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Figure S1: Methodological details of Webster. Related to Figure 1. 
A. Extended version of Figure 1A showing the objective function of graph-regularized 

dictionary learning (Yankelevsky and Elad, 2016). Given a raw fitness dataset, Webster 
first preprocesses the data by standardizing cell contexts (rows), then centering gene 
effects (columns). It then applies a simple selection threshold to automatically choose a 
set of high variance gene effects (columns) to compose the input data matrix Y. Webster 
factorizes Y into two low-rank matrices, D and X, by (1) minimizing the approximation error 
of the low-rank factorization, (2) preserving gene effect (column) similarity from Y across 
columns of X, and (3) preserving cell context (row) similarity from Y across rows of D. 
Besides the key parameters k and t, which controls the rank of the factorization and the 
number of non-zero entries per column of X, respectively, additional parameters include: 
the neighbor graphs used in the row and column graph-regularization (default: 5 nearest 
neighbors, chosen by cosine similarity); and the relative contributions of the graph 
regularization terms to the overall objective (default: α = 0.2 and β = 0.6, as explained in 
(Yankelevsky and Elad, 2016)).  

B. The input genes from Figure 1B are embedded in a 2D layout using UMAP, and the gene-
to-function assignments for k-means and Webster are plotted as colors on each data point. 
While k-means and Webster capture the same latent variables from the data, k-means 
performs “hard clustering” that assigns pleiotropic genes to either function based on noise, 
while Wester performs “soft clustering” that accurately assigns pleiotropic genes to both 
functions. 

C. Comparison between Webster and other low-rank factorization methods commonly 
applied to biological data. Principal Components Analysis (PCA), Independent 
Components Analysis (ICA), and k-means were parameterized to recover two latent 
variables, using as input the data matrix described in Figure 1E. The recovered latent 
variables from each method are plotted in comparison with the ground truth described in 
Figure 1B (left) and the dictionary recovered by Webster described in Figure 1F (right). 
Both PCA and ICA are sensitive to global variance in the data and therefore capture outlier 
cells (those sensitive to both Function 1 and 2) in their first latent variable. k-means 
recovers nearly identical latent variables as Webster. 



 

Figure S2: Assessment of Webster on genotoxic fitness data. Related to 
Figure 2. 

A. High-variance gene selection. A quantile-quantile plot is shown for the observed fitness 
variances for 17,382 gene effect measurements (y-axis), in comparison to a theoretical 
normal distribution fitted to the distribution of these variances (x-axis). A threshold is drawn 



to distinguish gene effects whose variance exceeds the theoretical normal distribution, 
resulting in 304 high-variance fitness genes chosen as input to Webster. In genome-scale 
screens, a large number of genes will be non-essential for fitness; such genes will exhibit 
fitness effects driven by experimental noise rather than biological signal. We assume that 
the variances of non-essential genes are normally distributed, and choose genes whose 
variances across treatments are positive outliers in this distribution. 

B. Webster parameter grid search. Using the same data as input, we applied Webster across 
many values of k and t, with and without graph-regularization. Diminishing returns for both 
reconstruction error (Frobenius norm) and gene similarity (Gene Laplacian) are reached 
with k = 10 for both values of t. We chose t = 2 in order to model pleiotropic effects in the 
genotoxic screening data. 

C. Interpretability of latent factors recovered from Webster, PCA and ICA. Using the literature 
annotations from (Olivieri et al., 2020) as ground truth, we calculated the Area Under the 
Receiver Operating Characteristic curve (AUROC) for each of ten genesets across each 
of the learned factors from all three models. The number of dictionary elements for 
Webster were chosen as described above; the number of PCA components was chosen 
with a standard elbow blot over PCA eigenvalues; the number ICA components was 
chosen according to (Kairov et al., 2017). The loadings for each gene over each 
component were used as the predictors for the AUROC metric. An AUROC > 0.5 score 
indicates that positive loadings were predictive of the geneset, while an AUROC score < 
0.5 indicates that negative loadings were predictive of the geneset. A score of 0.5 in 
AUROC indicates a performance equivalent to random chance assignment. The imposed 
sparsity in Webster’s gene loadings leads to interpretable latent variables mapping 
strongly to individual genesets. 

D. Joint UMAP embedding of gene and functional effects as in Figure 2G and 2H, with all 
functions labeled. The RAD51B gene effect is embedded between Fanconi Anemia and 
Homologous Recombination (bolded). 

E. Scatterplots comparing the measured fitness effect of RAD51B (x axis, both plots) with 
measured H2AFX (y-axis, left) and H2AFX - End Joining + Fanconi Anemia (y-axis, right). 



 
Figure S3: Assessment of Webster on cancer cell fitness data. Related to 
Figure 3. 



A. Webster parameter grid search. Using the cancer cell fitness data as input, we applied 
Webster across many values of k (25 to 600, with step size 25) and t (1 to 10). As t = 1:3 
performed poorly at large values of k, we chose t = 4 for the factorization. 

B. Higher-density grid search. With t = 4 fixed, we swept across k (25 to 600, with step size 
5) with multiple random initializations with different seeds. Plotted are the marginal 
improvements seen in model objectives with each additional step size of k, averaged over 
random initializations. Diminishing returns in both objectives are observed around k = 220, 
which was chosen for the final factorization. 

C. Denoising properties of Webster. The starting fitness data was corrupted with different 
amounts of random noise. After splitting genes into training and test sets (3:1 split), we 
then applied Webster (k=220, t= 4) to learn a dictionary from the noisy training data. From 
this dictionary, we performed orthogonal matching pursuit to model the noisy test genes 
in terms of dictionary elements. We compared this reconstructed profile against the ground 
truth test gene profiles, which were unseen during model training. The Pearson correlation 
of the reconstructed test genes versus their ground truths are plotted as a distribution per 
noise level. The uppermost distribution (σ = 0) corresponds to Webster’s performance in 
the absence of noise. Dashed red lines mark the mean of each distribution. 

D. Dictionary learning metrics. Left: Initialized vs. final dictionaries. In our Webster 
implementation, we initialize dictionary learning using a dictionary of k initial gene effects 
chosen by k-medoids. Each column of the initial dictionary (k-medoids) was correlated to 
the corresponding column in the final dictionary after 20 algorithm iterations (k = 220, t = 
4). The resulting 220 Pearson correlation values are shown as a histogram. Right: Using 
the same k-medoids dictionary as a starting point, dictionary learning was performed using 
two different random seed initializations. The Pearson correlations of the corresponding 
columns from each dictionary are shown as a histogram. 

E. Transferability of Webster dictionary elements to unseen data. Parallel genome-scale 
screens were performed at Broad and Sanger Institutes for 150+ common cancer cell 
lines, using different CRISPR-Cas9 reagents and culturing strategies. We assessed the 
transferability of a Webster dictionary trained on Broad data (which used the Avana 
CRISPR-Cas9 guide library) to model gene effects captured by the Sanger Institute (which 
used the Sanger CRISPR-Cas9 guide library). We learned a Webster dictionary (k=220, 
t=4) over the 675 cell lines screened by the Broad. We then subsetted the learned 
dictionary to a set of 150+ common cell lines, and used this smaller dictionary to model 
gene effects measured by Broad Institute or the Sanger Institute. The Pearson correlation 
of the reconstructed genes are plotted as a distribution. As a null comparison, we shuffled 
the rows of the dictionary and performed the same modeling using this shuffled dictionary. 
Dashed red lines mark the mean of each distribution. 

F. Reproducibility of dictionary elements learned at k=220 over other values of k. Each 
column in the heatmap corresponds to one of the 220 dictionary elements reported in the 
paper (k=220, t=4). Each row in the heatmap represents a dictionary that was learned at 
a smaller value of k, with t fixed (k=25, 30, 35, …, 215, t = 4). Each cell in the heatmap is 
colored according to the maximum cross-correlation between all elements in the lower-k 
dictionary (row) and a specific element in the finalized dictionary (column). Columns are 



ordered according to the lowest k for which that element “appears” in the smaller dictionary 
(defined as Pearson cross-correlation > 0.9).  

G. Biomarker analysis for SHOC2 functional effects. We performed a random forest 
regression on the fitness effect of each of the four underlying functions, using baseline -
omics measurements across cancer cell lines as features (including RNA-seq bulk 
transcriptomic data, mutational hotspot data, protein abundance data, etc). The model 
performances (Pearson correlation) are shown next to barplots displaying the feature 
importances in the final models. Relevant biomarkers for each function are bolded. 
(Abbreviations; CN = copy number; MutHot = mutational hotspot; MusMis = missense 
mutation; RPPA = Reverse Phase Protein Array; RRBS = Reduced-representation 
bisulfite sequencing; ssGSEA = single sample gene set enrichment analysis) 



 
Figure S4: Modular pleiotropy in protein complexes from cancer fitness data. 
Related to Figure 4. 

A. Focus on STAGA/ATAC complexes. Subunits unique to STAGA, unique to ATAC or 
shared between both were taken from (Spedale et al., 2012). A heatmap is displayed 
where each row displays a subunit’s loadings across selected Webster functions learned 



from fitness data alone. Webster learned fitness effects for both complexes individually, 
and represented the fitness effect of shared subunits as a mixture of both (loaded onto 
both functions). 

B. Focus on SWI/SNF complexes. Subunit organization was taken from (Mashtalir et al., 
2018). A heatmap is displayed where each row displays a subunit’s loadings across 
selected Webster functions learned from fitness data alone.Webster learned fitness 
effects for ncBAF, cBAF and pBAF complexes individually, and the fitness effect of 
SMARCA4 as a mixture of all three. 

C. Focus on the Mediator complex. Subunit organization was taken from (Tsai et al., 2014). 
A heatmap is displayed where each row displays a subunit’s loadings across selected 
Webster functions learned from fitness data alone. Webster learned a fitness effect for the 
Mediator Tail/CKM modules separately from the Mediator Head/Shoulder modules. 

D. Focus on the Integrator complex. Subunit organization was taken from (Pfleiderer and 
Galej, 2021; Sabath et al., 2020; Tilley et al., 2021; Zheng et al., 2020). A heatmap is 
displayed where each row displays a subunit’s loadings across selected Webster functions 
learned from fitness data alone. Webster learned a fitness effect for the INTS10-13-14 
module (Pfleiderer and Galej, 2021; Sabath et al., 2020), the WDR73-INTS9 module 
(Tilley et al., 2021), and the Backbone/Shoulder  modules (Zheng et al., 2020) (designated 
above as Remainder). INTS11, the main catalytic subunit of the Integrator complex, is not 
loaded onto any of these functions, due to its status as a highly essential gene across all 
cancer cell lines. 

E. Biological replicate experiment of the immunoprecipitation shown in Figure 4E. 
F. Biological replicate experiment of the knockout experiment shown in Figure 4G. 
G. Density glycerol gradient ultracentrifugation on 293T nuclear extracts shows size 

separation of Integrator complex subunits across different molecular weights. TBP is 
shown as a non-Integrator complex control.   



 

 



Figure S5: Subcellular localization analysis from cancer fitness data. Related 
to Figure 5. 

A. Schematic overview of subcellular localization analysis. A set of 1,463 fitness genes 
were also profiled in a recent subcellular localization experiment (Go et al., 2021), which 
reports the localization probability of each gene product over 20 inferred subcellular 
locations. We performed a matrix multiplication between their localization probabilities 
and our fitness-inferred gene-to-function loadings. The resulting matrix of 220 functions x 
20 locations represents the overall distribution of localization probabilities over the 
learned Webster functions. 

B. A heatmap of the matrix described in A. Both rows (locations) and columns (functions) 
are hierarchically clustered. Clustering rows results in seven hierarchically defined cell 
compartments: nucleus, mitochondria, endoplasmic reticulum (ER), recycling, 
membrane, cytoplasm and miscellaneous. The miscellaneous category is carried over 
from (Go et al., 2021). Because proximity labelling proteomics were used to define 
subcellular locations in that study, proteins that are part of large complexes were 
predominantly co-labeled with other protein complex subunits, thereby decreasing their 
ability to infer unique subcellular locations for these proteins. 

C. Facet plot of Figure 5B, in which only functions are plotted as data points in the 
embedding. Functions enriched for each of the seven compartments are plotted 
separately. 

D. Additional panels for Figure 5C, showing function-level insets for mitochondria, nucleus, 
cytoplasm and miscellaneous compartments. 

E. Accompanying figure for Figure 5E. Using only functional fitness effects (dictionary 
elements) in the global embedding ablates the compartmental structure observed in 
Figure 5B (in which genes and functions are co-embedded). This is because dictionary 
elements are relatively de-correlated from one another, a property known as mutual 
incoherence. The notable exception is the mitochondrial functions, which remain 
clustered in this setting due to the fact that a predominant confounder (media 
composition across cell lines) explains a portion of variance present in each of these 
dictionary elements (related to findings explored in (Rahman et al., 2021)). 



 



Figure S6: Compound embedding results. Related to Figure 6. 
A. Compound sensitivity profiles over 360+ cancer cell lines were obtained from the PRISM 

Drug Repurposing dataset (Corsello et al., 2020). Each of these profiles was modeled as 
a sparse linear combination of four dictionary elements, using a dictionary trained on 
gene perturbation data (from Figure 3B). The quality of these approximations was 
assessed using a Pearson correlation to the original compound sensitivity profile. For 
each compound class, the distribution of Pearson correlations across individual drugs 
belonging to that class are shown in a box and whisker plot. Compound classes are 
ordered by their mean Pearson correlation. 

B. Each data point in the scatter plot represents one of the compounds from PRISM that 
was modeled in terms of gene functions. The X axis charts the median cell fitness of 
each compound, and the Y axis charts the Pearson correlation of the approximated 
profile to the measured profile. 

C. Same as Figure S3E, but for the BRAF Signaling function.  
D. A heatmap of compound-to-function loadings. Each row represents a compound 

sensitivity profile for an AKT inhibitor from the PRISM primary screen (2.5 uM dose), and 
each column represents a Webster function learned from genetic data. Loadings values 
are displayed in each cell of the heatmap. The first three gene functions model 
RICTOR/AKT, PIK3CA signaling and PTEN signaling, respectively. The last function 
displays a fitness effect specific to blood cell lines, and therefore captures a batch effect 
present in the original PRISM data (in which suspension and adherent cell lines display 
differing chemical sensitivity profiles). The median fitness effect across cells of that 
compound, as well as the Pearson correlation of the approximated profile to the 
measured profile, are also shown. 

E. Additional dose-sensitive loading plots accompanying Figure 6E. 
 


