
Appendix C Proof of uniqueness of solution

In this appendix, we prove that (13) has a single solution for b > (2 − a)−1. We first note that
b > (2−a)−1 ⇔ 1−b

b < 1−a, so the lower bound for k is k− = 1−a. We then define the right-hand
side of (13) as

g(x) =
x

x− 1
log

( 1

x2
(1− 1− x

a
)
)
− log

( (b− a)

a
(
b(x+ 1)− 1

)) (C.42)

=
x

x− 1

(
− 2 log(x) + log(a+ x− 1)− log(a)

)
− log(b− a) + log(a) + log

(
b(x+ 1)− 1

)
(C.43)

We then observe that on that lower bound lim
x

>→1−a g(x) = +∞ because a + x − 1 tends to zero

and x− 1 is negative.
On the other hand, for the upper bound k+ = 1−a

a , we have

a+ x− 1 =
a2 + 1− a− a

a
=

(1− a)2

a

b(x+ 1)− 1 =
b

a
− 1 =

b− a
a

we can deduce that the upper bound of x is a zero of g:

g(
1− a
a

) =

1− a
1− 2a

(
− 2 log(1− a) + 2 log(a) + 2 log(1− a)− 2 log(a)

)
− log(b− a) + log(a) + log(b− a)− log(a) = 0. (C.44)

Moreover, the derivative of g is given by:

g′(x) = − 1
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)
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x
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. (C.45)

Then

g′(
1− a
a

) =
−a2
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− 2 log(a)
)
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> 0 if 0 < a < b < 1. (C.46)
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Since g(k+) reaches zero from below, while g(k−) > 0, we can infer that g(x) has a zero between
k− and k+ as illustrated on Fig C.7.

To show that this zero is unique, we look at the sign of g′(x).

We can rewrite g′(x) as

g′(x) =
1

(x− 1)2
(
A(x)−B(x)

)
(C.47)

where

A(x) =
(1− x)

(
x(ab+ b− 1)− (3b− 2)(1− a)

)
(x+ a− 1)(bx+ b− 1)

)
B(x) = log

(a+ x− 1

ax2
)

Let x0 be a zero of g′, i.e., the position of a local extrema of g. We have

g(x0) =
x0

x0 − 1
log

(x0 + a− 1

ax20

)
− log

( (b− a)

a
(
b(x0 + 1)− 1

))
=
−x0

(
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)
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− log
( (b− a)

a
(
b(x0 + 1)− 1

)) (C.48)

The second equality holds because g′(x0) = 0 by definition of x0. By multiplying (C.48) by
(bx0 + b− 1), which is positive, we can then define a new function h(x) whose sign is the same as
the sign of g(x) for x = x0 (see Fig C.7 for an illustration).

h(x) = C(x)−D(x) , (C.49)

where

C(x) =
−x

(
x(ab+ b− 1)− (3b− 2)(1− a)

)
(x+ a− 1)

D(x) = (bx+ b− 1) log
( (b− a)

a
(
bx+ b− 1

)) (C.50)

We can now compute the second derivatives of C(x) and D(x).
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Figure C.7: Sketch of the proof that g(x) has a single zero in D = (k−, k+). We first show that
limx→k− g(x) = ∞, that limx→k+ g(x) = 0 and limx→k+ g

′(x) > 0, so that g must cross the x-axis
on D. To show that it only does it once, we consider a function h(x) that has the same sign as
g(x) when g′(x) = 0. We show that h is convex on D and thus g cannot have a negative extrema,
followed by a positive extrema, followed by a negative extrema. Hence it cannot have more than
one zero on D.

C ′(x) =−
(
2x(ab+ b− 1)− (3b− 2)(1− a)

)
(x+ a− 1)

(x+ a− 1)2

+
x2(ab+ b− 1)− x(3b− 2)(1− a)

(x+ a− 1)2

=− x2(ab+ b− 1)− 2x(1− a)(ab+ b− 1) + (3b− 2)(1− a)2

(x+ a− 1)2

C ′′(x) =−
(
2x(ab+ b− 1)− 2(1− a)(ab+ b− 1)

)
(x+ a− 1)

(x+ a− 1)3

+
2
(
x2(ab+ b− 1)− 2x(1− a)(ab+ b− 1) + (3b− 2)(1− a)2

)
(x+ a− 1)3

=− 2(1− a)2(ab− 2b+ 1)

(x+ a− 1)3
> 0 ∀b > 1

2− a

D′(x) =b log
(b− a

a

)
− b

(
log(bx+ b− 1) + 1

)
D′′(x) =− b2

bx+ b− 1
< 0 ∀x > k−

Hence

h′′(x) = C ′′(x)−D′′(x) < 0 ∀x ∈ D,∀b > 1

2− a
(C.51)

This means that h is convex, so there cannot be three points x1 < x2 < x3 such that 0 > h(x1) <
h(x2) > 0 > h(x3). Hence the same can be said of three zeros of g′, so g(x) cannot have more that
one zero. �
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