Supplementary Information

Enhanced Interfacial Interaction between Modified Cellulose Nanocrystals and Epoxidized Natural Rubber *via* Ultraviolet Irradiation

Oranooch Somseemee¹, Pongdhorn Saeoui², Florian T. Schevenels³, and Chomsri Siriwong^{1,3*}

¹Materials Chemistry Research Center (MCRC-KKU), Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

²National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Pathum Thani 12120, Thailand ³Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

(*) Corresponding author: Chomsri Siriwong E-mail address: <u>schoms@kku.ac.th</u> (C. Siriwong)

Figure S1. Diagram of the CNC extraction.

Figure S2 The chemical reaction of MAH modified CNCs surface.

Figure S3. Schematic illustration of the UV-cured nanocomposite preparation.