitor, was partially modulated by p38 MAPK but not by p53 in human hepatocellular carcinoma. Cancer Biol Ther. 2006;5:978-985.
- 12. Cheng G, Palanisamy AP, Evans ZP, Sutter AG, Jin L, Singh I, et al. Cerulenin blockade of fatty acid synthase reverses hepatic steatosis in ob/ob mice. PLoS One. 2013;8:e75980.
- 13. Sun D, Zhao T, Long K, Wu M, Zhang Z. Triclosan down-regulates fatty acid synthase through microRNAs in HepG2 cells. Eur J Pharmacol. 2021;907:174261.
- 14. Miranda JF, Scarinci LD, Ramos LF, Silva CM, Goncalves LR, de Morais PF, et al. The modulatory effect of triclosan on the reversion of the activated phenotype of LX-2 hepatic stellate cells. J Biochem Mol Toxicol. 2020;34:e22413.

- 15. Huang CH, Tsai SJ, Wang YJ, Pan MH, Kao JY, Way TD. EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells. Mol Nutr Food Res. 2009;53:1156-1165.
- 16. Safadi R, Konikoff FM, Mahamid M, Zelber-Sagi S, Halpern M, Gilat T, et al. The fatty acid-bile acid conjugate Aramchol reduces liver fat content in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2014;12:2085-2091 e2081.
- 17. Huang GM, Jiang QH, Cai C, Qu M, Shen W. SCD1 negatively regulates autophagyinduced cell death in human hepatocellular carcinoma through inactivation of the AMPK signaling pathway. Cancer Lett. 2015;358:180-190.
- 18. Zhou Y, Zhong L, Yu S, Shen W, Cai C, Yu H. Inhibition of stearoyl-coenzyme A desaturase 1 ameliorates hepatic steatosis by inducing AMPK-mediated lipophagy. Aging (Albany NY). 2020;12:7350-7362.
- 19. de Lima Luna AC, Forti FL. Modulation of SCD1 activity in hepatocyte cell lines: evaluation of genomic stability and proliferation. Mol Cell Biochem. 2021.
- 20. Calle RA, Amin NB, Carvajal-Gonzalez S, Ross TT, Bergman A, Aggarwal S, et al. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with nonalcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials. Nat Med. 2021;27:1836-1848.
- 21. Park HR, Yoo MY, Seo JH, Kim IS, Kim NY, Kang JY, et al. Sesquiterpenoids isolated from the flower buds of Tussilago farfara L. inhibit diacylglycerol acyltransferase. J Agric Food Chem. 2008;56:10493-10497.
- 22. Nath A, Li I, Roberts LR, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752.
- 23. Xu A, Wang B, Fu J, Qin W, Yu T, Yang Z, et al. Diet-induced hepatic steatosis activates Ras to promote hepatocarcinogenesis via CPT1alpha. Cancer Lett. 2019;442:40-52.
- 24. Merrill CL, Ni H, Yoon LW, Tirmenstein MA, Narayanan P, Benavides GR, et al. Etomoxir-induced oxidative stress in HepG2 cells detected by differential gene expression is confirmed biochemically. Toxicol Sci. 2002;68:93-101.
- 25. Ren M, Xu H, Xia H, Tang Q, Bi F. Simultaneously targeting SOAT1 and CPT1A ameliorates hepatocellular carcinoma by disrupting lipid homeostasis. Cell Death Discov. 2021;7:125.
- 26. Senni N, Savall M, Cabrerizo Granados D, Alves-Guerra MC, Sartor C, Lagoutte I, et al. beta-catenin-activated hepatocellular carcinomas are addicted to fatty acids. Gut. 2019;68:322-334.
- Lee YH, Kim JH, Kim SR, Jin HY, Rhee EJ, Cho YM, et al. Lobeglitazone, a Novel Thiazolidinedione, Improves Non-Alcoholic Fatty Liver Disease in Type 2 Diabetes: Its Efficacy and Predictive Factors Related to Responsiveness. J Korean Med Sci. 2017;32:60-69.
- 28. Feng J, Dai W, Mao Y, Wu L, Li J, Chen K, et al. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1alpha/PPAR-gamma/PKM2-mediated glycolysis. J Exp Clin Cancer Res. 2020;39:24.
- 29. Yoneda M, Endo H, Nozaki Y, Tomimoto A, Fujisawa T, Fujita K, et al. Life stylerelated diseases of the digestive system: gene expression in nonalcoholic steatohepatitis patients and treatment strategies. J Pharmacol Sci. 2007;105:151-156.
- 30. Francque SM, Bedossa P, Ratziu V, Anstee QM, Bugianesi E, Sanyal AJ, et al. A Randomized, Controlled Trial of the Pan-PPAR Agonist Lanifibranor in NASH. N Engl J Med. 2021;385:1547-1558.

- 31. Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafibranor, an Agonist of the Peroxisome Proliferator-Activated Receptor-alpha and -delta, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening. Gastroenterology. 2016;150:1147-1159 e1145.
- 32. Pan YX, Zhuo MQ, Li DD, Xu YH, Wu K, Luo Z. SREBP-1 and LXRalpha pathways mediated Cu-induced hepatic lipid metabolism in zebrafish Danio rerio. Chemosphere. 2019;215:370-379.
- 33. Yin F, Feng F, Wang L, Wang X, Li Z, Cao Y. SREBP-1 inhibitor Betulin enhances the antitumor effect of Sorafenib on hepatocellular carcinoma via restricting cellular glycolytic activity. Cell Death Dis. 2019;10:672.
- 34. Kim W, Kim BG, Lee JS, Lee CK, Yeon JE, Chang MS, et al. Randomised clinical trial: the efficacy and safety of oltipraz, a liver X receptor alpha-inhibitory dithiolethione in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2017;45:1073-1083.
- 35. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for noncirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebocontrolled trial. Lancet. 2015;385:956-965.
- 36. Cariello M, Peres C, Zerlotin R, Porru E, Sabba C, Roda A, et al. Long-term Administration of Nuclear Bile Acid Receptor FXR Agonist Prevents Spontaneous Hepatocarcinogenesis in Abcb4(-/-) Mice. Sci Rep. 2017;7:11203.
- 37. Di Matteo S, Nevi L, Costantini D, Overi D, Carpino G, Safarikia S, et al. The FXR agonist obeticholic acid inhibits the cancerogenic potential of human cholangiocarcinoma. PLoS One. 2019;14:e0210077.
- 38. Traussnigg S, Halilbasic E, Hofer H, Munda P, Stojakovic T, Fauler G, et al. Openlabel phase II study evaluating safety and efficacy of the non-steroidal farnesoid X receptor agonist PX-104 in non-alcoholic fatty liver disease. Wien Klin Wochenschr. 2021;133:441-451.
- 39. Harrison SA, Bashir MR, Lee KJ, Shim-Lopez J, Lee J, Wagner B, et al. A structurally optimized FXR agonist, MET409, reduced liver fat content over 12 weeks in patients with non-alcoholic steatohepatitis. J Hepatol. 2021;75:25-33.
- 40. Wang Y, Crittenden DB, Eng C, Zhang Q, Guo P, Chung D, et al. Safety, Pharmacokinetics, Pharmacodynamics, and Formulation of Liver-Distributed Farnesoid X-Receptor Agonist TERN-101 in Healthy Volunteers. Clin Pharmacol Drug Dev. 2021;10:1198-1208.
- 41. Kowdley KV, Vuppalanchi R, Levy C, Floreani A, Andreone P, LaRusso NF, et al. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J Hepatol. 2020;73:94-101.
- 42. Pockros PJ, Fuchs M, Freilich B, Schiff E, Kohli A, Lawitz EJ, et al. CONTROL: A randomized phase 2 study of obeticholic acid and atorvastatin on lipoproteins in nonalcoholic steatohepatitis patients. Liver Int. 2019;39:2082-2093.
- 43. Blanc JF, Khemissa F, Bronowicki JP, Monterymard C, Perarnau JM, Bourgeois V, et al. Phase 2 trial comparing sorafenib, pravastatin, their combination or supportive care in HCC with Child-Pugh B cirrhosis. Hepatol Int. 2021;15:93-104.
- 44. Braun LR, Feldpausch MN, Czerwonka N, Weiss J, Branch K, Lee H, et al. Effects of Pitavastatin on Insulin Sensitivity and Liver Fat: A Randomized Clinical Trial. J Clin Endocrinol Metab. 2018;103:4176-4186.
- 45. Lozano E, Monte MJ, Briz O, Hernandez-Hernandez A, Banales JM, Marin JJ, et al. Enhanced antitumour drug delivery to cholangiocarcinoma through the apical sodiumdependent bile acid transporter (ASBT). J Control Release. 2015;216:93-102.

- 46. Newsome PN, Palmer M, Freilich B, Sheikh MY, Sheikh A, Sarles H, et al. Volixibat in adults with non-alcoholic steatohepatitis: 24-week interim analysis from a randomized, phase II study. J Hepatol. 2020;73:231-240.
- 47. Palmer M, Jennings L, Silberg DG, Bliss C, Martin P. A randomised, double-blind, placebo-controlled phase 1 study of the safety, tolerability and pharmacodynamics of volixibat in overweight and obese but otherwise healthy adults: implications for treatment of non-alcoholic steatohepatitis. BMC Pharmacol Toxicol. 2018;19:10.
- 48. Shi Y, Wei Q, Liu Y, Yuan J. The alleviating effect of sphingosine kinases 2 inhibitor K145 on nonalcoholic fatty liver. Biochem Biophys Res Commun. 2021;580:1-6.
- 49. Britten CD, Garrett-Mayer E, Chin SH, Shirai K, Ogretmen B, Bentz TA, et al. A Phase I Study of ABC294640, a First-in-Class Sphingosine Kinase-2 Inhibitor, in Patients with Advanced Solid Tumors. Clin Cancer Res. 2017;23:4642-4650.
- 50. Ding X, Chaiteerakij R, Moser CD, Shaleh H, Boakye J, Chen G, et al. Antitumor effect of the novel sphingosine kinase 2 inhibitor ABC294640 is enhanced by inhibition of autophagy and by sorafenib in human cholangiocarcinoma cells. Oncotarget. 2016;7:20080-20092.
- 51. Ding X, Zhang Y, Huang T, Xu G, Peng C, Chen G, et al. Targeting sphingosine kinase 2 suppresses cell growth and synergizes with BCL2/BCL-XL inhibitors through NOXA-mediated MCL1 degradation in cholangiocarcinoma. Am J Cancer Res. 2019;9:546-561.
- 52. Beljanski V, Lewis CS, Smith CD. Antitumor activity of sphingosine kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts. Cancer Biol Ther. 2011;11:524-534.
- 53. Rohrbach TD, Asgharpour A, Maczis MA, Montefusco D, Cowart LA, Bedossa P, et al. FTY720/fingolimod decreases hepatic steatosis and expression of fatty acid synthase in diet-induced nonalcoholic fatty liver disease in mice. J Lipid Res. 2019;60:1311-1322.
- 54. Ushitora Y, Tashiro H, Ogawa T, Tanimoto Y, Kuroda S, Kobayashi T, et al. Suppression of hepatocellular carcinoma recurrence after rat liver transplantation by FTY720, a sphingosine-1-phosphate analog. Transplantation. 2009;88:980-986.
- 55. Lu PH, Chen MB, Liu YY, Wu MH, Li WT, Wei MX, et al. Identification of sphingosine kinase 1 (SphK1) as a primary target of icaritin in hepatocellular carcinoma cells. Oncotarget. 2017;8:22800-22810.