Ictal neural oscillatory alterations precede sudden unexpected death in epilepsy

Bin Gu^{1, 2, 3}, Noah G. Levine⁴, Wenjing Xu^{2,5}, Rachel M. Lynch⁶,

Fernando Pardo-Manuel de Villena^{6,7}, and Benjamin D. Philpot^{2,3,8}

¹Department of Neuroscience, Ohio State University, Columbus, USA
²Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, USA
³Neuroscience Center, University of North Carolina, Chapel Hill, USA
⁴Electrical and Computer Engineering Program, Ohio State University, Columbus, USA
⁵Department of Physiology and Cell Biology, Ohio State University, Columbus, USA
⁶Department of Genetics, University of North Carolina, Chapel Hill, USA
⁷Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
⁸Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, USA

Correspondence:

Bin Gu, Ph.D.

460 W 12th Avenue

612 Biomedical Research Tower

Columbus, OH 43210, USA

bin.gu@osumc.edu

This PDF file includes Supplemental Figures 1 to 4

Supplemental Figure 1. (A) Normalized (subtracting baseline activities) ictal total LFP power in cortex of survivors (n = 7) and non-survivors (n = 5) in the delta (δ , 1–4 Hz, *P* = 0.9840, Student's t-test), theta (θ , 5–8 Hz, *P* = 0.5290, Student's t-test), alpha (α , 9–12 Hz, *P* = 0.5298, Student's t-test), beta (β , 13–29 Hz, *P* = 0.9293, Student's t-test), and gamma (γ , 30–60 Hz, *P* = 0.7178, Student's t-test) bands. (B) Normalized (subtracting baseline activities) ictal total LFP power in brainstem of survivors (n = 7) and non-survivors (n = 5) in the delta (δ , 1–4 Hz, *P* = 0.0359, Student's t-test), theta (θ , 5–8 Hz, *P* = 0.0101, Mann-Whitney test), alpha (α , 9–12 Hz, *P* = 0.0178, Student's t-test), beta (β , 13–29 Hz, *P* = 0.0074, Student's t-test), and gamma (γ , 30–60 Hz, *P* = 0.0128, Student's t-test) bands. Data are presented as individual animal data points plus mean \pm SEM. Data are analyzed using two-tailed unpaired Student's t-test or Mann-Whitney test, * *P* < 0.05, ** *P* < 0.01.

Supplemental Figure 2. Average comodulogram of ictal cortical (top row) and brainstem (bottom row) phase-amplitude coupling in the broader range (fP:0.5–30 Hz/fA:30–200 Hz) from survivors (n = 7, left column) and non-survivors (n = 5, right column). Dashed squares denote delta/gamma (fP:0.5–4 Hz/fA:30–200 Hz) coupling.

Supplemental Figure 3. (A) phase-locking value spectrum and (B) averaged phase-locking value between baseline LFP recorded from M1 and DR of survivors (n = 7) and non-survivors (n = 5) in the delta (δ , 0.5–4 Hz, *P* = 0.7537, Student's t-test), theta (θ , 5–8 Hz, *P* = 0.7508, Student's t-test), alpha (α , 9–12 Hz, *P* = 0.5303, Mann-Whitney test), beta (β , 13–29 Hz, *P* = 0.3197, Student's t-test), and gamma (γ , 30–60 Hz, *P* = 0.1257, Student's t-test) bands. Granger causality of baseline LFP recorded from DR to M1 (C) and from M1 to DR (D), respectively, of survivors (n = 7) and non-survivors (n = 5). Data are presented as mean ± SEM (A, C and D) or individual animal data points plus mean ± SEM (B).

Supplemental Figure 4. (A) Granger causality of ictal LFP recorded from DR to M1 of survivors (n = 7) and non-survivors (n = 5) in the delta (δ , 0.5–4 Hz, *P* = 0.1490, Mann-Whitney test), theta (θ , 5–8 Hz, *P* = 0.0732, Mann-Whitney test), alpha (α , 9–12 Hz, *P* = 0.0303, Mann-Whitney test), beta (β , 13–29 Hz, *P* = 0.0177, Mann-Whitney test), and gamma (γ , 30–60 Hz, *P* = 0.0177, Mann-Whitney test) bands. (B) Granger causality of ictal LFP recorded from M1 to DR of survivors (n = 7) and non-survivors (n = 5) in the delta (δ , 0.5–4 Hz, *P* = 0.1490, Mann-Whitney test), theta (θ , 5–8 Hz, *P* = 0.2020, Mann-Whitney test), alpha (α , 9–12 Hz, *P* = 0.2677, Mann-Whitney test), beta (β , 13–29 Hz, *P* = 0.0732, Mann-Whitney test), alpha (α , 9–12 Hz, *P* = 0.2677, Mann-Whitney test), beta (β , 13–29 Hz, *P* = 0.0732, Mann-Whitney test), and gamma (γ , 30–60 Hz, *P* = 0.0480, Mann-Whitney test) bands. Data are presented as individual animal data points plus mean ± SEM. Data are analyzed using Mann-Whitney test, * *P* < 0.05.