Supporting Information for:

Do Double Hybrid Functionals Benefit from Regularization in the PT2

Term? Observations from an Extensive Benchmark

Golokesh Santra and Jan M.L. Martin*

Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science,

7610001 Rehovot, Israel.

Email: gershom@weizmann.ac.il

Table S1: Optimized parameters, total WTMAD2 and its decomposition into major subcategories for кDSD-PBEP86-D3BJ, кDSD-PBEPBE-D3BJ, κDSD-BLYP-D3BJ, and кхDSD₇₅-PBEP86-D3BJ. Heatmapping is from red (worst) via yellow to green (best). Thermo=Small Molecule Thermochemistry; Barrier=barrier heights; Large=reaction energies for large systems; Conf=conformer/intramolecular interactions; Intermol=intermolecular interactions; and NCI= Total Non-Covalent Interaction (Conformer/Intramolecular + Intermolecular).

	WTMAD2		Par	ameters ^[a]				ΔW	/TMAD2 (kcal/mol)	
Functionals	(kcal/mol)	CC,DFT	C _{2ab}	C _{2ss}	S 6	к	Thermo	Barrier	Large	Conf	Intermol	NCI
	3.404	0.1713	0.8220	0.3588	0.5073	1.1	1.021	0.557	0.683	0.617	0.527	1.144
	2.807	0.2339	0.7410	0.2935	0.4331	1.45	0.842	0.386	0.576	0.555	0.449	1.004
	2.477	0.3176	0.6534	0.2193	0.3953	2.0	0.665	0.301	0.520	0.508	0.482	0.990
	2.428	0.3397	0.6336	0.2003	0.3950	2.2	0.628	0.291	0.512	0.498	0.500	0.998
(c -0.69)	2.383	0.3647	0.6148	0.1740	0.3960	2.5	0.589	0.281	0.507	0.486	0.519	1.006
(CX,HF=0.09)	2.352	0.3906	0.5974	0.1474	0.3989	3.0	0.554	0.277	0.505	0.474	0.542	1.016
	2.346	0.4075	0.5864	0.1220	0.4111	3.5	0.543	0.270	0.513	0.469	0.552	1.021
	2.348	0.4164	0.5824	0.1085	0.4175	4.0	0.534	0.269	0.519	0.466	0.560	1.026
	2.367	0.4312	0.5761	0.0816	0.4339	∞	0.521	0.268	0.552	0.457	0.569	1.026
	3.467	0.1708	0.8221	0.3865	0.5489	1.1	1.070	0.544	0.693	0.644	0.516	1.160
	2.996	0.2431	0.7297	0.3071	0.5075	1.45	0.906	0.409	0.599	0.619	0.463	1.082
	2.760	0.3305	0.6601	0.2026	0.5136	2.0	0.755	0.342	0.535	0.620	0.508	1.127
	2.722	0.3506	0.6391	0.1983	0.5037	2.2	0.726	0.337	0.522	0.612	0.526	1.137
(a - 0.68)	2.686	0.3760	0.6182	0.1790	0.5061	2.5	0.693	0.329	0.511	0.608	0.546	1.154
(C _{X,HF} =0.08)	2.659	0.4068	0.6076	0.1376	0.5206	3.0	0.658	0.320	0.507	0.606	0.568	1.174
	2.650	0.4239	0.5985	0.1161	0.5347	3.5	0.644	0.314	0.506	0.607	0.578	1.185
	2.648	0.4293	0.5933	0.1095	0.5394	4.0	0.636	0.313	0.507	0.608	0.583	1.191
	2.668	0.4518	0.5893	0.0661	0.5739	∞	0.640	0.299	0.532	0.610	0.586	1.197
	3.670	0.2647	0.8008	0.3807	0.6462	1.1	0.977	0.607	0.697	0.642	0.746	1.389
	2.978	0.3479	0.7033	0.3226	0.5770	1.45	0.789	0.425	0.543	0.564	0.657	1.221
	2.494	0.4197	0.6303	0.2878	0.5245	2.0	0.640	0.309	0.434	0.513	0.598	1.111
кDSD-BLYP-D3BJ	2.418	0.4387	0.6166	0.2724	0.5236	2.2	0.612	0.292	0.426	0.506	0.583	1.089
(c _{x,HF} =0.71)	2.370	0.4621	0.5905	0.2728	0.5094	2.5	0.584	0.279	0.434	0.493	0.579	1.072
	2.355	0.4900	0.5714	0.2478	0.5181	3.0	0.566	0.274	0.464	0.483	0.568	1.051
	2.364	0.5092	0.5585	0.2327	0.5219	3.5	0.556	0.275	0.493	0.474	0.566	1.040
	2.377	0.5168	0.5551	0.2196	0.5279	4.0	0.556	0.274	0.518	0.468	0.561	1.030
	2.430	0.5342	0.5467	0.1924	0.5489	∞	0.556	0.275	0.575	0.468	0.556	1.024
	3.781	0.1118	0.9307	0.3960	0.4170	1.1	1.062	0.690	0.725	0.663	0.641	1.303
	3.011	0.1774	0.8383	0.3231	0.3412	1.45	0.864	0.467	0.593	0.570	0.518	1.088
	2.459	0.2553	0.7557	0.2471	0.3112	2.0	0.680	0.327	0.487	0.516	0.449	0.965
	2.358	0.2709	0.7405	0.2319	0.3067	2.2	0.642	0.303	0.465	0.506	0.442	0.948
(a -0.75)	2.261	0.2878	0.7201	0.2253	0.2932	2.5	0.601	0.284	0.442	0.491	0.442	0.933
(CX,HF-0.75)	2.178	0.3151	0.7066	0.1905	0.2922	3.0	0.552	0.265	0.438	0.470	0.453	0.923
	2.146	0.3328	0.6929	0.1738	0.2913	3.5	0.525	0.256	0.446	0.453	0.466	0.919
	2.135	0.3382	0.6850	0.1772	0.2829	4.0	0.510	0.257	0.450	0.446	0.472	0.918
	2.145	0.3590	0.6777	0.1389	0.3071	∞	0.494	0.250	0.487	0.432	0.481	0.914

^[a]All results are with fixed $a_1 = 0$; $s_8 = 0$; and $a_2 = 5.5$ (for κ DSD-PBEP86-D3BJ and κ DSD-PBEPBE-D3BJ), 5.2 (for κ DSD-BLYP-D3BJ), and 5.6 (for κ xDSD₇₅-PBEP86-D3BJ).

Table S2: Optimized parameters, total WTMAD2 and its decomposition into major subcategories for κ DSD-PBEP86-D4, κ DSD-PBEP86-D4, κ DSD-PBEP86-D4, κ DSD-BLYP-D4, and κ xDSD₇₅-PBEP86-D4. Heatmapping is from red (worst) via yellow to green (best). Thermo=Small Molecule Thermochemistry; Barrier=barrier heights; Large=reaction energies for large systems; Conf=conformer/intramolecular interactions; Intermol=intermolecular interactions; and NCI= Total Non-Covalent Interaction (Conformer/Intramolecular + Intermolecular).

	WTMAD2			Pai	rameters ^[a]	l				ΔV	VTMAD2	(kcal/m	ol)	
Functionals	(kcal/mol)	CC,DFT	C _{2ab}	C _{2ss}	S 6	a1	a ₂	к	Thermo	Barrier	Large	Conf	Intermol	NCI
	3.431	0.1687	0.8473	0.3131	0.6038	0.012	5.751	1.1	1.008	0.560	0.693	0.588	0.581	1.169
	2.796	0.2270	0.7527	0.2577	0.5507	0.158	5.000	1.45	0.847	0.387	0.581	0.494	0.487	0.980
	2.410	0.2919	0.6841	0.1822	0.5461	0.262	4.461	2	0.700	0.303	0.508	0.447	0.452	0.899
кDSD-PBEP86-D4	2.349	0.3153	0.6629	0.1645	0.5469	0.282	4.394	2.2	0.663	0.289	0.505	0.439	0.453	0.892
(с _{х,нг} =0.69)	2.294	0.3440	0.6400	0.1444	0.5458	0.312	4.327	2.5	0.624	0.279	0.507	0.432	0.453	0.885
	2.252	0.3719	0.6229	0.1170	0.5483	0.360	4.096	3	0.588	0.275	0.512	0.418	0.459	0.877
	2.239	0.3882	0.6130	0.0995	0.5558	0.369	4.103	3.5	0.572	0.272	0.521	0.414	0.460	0.874
	2.233	0.4012	0.6069	0.0816	0.5657	0.375	4.099	4	0.564	0.267	0.532	0.410	0.462	0.871
	2.248	0.4224	0.5935	0.0566	0.5917	0.371	4.201	∞	0.545	0.260	0.573	0.406	0.463	0.869
	3.472	0.1540	0.8696	0.3069	0.6543	0.052	5.351	1.1	1.060	0.544	0.717	0.562	0.589	1.151
	2.924	0.2309	0.7709	0.2302	0.6350	0.180	4.752	1.45	0.904	0.407	0.620	0.492	0.502	0.994
	2.580	0.3246	0.6785	0.1603	0.6421	0.304	4.108	2	0.761	0.341	0.555	0.447	0.475	0.922
кDSD-PBEPBE-D4	2.521	0.3456	0.6604	0.1425	0.6501	0.311	4.089	2.2	0.732	0.331	0.540	0.444	0.474	0.918
(с _{х,нг} =0.68)	2.462	0.3607	0.6437	0.1296	0.6568	0.350	3.849	2.5	0.708	0.327	0.519	0.432	0.476	0.908
	2.400	0.3955	0.6257	0.0953	0.6706	0.353	3.883	3	0.669	0.315	0.508	0.425	0.483	0.908
	2.369	0.4108	0.6181	0.0769	0.6852	0.359	3.796	3.5	0.651	0.312	0.499	0.423	0.485	0.908
	2.354	0.4184	0.6169	0.0608	0.6997	0.381	3.745	4	0.643	0.310	0.501	0.419	0.481	0.900
	2.363	0.4371	0.6111	0.0318	0.7226	0.384	3.756	∞	0.635	0.301	0.523	0.420	0.484	0.904
	3.745	0.2819	0.8015	0.3617	0.7394	-0.015	5.689	1.1	0.957	0.609	0.743	0.626	0.810	1.436
	3.027	0.3480	0.7151	0.3112	0.6836	0.020	5.577	1.45	0.776	0.425	0.574	0.549	0.702	1.251
	2.512	0.4207	0.6480	0.2549	0.6576	0.072	5.335	2	0.633	0.315	0.450	0.499	0.615	1.114
кDSD-BLYP-D4	2.430	0.4426	0.6250	0.2527	0.6486	0.095	5.227	2.2	0.601	0.300	0.437	0.490	0.603	1.092
(c _{x,HF} =0.71)	2.370	0.4671	0.5978	0.2541	0.6379	0.112	5.163	2.5	0.573	0.286	0.435	0.483	0.592	1.075
	2.352	0.4823	0.5821	0.2372	0.6484	0.213	4.539	3	0.557	0.287	0.448	0.468	0.592	1.060
	2.351	0.5078	0.5654	0.2204	0.6528	0.157	4.897	3.5	0.544	0.282	0.475	0.466	0.584	1.050
	2.365	0.5135	0.5608	0.2145	0.6567	0.147	4.950	4	0.541	0.281	0.496	0.464	0.583	1.047
	2.428	0.5231	0.5578	0.1891	0.6808	0.156	4.878	∞	0.545	0.282	0.554	0.468	0.579	1.047
	3.768	0.1191	0.9210	0.4375	0.5258	-0.337	8.486	1.1	1.042	0.689	0.735	0.696	0.607	1.302
	2.997	0.1799	0.8374	0.3464	0.4116	-0.335	8.236	1.45	0.848	0.467	0.597	0.567	0.519	1.085
	2.456	0.2403	0.7745	0.2404	0.3934	0.072	5.702	2	0.698	0.330	0.484	0.479	0.465	0.944
кхDSD ₇₅ -PBEP86-D4	2.354	0.2600	0.7572	0.2241	0.3910	0.095	5.623	2.2	0.658	0.307	0.464	0.468	0.457	0.925
(c _{x,HF} =0.75)	2.252	0.2864	0.7340	0.2013	0.3944	0.114	5.592	2.5	0.609	0.286	0.450	0.454	0.453	0.907
	2.177	0.3013	0.7203	0.1816	0.3985	0.331	4.212	3	0.573	0.273	0.434	0.429	0.468	0.897
	2.126	0.3220	0.7069	0.1637	0.4057	0.190	5.193	3.5	0.544	0.259	0.441	0.430	0.452	0.882
	2.112	0.3348	0.6972	0.1518	0.4114	0.191	5.203	4	0.529	0.254	0.449	0.423	0.457	0.880
	2.118	0.3517	0.6623	0.1168	0.4246	0.283	4.720	∞	0.508	0.252	0.493	0.409	0.457	0.866

^[a]All results are with fixed $c_{ATM} = 1$ and $s_8 = 0$.

Table S3: Optimized parameters, total WTMAD2 and its decomposition into major subcategories for κ DOD-PBEP86-D4, κ DOD-PBEPBE-D4, κ DOD-BLYP-D4, and κ xDOD₇₅-PBEP86-D4. Heatmapping is from red (worst) via yellow to green (best). Thermo=Small Molecule Thermochemistry; Barrier=barrier heights; Large=reaction energies for large systems; Conf=conformer/intramolecular interactions; Intermol=intermolecular interactions; and NCI= Total Non-Covalent Interaction (Conformer/Intramolecular + Intermolecular).

	WTMAD2			Pa	arameters	[a]				ΔV	VTMAD2	(kcal/m	ol)	
Functionals	(kcal/mol)	CC,DFT	C _{2ab}	C _{2ss}	S 6	a1	a ₂	к	Thermo	Barrier	Large	Conf	Intermol	NCI
	3.632	0.2174	0.9390	0.0	0.7101	0.001	5.570	1.1	1.002	0.655	0.777	0.572	0.627	1.199
	3.004	0.2653	0.8332	0.0	0.6707	0.124	4.927	1.45	0.856	0.442	0.676	0.495	0.536	1.031
	2.585	0.3200	0.7413	0.0	0.6408	0.247	4.403	2	0.738	0.318	0.602	0.455	0.473	0.927
кDOD-PBEP86-D4	2.501	0.3363	0.7187	0.0	0.6350	0.264	4.345	2.2	0.710	0.300	0.580	0.444	0.468	0.911
(с _{х,нг} =0.69)	2.419	0.3604	0.6921	0.0	0.6251	0.293	4.225	2.5	0.677	0.285	0.560	0.428	0.470	0.898
	2.336	0.3892	0.6638	0.0	0.6043	0.320	4.194	3	0.639	0.271	0.550	0.411	0.465	0.876
	2.297	0.4013	0.6456	0.0	0.6076	0.352	4.033	3.5	0.618	0.267	0.544	0.402	0.467	0.869
	2.280	0.4093	0.6341	0.0	0.6139	0.357	4.024	4	0.604	0.264	0.543	0.400	0.469	0.869
	2.271	0.4301	0.6131	0.0	0.6158	0.344	4.243	∞	0.575	0.253	0.581	0.399	0.464	0.862
	3.664	0.2310	0.9378	0.0	0.7777	0.045	5.323	1.1	1.032	0.644	0.793	0.578	0.617	1.195
	3.084	0.2885	0.8294	0.0	0.7367	0.180	4.596	1.45	0.898	0.441	0.703	0.503	0.540	1.043
	2.697	0.3553	0.7302	0.0	0.7255	0.296	4.039	2	0.778	0.341	0.618	0.466	0.495	0.961
кDOD-PBEPBE-D4	2.616	0.3682	0.7134	0.0	0.7218	0.309	3.990	2.2	0.752	0.322	0.594	0.463	0.485	0.948
(с _{х,нг} =0.68)	2.528	0.3868	0.6886	0.0	0.7231	0.344	3.822	2.5	0.722	0.306	0.569	0.450	0.481	0.931
	2.441	0.4059	0.6624	0.0	0.7263	0.347	3.921	3	0.690	0.294	0.539	0.436	0.482	0.918
	2.398	0.4179	0.6463	0.0	0.7358	0.381	3.745	3.5	0.672	0.289	0.519	0.437	0.481	0.918
	2.375	0.4240	0.6383	0.0	0.7380	0.397	3.592	4	0.662	0.291	0.517	0.425	0.480	0.905
	2.369	0.4465	0.6175	0.0	0.7410	0.377	3.770	∞	0.641	0.289	0.531	0.423	0.485	0.908
	3.996	0.3470	0.9431	0.0	0.8170	-0.013	5.545	1.1	1.058	0.732	0.779	0.609	0.819	1.428
	3.323	0.3884	0.8559	0.0	0.7746	0.004	5.498	1.45	0.916	0.521	0.631	0.549	0.707	1.255
	2.846	0.4519	0.7574	0.0	0.7557	0.067	5.144	2	0.794	0.385	0.523	0.508	0.635	1.143
кDOD-BLYP-D4	2.751	0.4643	0.7379	0.0	0.7556	0.085	5.029	2.2	0.768	0.360	0.501	0.500	0.623	1.123
(c _{x,HF} =0.71)	2.667	0.4801	0.7203	0.0	0.7512	0.100	4.966	2.5	0.750	0.336	0.483	0.495	0.604	1.099
	2.615	0.5029	0.6866	0.0	0.7592	0.133	4.777	3	0.718	0.321	0.490	0.484	0.601	1.085
	2.606	0.5334	0.6657	0.0	0.7469	0.107	4.996	3.5	0.708	0.314	0.510	0.479	0.595	1.074
	2.600	0.5442	0.6501	0.0	0.7530	0.127	4.892	4	0.692	0.311	0.527	0.477	0.593	1.070
	2.622	0.5548	0.6297	0.0	0.7661	0.146	4.779	∞	0.667	0.301	0.576	0.480	0.598	1.078
	4.055	0.1649	1.0712	0.0	0.6211	-0.090	6.100	1.1	1.072	0.815	0.835	0.647	0.686	1.333
	3.295	0.2213	0.9558	0.0	0.5503	-0.015	5.776	1.45	0.900	0.575	0.702	0.543	0.576	1.119
	2.721	0.2732	0.8599	0.0	0.5136	0.010	5.625	2	0.753	0.389	0.572	0.482	0.525	1.007
кхDOD ₇₅ -PBEP86-D4	2.597	0.2776	0.8399	0.0	0.5261	0.131	4.899	2.2	0.726	0.345	0.544	0.470	0.512	0.982
(с _{х,нғ} =0.75)	2.476	0.2994	0.8129	0.0	0.5133	0.144	4.917	2.5	0.691	0.319	0.515	0.454	0.497	0.952
	2.361	0.3175	0.7862	0.0	0.5160	0.286	4.201	3	0.657	0.288	0.497	0.437	0.482	0.919
	2.284	0.3431	0.7654	0.0	0.4943	0.138	5.143	3.5	0.624	0.276	0.477	0.426	0.483	0.908
	2.248	0.3538	0.7555	0.0	0.4903	0.169	5.064	4	0.610	0.267	0.480	0.419	0.473	0.892
	2.215	0.3695	0.7092	0.0	0.4865	0.199	4.952	∞	0.582	0.251	0.507	0.402	0.473	0.875

^[a]All results are with fixed $c_{ATM} = 1$ and $s_8 = 0$.

Table S4: Optimized parameters, total WTMAD2 and its decomposition into major subcategories for κDSD_X -PBEP86-D3BJ. Heatmapping is from red (worst) via yellow to green (best). Thermo=Small Molecule Thermochemistry; Barrier=barrier heights; Large=reaction energies for large systems; Conf=conformer/intramolecular interactions; Intermol=intermolecular interactions; and NCI= Total Non-Covalent Interaction (Conformer/Intramolecular + Intermolecular).

WTMAD2				Parameter	'S ^[a]				ΔWT	'MAD2 (ko	:al/mol)		
(kcal/mol)	Сх,нғ	C _{X,DFT}	CC,DFT	C _{2ab}	C _{2ss}	S 6	к	Thermo	Barrier	Large	Conf	Intermol	NCI
3.085	0.50	0.50	0.3329	0.6187	0.0368	0.7936	1.1	0.943	0.370	0.599	0.616	0.558	1.174
3.024	0.50	0.50	0.4029	0.5240	0.0100	0.7458	1.45	0.864	0.390	0.595	0.586	0.590	1.176
3.087	0.50	0.50	0.4816	0.4590	-0.0633	0.7483	2.0	0.825	0.419	0.621	0.573	0.649	1.222
3.113	0.50	0.50	0.5014	0.4402	-0.0734	0.7499	2.2	0.817	0.425	0.629	0.568	0.674	1.242
3.146	0.50	0.50	0.5262	0.4156	-0.0825	0.7485	2.5	0.806	0.430	0.642	0.565	0.703	1.268
3.189	0.50	0.50	0.5481	0.3941	-0.0964	0.7596	3.0	0.805	0.429	0.663	0.563	0.730	1.293
3.218	0.50	0.50	0.5604	0.3818	-0.1007	0.7608	3.5	0.802	0.428	0.679	0.564	0.744	1.309
3.239	0.50	0.50	0.5671	0.3753	-0.1079	0.7673	4.0	0.806	0.422	0.695	0.567	0.748	1.315
3.307	0.50	0.50	0.5887	0.3581	-0.1237	0.7774	∞	0.816	0.409	0.739	0.572	0.772	1.344
2.978	0.55	0.45	0.2843	0.6742	0.1262	0.7143	1.1	0.938	0.367	0.571	0.597	0.505	1.102
2.795	0.55	0.45	0.3536	0.5687	0.0998	0.6675	1.45	0.836	0.334	0.540	0.561	0.524	1.085
2.790	0.55	0.45	0.4322	0.5045	0.0169	0.6654	2.0	0.763	0.356	0.549	0.539	0.583	1.122
2.807	0.55	0.45	0.4554	0.4877	-0.0026	0.6660	2.2	0.749	0.361	0.557	0.532	0.608	1.139
2.831	0.55	0.45	0.4799	0.4696	-0.0234	0.6678	2.5	0.737	0.365	0.570	0.527	0.633	1.160
2.863	0.55	0.45	0.5063	0.4471	-0.0423	0.6764	3.0	0.728	0.365	0.585	0.521	0.664	1.185
2.888	0.55	0.45	0.5233	0.4324	-0.0505	0.6777	3.5	0.720	0.365	0.599	0.519	0.685	1.204
2.905	0.55	0.45	0.5340	0.4236	-0.0593	0.6854	4.0	0.719	0.361	0.609	0.518	0.699	1.216
2.962	0.55	0.45	0.5554	0.4077	-0.0799	0.6975	∞	0.724	0.345	0.654	0.521	0.718	1.239
2.989	0.58	0.42	0.2537	0.6938	0.2093	0.6625	1.1	0.953	0.388	0.562	0.591	0.495	1.085
2.711	0.58	0.42	0.3202	0.5965	0.1598	0.6102	1.45	0.831	0.315	0.523	0.557	0.485	1.041
2.658	0.58	0.42	0.4059	0.5330	0.0658	0.6041	2.0	0.727	0.328	0.526	0.527	0.550	1.077
2.665	0.58	0.42	0.4288	0.5163	0.0390	0.6123	2.2	0.714	0.327	0.533	0.520	0.570	1.090
2.678	0.58	0.42	0.4546	0.4969	0.0185	0.6149	2.5	0.696	0.333	0.540	0.510	0.600	1.110
2.703	0.58	0.42	0.4848	0.4744	-0.0035	0.6184	3.0	0.680	0.335	0.552	0.500	0.635	1.135
2.722	0.58	0.42	0.5024	0.4615	-0.0188	0.6251	3.5	0.674	0.332	0.565	0.497	0.654	1.151
2.736	0.58	0.42	0.5130	0.4524	-0.0296	0.6346	4.0	0.674	0.326	0.575	0.497	0.665	1.161
2.761	0.58	0.42	0.5277	0.4438	-0.0446	0.6411	∞	0.667	0.307	0.614	0.495	0.679	1.173
3.116	0.63	0.37	0.2117	0.7499	0.2922	0.5855	1.1	0.980	0.447	0.593	0.597	0.499	1.096
2.672	0.63	0.37	0.2820	0.6549	0.2282	0.5260	1.45	0.819	0.327	0.526	0.546	0.454	1.001
2.506	0.63	0.37	0.3638	0.5852	0.1344	0.5112	2.0	0.690	0.287	0.506	0.517	0.505	1.023
2.490	0.63	0.37	0.3878	0.5691	0.1113	0.5111	2.2	0.661	0.288	0.506	0.506	0.528	1.033
2.484	0.63	0.37	0.4092	0.5497	0.0877	0.5189	2.5	0.646	0.284	0.510	0.499	0.545	1.044
2.488	0.63	0.37	0.4395	0.5319	0.0543	0.5260	3.0	0.624	0.283	0.522	0.486	0.572	1.058
2.494	0.63	0.37	0.4593	0.5192	0.0335	0.5386	3.5	0.612	0.280	0.530	0.478	0.594	1.072
2.501	0.63	0.37	0.4678	0.5118	0.0226	0.5470	4.0	0.610	0.275	0.540	0.477	0.601	1.078
2.544	0.63	0.37	0.4892	0.5012	-0.0043	0.5670	∞	0.601	0.270	0.575	0.470	0.628	1.098
3.404	0.69	0.31	0.1713	0.8220	0.3588	0.5073	1.1	1.021	0.557	0.683	0.617	0.527	1.144
2.808	0.69	0.31	0.2339	0.7410	0.2935	0.4331	1.45	0.842	0.386	0.576	0.555	0.449	1.004
2.476	0.69	0.31	0.3176	0.6534	0.2193	0.3953	2.0	0.665	0.301	0.520	0.508	0.482	0.990
2.428	0.69	0.31	0.3397	0.6336	0.2003	0.3950	2.2	0.628	0.291	0.512	0.498	0.500	0.998
2.383	0.69	0.31	0.3647	0.6148	0.1740	0.3960	2.5	0.589	0.281	0.507	0.486	0.519	1.006
2.352	0.69	0.31	0.3906	0.5974	0.1474	0.3989	3.0	0.554	0.277	0.505	0.474	0.542	1.016
2.346	0.69	0.31	0.4075	0.5864	0.1220	0.4111	3.5	0.543	0.270	0.513	0.469	0.552	1.021
2.348	0.69	0.31	0.4164	0.5824	0.1085	0.4175	4.0	0.534	0.269	0.519	0.466	0.560	1.026
2.367	0.69	0.31	0.4312	0.5761	0.0816	0.4339	∞	0.521	0.268	0.552	0.457	0.569	1.026
3.804	0.75	0.25	0.1295	0.9038	0.4260	0.4209	1.1	1.069	0.698	0.815	0.644	0.578	1.221
3.104	0.75	0.25	0.1922	0.8159	0.3559	0.3507	1.45	0.875	0.489	0.685	0.572	0.484	1.056
2.634	0.75	0.25	0.2699	0.7330	0.2826	0.3121	2.0	0.681	0.374	0.579	0.527	0.474	1.000
2.551	0.75	0.25	0.2888	0.7143	0.2639	0.3091	2.2	0.638	0.357	0.558	0.517	0.481	0.998
2.472	0.75	0.25	0.3118	0.6921	0.2496	0.2955	2.5	0.590	0.342	0.541	0.501	0.498	0.999

2.398	0.75	0.25	0.3335	0.6729	0.2281	0.2943	3.0	0.540	0.328	0.526	0.489	0.515	1.004
2.368	0.75	0.25	0.3498	0.6647	0.2053	0.3045	3.5	0.514	0.321	0.525	0.482	0.525	1.008
2.357	0.75	0.25	0.3601	0.6582	0.1917	0.3086	4.0	0.500	0.319	0.529	0.476	0.532	1.008
2.358	0.75	0.25	0.3755	0.6514	0.1638	0.3267	∞	0.481	0.317	0.556	0.466	0.537	1.003
6.195	1.00	0.00	-0.0601	1.2348	0.7766	0.0267	1.1	1.437	1.381	1.526	0.915	0.936	1.851
5.257	1.00	0.00	-0.0136	1.1566	0.6961	-0.0592	1.45	1.175	1.109	1.355	0.796	0.822	1.619
4.568	1.00	0.00	0.0745	1.0584	0.5820	-0.0650	2.0	0.952	0.970	1.182	0.729	0.735	1.464
4.429	1.00	0.00	0.0977	1.0359	0.5582	-0.0651	2.2	0.906	0.945	1.144	0.713	0.720	1.434
4.282	1.00	0.00	0.1172	1.0262	0.5181	-0.0548	2.5	0.855	0.922	1.099	0.705	0.701	1.406
4.141	1.00	0.00	0.1405	1.0178	0.4743	-0.0443	3.0	0.805	0.901	1.058	0.693	0.684	1.377
4.068	1.00	0.00	0.1580	1.0165	0.4339	-0.0315	3.5	0.779	0.894	1.034	0.685	0.678	1.363
4.029	1.00	0.00	0.1643	1.0162	0.4240	-0.0325	4.0	0.765	0.887	1.025	0.678	0.675	1.353
3.968	1.00	0.00	0.1710	1.0175	0.4025	-0.0194	∞	0.736	0.880	1.015	0.675	0.661	1.337

Table S5: Optimized parameters, total WTMAD2 and its decomposition into major subcategories for κDH_X -PBEP86-D3BJ. Heatmapping is from red (worst) via yellow to green (best). Thermo=Small Molecule Thermochemistry; Barrier=barrier heights; Large=reaction energies for large systems; Conf=conformer/intramolecular interactions; Intermol=intermolecular interactions; and NCI= Total Non-Covalent Interaction (Conformer/Intramolecular + Intermolecular).

WTMAD2				Parameters ^{[a}	a]			·	ΔW	/TMAD2 (kcal/mol)		
(kcal/mol)	C _{X,HF}	C _{X,DFT}	C _{C,DFT}	C _{2ab}	C _{2ss}	S ₆	к	Thermo	Barrier	Large	Conf	Intermol	NCI
3.399	0.50	0.50	0.2913	0.4083	0.4083	0.7315	1.1	1.220	0.377	0.569	0.645	0.588	1.232
3.366	0.50	0.50	0.3603	0.3288	0.3288	0.7018	1.45	1.136	0.403	0.591	0.621	0.616	1.237
3.454	0.50	0.50	0.4261	0.2578	0.2578	0.7110	2.0	1.108	0.421	0.640	0.616	0.669	1.285
3.489	0.50	0.50	0.4392	0.2437	0.2437	0.7159	2.2	1.108	0.424	0.655	0.618	0.683	1.301
3.533	0.50	0.50	0.4583	0.2260	0.2260	0.7244	2.5	1.108	0.426	0.670	0.618	0.711	1.329
3.590	0.50	0.50	0.4708	0.2090	0.2090	0.7396	3.0	1.126	0.419	0.697	0.625	0.723	1.348
3.629	0.50	0.50	0.4896	0.1980	0.1980	0.7354	3.5	1.115	0.429	0.705	0.626	0.753	1.379
3.654	0.50	0.50	0.4966	0.1924	0.1924	0.7373	4.0	1.117	0.432	0.716	0.628	0.763	1.391
3.730	0.50	0.50	0.5113	0.1776	0.1776	0.7525	00	1.141	0.422	0.751	0.632	0.785	1.416
3.231	0.55	0.45	0.2366	0.4767	0.4767	0.6656	1.1	1.214	0.366	0.511	0.625	0.515	1.140
3.080	0.55	0.45	0.3158	0.3862	0.3862	0.6319	1.45	1.096	0.344	0.521	0.588	0.531	1.119
3.129	0.55	0.45	0.3825	0.3194	0.3194	0.6195	2.0	1.027	0.371	0.556	0.579	0.596	1.176
3.162	0.55	0.45	0.4001	0.3036	0.3036	0.6184	2.2	1.015	0.380	0.568	0.579	0.620	1.198
3.206	0.55	0.45	0.4222	0.2839	0.2839	0.6219	2.5	1.008	0.386	0.585	0.579	0.648	1.227
3.264	0.55	0.45	0.4446	0.2654	0.2654	0.6272	3.0	1.001	0.397	0.602	0.580	0.685	1.265
3.304	0.55	0.45	0.4598	0.2505	0.2505	0.6356	3.5	1.011	0.389	0.619	0.585	0.700	1.285
3.331	0.55	0.45	0.4690	0.2423	0.2423	0.6389	4.0	1.015	0.387	0.630	0.588	0.710	1.298
3.405	0.55	0.45	0.4880	0.2236	0.2236	0.6574	∞	1.040	0.374	0.664	0.591	0.736	1.326
3.214	0.58	0.42	0.2161	0.5090	0.5090	0.6271	1.1	1.211	0.375	0.507	0.621	0.499	1.121
2.981	0.58	0.42	0.2782	0.4333	0.4333	0.5729	1.45	1.082	0.342	0.491	0.583	0.485	1.067
2.979	0.58	0.42	0.3625	0.3509	0.3509	0.5668	2.0	0.991	0.341	0.521	0.563	0.564	1.127
3.005	0.58	0.42	0.3814	0.3326	0.3326	0.5703	2.2	0.981	0.343	0.533	0.562	0.586	1.147
3.044	0.58	0.42	0.4041	0.3153	0.3153	0.5666	2.5	0.962	0.358	0.545	0.560	0.620	1.180
3.098	0.58	0.42	0.4237	0.2988	0.2988	0.5688	3.0	0.951	0.372	0.562	0.561	0.652	1.214
3.137	0.58	0.42	0.4344	0.2875	0.2875	0.5749	3.5	0.957	0.372	0.579	0.565	0.665	1.230
3.165	0.58	0.42	0.4468	0.2769	0.2769	0.5799	4.0	0.961	0.368	0.591	0.567	0.679	1.246
3.214	0.58	0.42	0.4597	0.2626	0.2626	0.5968	∞	0.984	0.347	0.623	0.565	0.695	1.260
3.323	0.63	0.37	0.1741	0.5767	0.5767	0.5487	1.1	1.212	0.433	0.543	0.626	0.510	1.135
2.931	0.63	0.37	0.2364	0.4966	0.4966	0.4911	1.45	1.064	0.350	0.486	0.578	0.453	1.032
2.820	0.63	0.37	0.3131	0.4153	0.4153	0.4772	2.0	0.963	0.323	0.482	0.551	0.501	1.052
2.826	0.63	0.37	0.3396	0.3931	0.3931	0.4752	2.2	0.938	0.320	0.493	0.545	0.530	1.075
2.844	0.63	0.37	0.3594	0.3767	0.3767	0.4687	2.5	0.915	0.328	0.504	0.543	0.555	1.098
2.886	0.63	0.37	0.3796	0.3596	0.3596	0.4698	3.0	0.898	0.338	0.521	0.543	0.586	1.129
2.919	0.63	0.37	0.3992	0.3430	0.3430	0.4749	3.5	0.895	0.334	0.537	0.544	0.610	1.154
2.945	0.63	0.37	0.4078	0.3346	0.3346	0.4833	4.0	0.897	0.333	0.547	0.543	0.625	1.168
3.015	0.63	0.37	0.4220	0.3220	0.3220	0.4906	∞	0.900	0.339	0.586	0.543	0.647	1.190
3.609	0.69	0.31	0.1296	0.6531	0.6531	0.4548	1.1	1.234	0.533	0.646	0.645	0.551	1.196
3.070	0.69	0.31	0.1875	0.5744	0.5744	0.3849	1.45	1.059	0.406	0.554	0.584	0.466	1.050
2.808	0.69	0.31	0.2703	0.4911	0.4911	0.3582	2.0	0.926	0.355	0.500	0.545	0.482	1.027
2.784	0.69	0.31	0.2881	0.4737	0.4737	0.3575	2.2	0.902	0.352	0.495	0.540	0.495	1.036
2.773	0.69	0.31	0.3064	0.4567	0.4567	0.3543	2.5	0.877	0.353	0.493	0.536	0.514	1.050
2.779	0.69	0.31	0.3290	0.4370	0.4370	0.3547	3.0	0.852	0.358	0.497	0.530	0.542	1.072
2.796	0.69	0.31	0.3418	0.4259	0.4259	0.3586	3.5	0.840	0.363	0.505	0.527	0.561	1.088
2.814	0.69	0.31	0.3493	0.4196	0.4196	0.3579	4.0	0.834	0.368	0.516	0.526	0.571	1.097
2.872	0.69	0.31	0.3661	0.4073	0.4073	0.3629	∞	0.824	0.378	0.550	0.522	0.600	1.121
4.004	0.75	0.25	0.0607	0.7559	0.7559	0.3614	1.1	1.267	0.655	0.789	0.689	0.603	1.292
3.363	0.75	0.25	0.1295	0.6625	0.6625	0.2861	1.45	1.075	0.499	0.675	0.614	0.501	1.115
2.989	0.75	0.25	0.2170	0.5721	0.5721	0.2505	2.0	0.920	0.431	0.583	0.566	0.489	1.055
2.933	0.75	0.25	0.2425	0.5476	0.5476	0.2516	2.2	0.894	0.422	0.565	0.554	0.497	1.052
2.888	0.75	0.25	0.2650	0.5300	0.5300	0.2371	2.5	0.860	0.419	0.552	0.545	0.512	1.057

2.863	0.75	0.25	0.2874	0.5096	0.5096	0.2404	3.0	0.834	0.420	0.543	0.539	0.527	1.066
2.864	0.75	0.25	0.3019	0.4990	0.4990	0.2329	3.5	0.816	0.425	0.546	0.535	0.542	1.077
2.870	0.75	0.25	0.3070	0.4934	0.4934	0.2359	4.0	0.810	0.429	0.550	0.533	0.548	1.081
2.900	0.75	0.25	0.3190	0.4846	0.4846	0.2384	∞	0.796	0.442	0.575	0.523	0.564	1.087
6.317	1.00	0.00	-0.1264	1.1149	1.1149	-0.0507	1.1	1.567	1.290	1.541	0.955	0.965	1.919
5.438	1.00	0.00	-0.0722	1.0278	1.0278	-0.1395	1.45	1.306	1.062	1.395	0.849	0.826	1.675
4.858	1.00	0.00	0.0222	0.9244	0.9244	-0.1831	2.0	1.119	0.967	1.259	0.769	0.745	1.513
4.758	1.00	0.00	0.0404	0.9010	0.9010	-0.1835	2.2	1.095	0.952	1.222	0.751	0.739	1.490
4.665	1.00	0.00	0.0617	0.8795	0.8795	-0.1840	2.5	1.063	0.942	1.196	0.741	0.723	1.464
4.585	1.00	0.00	0.0832	0.8599	0.8599	-0.1978	3.0	1.034	0.936	1.165	0.722	0.728	1.450
4.553	1.00	0.00	0.0957	0.8474	0.8474	-0.1952	3.5	1.027	0.935	1.152	0.716	0.724	1.439
4.540	1.00	0.00	0.1008	0.8398	0.8398	-0.1857	4.0	1.027	0.937	1.146	0.715	0.716	1.431
4.534	1.00	0.00	0.1075	0.8306	0.8306	-0.1746	∞	1.024	0.943	1.150	0.713	0.705	1.417
	F 3												

Table S6: Optimized parameters, total WTMAD2 and its decomposition into major subcategories for κ DOD_X-PBEP86-D3BJ. Heatmapping is from red (worst) via yellow to green (best). Thermo=Small Molecule Thermochemistry; Barrier=barrier heights; Large=reaction energies for large systems; Conf=conformer/intramolecular interactions; Intermol=intermolecular interactions; and NCI= Total Non-Covalent Interaction (Conformer/Intramolecular + Intermolecular).

WTMAD2				Parameter	'S ^[a]					ΔWTMAD2	(kcal/mol)		
(kcal/mol)	C _{X,HF}	C _{X,DFT}	C _{C,DFT}	C _{2ab}	C _{2ss}	S ₆	к	Thermo	Barrier	Large	Conf	Intermol	NCI
3.090	0.50	0.50	0.3449	0.6243	0.0	0.8050	1.1	0.932	0.371	0.610	0.616	0.562	1.178
3.024	0.50	0.50	0.4044	0.5270	0.0	0.7511	1.45	0.864	0.388	0.597	0.586	0.589	1.176
3.099	0.50	0.50	0.4697	0.4360	0.0	0.7209	2.0	0.819	0.438	0.613	0.571	0.658	1.230
3.135	0.50	0.50	0.4842	0.4161	0.0	0.7173	2.2	0.814	0.448	0.622	0.570	0.680	1.250
3.180	0.50	0.50	0.5059	0.3915	0.0	0.7094	2.5	0.803	0.463	0.633	0.567	0.714	1.281
3.240	0.50	0.50	0.5234	0.3599	0.0	0.7185	3.0	0.820	0.458	0.657	0.569	0.736	1.305
3.284	0.50	0.50	0.5332	0.3424	0.0	0.7239	3.5	0.832	0.456	0.676	0.573	0.748	1.321
3.316	0.50	0.50	0.5407	0.3323	0.0	0.7242	4.0	0.837	0.457	0.688	0.575	0.758	1.333
3.417	0.50	0.50	0.5581	0.3024	0.0	0.7367	x	0.876	0.442	0.735	0.582	0.784	1.365
3.021	0.55	0.45	0.3164	0.7010	0.0	0.7613	1.1	0.915	0.378	0.617	0.606	0.506	1.112
2.817	0.55	0.45	0.3754	0.5964	0.0	0.7131	1.45	0.829	0.332	0.570	0.564	0.522	1.087
2.792	0.55	0.45	0.4340	0.5133	0.0	0.6711	2.0	0.765	0.355	0.552	0.540	0.580	1.120
2.807	0.55	0.45	0.4552	0.4862	0.0	0.6651	2.2	0.749	0.362	0.557	0.531	0.609	1.140
2.834	0.55	0.45	0.4759	0.4620	0.0	0.6547	2.5	0.731	0.373	0.566	0.526	0.638	1.164
2.873	0.55	0.45	0.4992	0.4327	0.0	0.6524	3.0	0.717	0.382	0.579	0.522	0.674	1.196
2.906	0.55	0.45	0.5123	0.4139	0.0	0.6527	3.5	0.717	0.382	0.594	0.523	0.691	1.213
2.931	0.55	0.45	0.5204	0.4020	0.0	0.6572	4.0	0.718	0.383	0.603	0.522	0.705	1.227
3.020	0.55	0.45	0.5348	0.3731	0.0	0.6747	x	0.752	0.368	0.647	0.527	0.726	1.253
3.080	0.58	0.42	0.3083	0.7364	0.0	0.7310	1.1	0.916	0.413	0.650	0.608	0.493	1.101
2.778	0.58	0.42	0.3642	0.6358	0.0	0.6782	1.45	0.814	0.323	0.590	0.557	0.495	1.053
2.677	0.58	0.42	0.4188	0.5541	0.0	0.6368	2.0	0.740	0.318	0.545	0.528	0.547	1.075
2.673	0.58	0.42	0.4352	0.5316	0.0	0.6318	2.2	0.722	0.322	0.541	0.521	0.568	1.089
2.679	0.58	0.42	0.4569	0.5043	0.0	0.6252	2.5	0.702	0.328	0.543	0.511	0.597	1.107
2.703	0.58	0.42	0.4837	0.4729	0.0	0.6178	3.0	0.680	0.335	0.552	0.500	0.635	1.135
2.725	0.58	0.42	0.4977	0.4545	0.0	0.6166	3.5	0.671	0.337	0.563	0.499	0.654	1.153
2.742	0.58	0.42	0.5038	0.4458	0.0	0.6181	4.0	0.668	0.338	0.573	0.500	0.664	1.164
2.786	0.58	0.42	0.5151	0.4258	0.0	0.6281	x	0.677	0.320	0.609	0.500	0.680	1.179
3.305	0.63	0.37	0.2856	0.8226	0.0	0.6731	1.1	0.962	0.508	0.725	0.613	0.499	1.111
2.844	0.63	0.37	0.3336	0.7191	0.0	0.6219	1.45	0.823	0.354	0.639	0.568	0.460	1.028
2.601	0.63	0.37	0.3953	0.6234	0.0	0.5773	2.0	0.717	0.283	0.571	0.523	0.508	1.030
2.563	0.63	0.37	0.4111	0.6020	0.0	0.5675	2.2	0.694	0.279	0.556	0.511	0.523	1.035
2.525	0.63	0.37	0.4280	0.5782	0.0	0.5634	2.5	0.668	0.275	0.538	0.502	0.543	1.044
2.506	0.63	0.37	0.4525	0.5491	0.0	0.5533	3.0	0.640	0.276	0.535	0.484	0.572	1.056
2.504	0.63	0.37	0.4641	0.5326	0.0	0.5537	3.5	0.626	0.273	0.539	0.480	0.587	1.066
2.507	0.63	0.37	0.4724	0.5237	0.0	0.5519	4.0	0.615	0.274	0.543	0.475	0.600	1.075
2.544	0.63	0.37	0.4878	0.4993	0.0	0.5660	00	0.600	0.271	0.575	0.471	0.628	1.098
3.702	0.69	0.31	0.2639	0.9147	0.0	0.6046	1.1	1.034	0.661	0.861	0.626	0.521	1.146
3.113	0.69	0.31	0.3128	0.8131	0.0	0.5470	1.45	0.875	0.460	0.739	0.570	0.468	1.039
2.720	0.69	0.31	0.3598	0.7291	0.0	0.4979	2.0	0.742	0.326	0.635	0.536	0.481	1.017
2.642	0.69	0.31	0.3733	0.7080	0.0	0.4861	2.2	0.711	0.304	0.610	0.526	0.490	1.017
2.561	0.69	0.31	0.3941	0.6790	0.0	0.4764	2.5	0.672	0.287	0.584	0.510	0.509	1.018
2.481	0.69	0.31	0.4193	0.6480	0.0	0.4651	3.0	0.630	0.273	0.561	0.485	0.532	1.017
2.439	0.69	0.31	0.4308	0.6281	0.0	0.4694	3.5	0.605	0.264	0.548	0.479	0.542	1.021
2.421	0.69	0.31	0.4362	0.6176	0.0	0.4725	4.0	0.592	0.259	0.548	0.476	0.547	1.023
2.410	0.69	0.31	0.4443	0.6047	0.0	0.4790	∞	0.567	0.253	0.569	0.466	0.556	1.022
4.201	0.75	0.25	0.2344	1.0233	0.0	0.5365	1.1	1.137	0.832	1.011	0.663	0.558	1.221
3.514	0.75	0.25	0.2837	0.9252	0.0	0.4543	1.45	0.969	0.598	0.869	0.579	0.499	1.077
2.992	0.75	0.25	0.3419	0.8202	0.0	0.4143	2.0	0.791	0.431	0.746	0.534	0.491	1.025
2.887	0.75	0.25	0.3507	0.8018	0.0	0.4105	2.2	0.752	0.398	0.711	0.532	0.494	1.026
2.770	0.75	0.25	0.3610	0.7832	0.0	0.4035	2.5	0.710	0.364	0.669	0.528	0.500	1.027

2.653	0.75	0.25	0.3796	0.7560	0.0	0.3921	3.0	0.662	0.337	0.629	0.512	0.513	1.025
2.583	0.75	0.25	0.3897	0.7394	0.0	0.3919	3.5	0.633	0.322	0.603	0.504	0.521	1.025
2.541	0.75	0.25	0.3978	0.7279	0.0	0.3916	4.0	0.615	0.315	0.588	0.496	0.526	1.023
2.492	0.75	0.25	0.4068	0.7124	0.0	0.3975	∞	0.586	0.302	0.591	0.483	0.530	1.013
6.871	1.00	0.00	0.1163	1.4450	0.0	0.2693	1.1	1.654	1.651	1.737	0.958	0.871	1.829
5.964	1.00	0.00	0.1691	1.3564	0.0	0.1453	1.45	1.453	1.345	1.564	0.812	0.790	1.601
5.211	1.00	0.00	0.1992	1.2903	0.0	0.1137	2.0	1.254	1.108	1.372	0.790	0.686	1.477
5.043	1.00	0.00	0.2085	1.2770	0.0	0.0980	2.2	1.213	1.057	1.324	0.771	0.678	1.449
4.858	1.00	0.00	0.2246	1.2563	0.0	0.0814	2.5	1.171	1.004	1.269	0.741	0.673	1.414
4.664	1.00	0.00	0.2389	1.2288	0.0	0.0755	3.0	1.111	0.965	1.202	0.716	0.671	1.386
4.558	1.00	0.00	0.2478	1.2093	0.0	0.0733	3.5	1.070	0.950	1.165	0.697	0.676	1.372
4.496	1.00	0.00	0.2547	1.2013	0.0	0.0698	4.0	1.056	0.938	1.145	0.684	0.673	1.357
4.395	1.00	0.00	0.2593	1.1853	0.0	0.0800	∞	1.012	0.927	1.110	0.678	0.668	1.346

Table S7: Optimized parameters, total WTMAD2 and its decomposition into major subcategories for knoDispSD_X-PBEP86. Heatmapping is from red (worst) via yellow to green (best). Thermo=Small Molecule Thermochemistry; Barrier=barrier heights; Large=reaction energies for large systems; Conf=conformer/intramolecular interactions; Intermol=intermolecular interactions; and NCI= Total Non-Covalent Interaction (Conformer/Intramolecular + Intermolecular).

WTMAD2			````	Parameters	[a]					∆WTMAD2	(kcal/mol)		
(kcal/mol)	C _{X,HF}	C _{X,DFT}	C _{C,DFT}	C _{2ab}	C _{2ss}	S 6	к	Thermo	Barrier	Large	Conf	Intermol	NCI
5.721	0.50	0.50	0.3345	0.5009	0.6659	0.0	1.1	1.308	0.734	0.880	1.475	1.325	2.800
5.410	0.50	0.50	0.3764	0.4575	0.5529	0.0	1.45	1.204	0.869	0.848	1.325	1.163	2.488
5.342	0.50	0.50	0.4651	0.3712	0.4429	0.0	2.0	1.041	0.932	0.891	1.314	1.164	2.478
5.355	0.50	0.50	0.4813	0.3566	0.4270	0.0	2.2	1.020	0.959	0.907	1.308	1.162	2.469
5.389	0.50	0.50	0.5129	0.3385	0.3854	0.0	2.5	0.976	0.961	0.932	1.329	1.191	2.519
5.448	0.50	0.50	0.5429	0.3141	0.3504	0.0	3.0	0.930	0.956	0.968	1.365	1.228	2.593
5.497	0.50	0.50	0.5623	0.3010	0.3294	0.0	3.5	0.909	0.956	0.993	1.388	1.251	2.639
5.536	0.50	0.50	0.5746	0.2893	0.3242	0.0	4.0	0.900	0.964	1.010	1.401	1.262	2.662
5.663	0.50	0.50	0.6049	0.2585	0.2977	0.0	x	0.857	0.926	1.080	1.475	1.326	2.801
5.260	0.55	0.45	0.2682	0.5895	0.7012	0.0	1.1	1.299	0.637	0.787	1.295	1.242	2.537
4.860	0.55	0.45	0.3296	0.5234	0.5665	0.0	1.45	1.138	0.722	0.749	1.165	1.086	2.251
4.747	0.55	0.45	0.4166	0.4404	0.4628	0.0	2.0	0.985	0.807	0.776	1.128	1.052	2.180
4.751	0.55	0.45	0.4392	0.4218	0.4374	0.0	2.2	0.948	0.821	0.791	1.132	1.059	2.191
4.771	0.55	0.45	0.4680	0.3989	0.4091	0.0	2.5	0.905	0.835	0.813	1.144	1.074	2.218
4.819	0.55	0.45	0.4961	0.3722	0.3848	0.0	3.0	0.862	0.846	0.846	1.166	1.099	2.265
4.865	0.55	0.45	0.5143	0.3537	0.3737	0.0	3.5	0.839	0.855	0.870	1.184	1.117	2.301
4.903	0.55	0.45	0.5299	0.3406	0.3600	0.0	4.0	0.819	0.847	0.889	1.208	1.140	2.348
5.020	0.55	0.45	0.5636	0.3129	0.3272	0.0	x	0.778	0.815	0.949	1.275	1.203	2.478
5.040	0.58	0.42	0.2460	0.6318	0.7052	0.0	1.1	1.279	0.589	0.761	1.210	1.202	2.411
4.568	0.58	0.42	0.3045	0.5583	0.5757	0.0	1.45	1.097	0.643	0.700	1.081	1.048	2.129
4.417	0.58	0.42	0.3854	0.4835	0.4680	0.0	2.0	0.944	0.723	0.716	1.032	1.003	2.035
4.413	0.58	0.42	0.4144	0.4630	0.4406	0.0	2.2	0.906	0.741	0.729	1.033	1.004	2.037
4.426	0.58	0.42	0.4378	0.4406	0.4188	0.0	2.5	0.868	0.759	0.750	1.039	1.011	2.050
4.465	0.58	0.42	0.4693	0.4115	0.3947	0.0	3.0	0.821	0.774	0.780	1.058	1.032	2.090
4.507	0.58	0.42	0.4870	0.3927	0.3838	0.0	3.5	0.796	0.781	0.804	1.076	1.049	2.126
4.542	0.58	0.42	0.4986	0.3849	0.3709	0.0	4.0	0.783	0.783	0.823	1.090	1.064	2.154
4.600	0.58	0.42	0.5262	0.3599	0.3501	0.0	œ	0.737	0.754	0.872	1.130	1.107	2.237
4.782	0.63	0.37	0.1936	0.7027	0.7474	0.0	1.1	1.277	0.567	0.741	1.071	1.127	2.198
4.174	0.63	0.37	0.2611	0.6231	0.5981	0.0	1.45	1.060	0.567	0.641	0.941	0.964	1.905
3.934	0.63	0.37	0.3448	0.5467	0.4738	0.0	2.0	0.872	0.597	0.641	0.890	0.933	1.823
3.917	0.63	0.37	0.3670	0.5230	0.4569	0.0	2.2	0.835	0.615	0.650	0.888	0.930	1.818
3.913	0.63	0.37	0.3939	0.5060	0.4264	0.0	2.5	0.796	0.634	0.662	0.888	0.932	1.821
3.933	0.63	0.37	0.4309	0.4774	0.3956	0.0	3.0	0.745	0.646	0.687	0.905	0.950	1.855
3.963	0.63	0.37	0.4503	0.4603	0.3805	0.0	3.5	0.718	0.651	0.707	0.920	0.965	1.886
3.992	0.63	0.37	0.4572	0.4489	0.3814	0.0	4.0	0.710	0.664	0.724	0.927	0.968	1.895
4.090	0.63	0.37	0.4764	0.4312	0.3695	0.0	x	0.695	0.677	0.781	0.948	0.988	1.937
4.618	0.69	0.31	0.1444	0.8036	0.7424	0.0	1.1	1.263	0.568	0.783	0.924	1.078	2.003
3.864	0.69	0.31	0.2065	0.7231	0.5995	0.0	1.45	1.031	0.516	0.646	0.785	0.887	1.672
3.480	0.69	0.31	0.2959	0.6381	0.4827	0.0	2.0	0.829	0.516	0.585	0.731	0.821	1.551
3.439	0.69	0.31	0.3145	0.6186	0.4659	0.0	2.2	0.791	0.526	0.585	0.724	0.813	1.537
3.408	0.69	0.31	0.3383	0.5953	0.4451	0.0	2.5	0.746	0.536	0.592	0.722	0.813	1.535
3.403	0.69	0.31	0.3680	0.5649	0.4214	0.0	3.0	0.693	0.537	0.612	0.731	0.829	1.560
3.415	0.69	0.31	0.3872	0.5464	0.4082	0.0	3.5	0.665	0.542	0.628	0.740	0.841	1.580
3.433	0.69	0.31	0.4049	0.5331	0.3922	0.0	4.0	0.641	0.535	0.643	0.753	0.861	1.614
3.509	0.69	0.31	0.4265	0.5149	0.3757	0.0	œ	0.618	0.540	0.693	0.773	0.885	1.658
4.592	0.75	0.25	0.1094	0.8806	0.7575	0.0	1.1	1.256	0.625	0.877	0.823	1.011	1.835
3.742	0.75	0.25	0.1750	0.8003	0.5994	0.0	1.45	0.999	0.512	0.723	0.681	0.828	1.509
3.224	0.75	0.25	0.2502	0.7250	0.4890	0.0	2.0	0.793	0.474	0.603	0.613	0.740	1.353
3.144	0.75	0.25	0.2680	0.7094	0.4661	0.0	2.2	0.751	0.473	0.582	0.604	0.733	1.337
3.071	0.75	0.25	0.2979	0.6836	0.4393	0.0	2.5	0.700	0.469	0.570	0.600	0.733	1.333

3.026	0.75	0.25	0.3250	0.6611	0.4161	0.0	3.0	0.654	0.472	0.573	0.597	0.732	1.328
3.018	0.75	0.25	0.3397	0.6422	0.4107	0.0	3.5	0.626	0.476	0.582	0.600	0.736	1.335
3.023	0.75	0.25	0.3481	0.6305	0.4089	0.0	4.0	0.612	0.479	0.591	0.602	0.739	1.341
3.068	0.75	0.25	0.3598	0.6192	0.3993	0.0	∞	0.595	0.488	0.633	0.603	0.749	1.353
6.195	1.00	0.00	-0.0676	1.2333	0.8180	0.0	1.1	1.442	1.359	1.535	0.913	0.948	1.860
5.266	1.00	0.00	-0.0069	1.1538	0.6469	0.0	1.45	1.168	1.133	1.350	0.828	0.786	1.615
4.585	1.00	0.00	0.0743	1.0693	0.5295	0.0	2.0	0.946	0.988	1.181	0.776	0.693	1.469
4.445	1.00	0.00	0.0925	1.0532	0.5064	0.0	2.2	0.901	0.961	1.141	0.765	0.678	1.443
4.296	1.00	0.00	0.1153	1.0329	0.4797	0.0	2.5	0.851	0.937	1.095	0.747	0.667	1.414
4.150	1.00	0.00	0.1438	1.0272	0.4267	0.0	3.0	0.801	0.915	1.048	0.719	0.667	1.386
4.074	1.00	0.00	0.1529	1.0229	0.4133	0.0	3.5	0.774	0.902	1.027	0.710	0.661	1.371
4.033	1.00	0.00	0.1600	1.0173	0.4073	0.0	4.0	0.759	0.896	1.018	0.702	0.658	1.360
3.971	1.00	0.00	0.1662	1.0183	0.3938	0.0	∞	0.731	0.886	1.008	0.691	0.655	1.346

Table S8: Optimized parameters, total WTMAD2 and its decomposition into major subcategories for κDSD_{69} -PBEP86-D3BJ and κDSD_{69} -PBEPBE-D3BJ@PBE0P86. Heatmapping is from red (worst) via yellow to green (best). Thermo=Small Molecule Thermochemistry; Barrier=barrier heights; Large=reaction energies for large systems; Conf=conformer/intramolecular interactions; Intermol=intermolecular interactions; and NCI= Total Non-Covalent Interaction (Conformer/Intramolecular + Intermolecular).

Eurotionals	WTMAD2	_	Pa	arameters ^[a]				Δ١	VTMAD2	(kcal/m	ol)	
Functionais	(kcal/mol)	CC,DFT	C _{2ab}	C _{2ss}	S 6	к	Thermo	Barrier	Large	Conf	Intermol	NCI
	3.821	0.1812	0.7392	0.2924	0.6121	1.1	1.136	0.638	0.727	0.680	0.641	1.321
	3.081	0.2537	0.6253	0.2330	0.5253	1.45	0.960	0.424	0.577	0.600	0.519	1.120
	2.594	0.3415	0.5054	0.1953	0.4683	2.0	0.800	0.305	0.479	0.547	0.463	1.010
	2.515	0.3597	0.4833	0.1880	0.4509	2.2	0.767	0.298	0.455	0.533	0.462	0.995
	2.436	0.3845	0.4579	0.1780	0.4331	2.5	0.726	0.297	0.425	0.516	0.473	0.989
PBEUP80	2.366	0.4305	0.4330	0.1417	0.4255	3.0	0.670	0.296	0.409	0.484	0.507	0.991
	2.326	0.4587	0.4165	0.1165	0.4325	3.5	0.644	0.290	0.401	0.465	0.526	0.991
	2.299	0.4757	0.4088	0.0977	0.4409	4.0	0.627	0.287	0.393	0.456	0.537	0.993
	2.276	0.5368	0.3811	0.0381	0.4883	∞	0.590	0.242	0.434	0.419	0.591	1.010
	3.404	0.1713	0.8220	0.3588	0.5073	1.1	1.021	0.557	0.683	0.617	0.527	1.144
	2.807	0.2339	0.7410	0.2935	0.4331	1.45	0.842	0.386	0.576	0.555	0.449	1.004
	2.477	0.3176	0.6534	0.2193	0.3953	2.0	0.665	0.301	0.520	0.508	0.482	0.990
	2.428	0.3397	0.6336	0.2003	0.3950	2.2	0.628	0.291	0.512	0.498	0.500	0.998
кDSD ₆₉ -PBEP86-D3BJ	2.383	0.3647	0.6148	0.1740	0.3960	2.5	0.589	0.281	0.507	0.486	0.519	1.006
	2.352	0.3906	0.5974	0.1474	0.3989	3.0	0.554	0.277	0.505	0.474	0.542	1.016
	2.346	0.4075	0.5864	0.1220	0.4111	3.5	0.543	0.270	0.513	0.469	0.552	1.021
	2.348	0.4164	0.5824	0.1085	0.4175	4.0	0.534	0.269	0.519	0.466	0.560	1.026
	2.367	0.4312	0.5761	0.0816	0.4339	∞	0.521	0.268	0.552	0.457	0.569	1.026

Table S9: Total WTMAD2 and its decomposition into major subcategories for selected nonempirical DHDFs. Thermo=Small Molecule Thermochemistry; Barrier=barrier heights; Large=reaction energies for large systems; Conf=conformer/intramolecular interactions; Intermol=intermolecular interactions; and NCI= Total Non-Covalent Interaction (Conformer/Intramolecular + Intermolecular).

Functionals	к	WTMAD2	ΔWTMAD2 (kcal/mol)					
		(kcal/mol)	Thermo	Barrier	Large	Conf	Intermol	NCI
PBE0-DH-D3BJ ^{1,2}	1.1	5.745	1.469	0.629	1.282	1.096	1.270	2.366
	1.45	5.637	1.415	0.641	1.237	1.052	1.291	2.344
	2.0	5.545	1.357	0.657	1.183	1.027	1.320	2.347
	x	5.439	1.273	0.698	1.100	1.003	1.365	2.368
SOS1-PBE-QIDH-D3BJ ^{3,4}	1.1	5.984	1.389	0.912	1.354	1.233	1.096	2.329
	1.45	5.233	1.223	0.760	1.234	1.024	0.993	2.016
	x	3.838	0.874	0.456	0.873	0.768	0.867	1.635
SOS0-PBE0-2-D3BJ ^{5,6}	1.1	6.401	1.429	1.217	1.452	1.016	1.287	2.303
	1.45	5.347	1.214	0.994	1.293	0.825	1.021	1.846
	x	3.461	0.736	0.561	0.846	0.672	0.647	1.320
PBE0-DH ¹	1.1	9.225	1.396	0.591	1.545	2.814	2.879	5.693
	1.45	8.822	1.330	0.568	1.495	2.678	2.750	5.428
	2.0	8.466	1.261	0.563	1.440	2.565	2.638	5.203
	x	8.080	1.163	0.568	1.361	2.465	2.524	4.989
SOS1-PBE-QIDH ³	1.1	9.611	1.374	1.011	1.534	2.638	3.055	5.693
	1.45	8.716	1.193	0.852	1.411	2.416	2.843	5.259
	x	7.057	0.820	0.515	1.074	2.122	2.525	4.648
SOS0-PBE0-2 ⁵	1.1	9.686	1.392	1.345	1.577	2.409	2.964	5.373
	1.45	8.521	1.176	1.122	1.419	2.121	2.683	4.805
	00	6.460	0.700	0.664	0.998	1.774	2.325	4.099

Figure S1: Dependence of WTMAD2 (kcal/mol) on reciprocal κ for κ DSD-PBEP86-D3BJ and κ xDSD₇₅-PBEP86-D3BJ.

Figure S2: Dependence of total WTMAD2 (kcal/mol) and contribution (Δ WTMAD2 in kcal/mol) from five major subcategories on reciprocal κ for κ xDSD₇₅-PBEP86-D3BJ, κ DSD-PBEP86-D3BJ, κ DSD-BLYP-D3BJ, and κ xDSD₇₅-PBEP86-D3BJ. THERMO= Small Molecule Thermochemistry; BARRIER= barrier heights; LARGE= reaction energies for large systems; CONF= conformer/intramolecular interactions; and INTERMOL= intermolecular interactions.

Figure S3: Dependence of WTMAD2 (kcal/mol) on reciprocal κ for κ DSD-PBEP86-D3BJ, κ DOD-PBEP86-D3BJ, κ DH-PBEP86-D3BJ, and κ noDispSD-PBEP86 functionals. Six colors represent six different fractions of exact exchange (c_x) ranging from 0.75 to 0.50

Figure S4: Dependence of total WTMAD2 (kcal/mol) on reciprocal κ for κDSD_{69} -PBEP86-D3BJ@PBE0P86 and κDSD_{69} -PBEP86-D3BJ (A); their κDH counterparts (B); κDOD variants (C); and the dispersion-*un*corrected forms (D).

Sample Input:

<u>кDSD-BLYP-D3BJ (к=2.2)</u>

\$rem						
SYM_IGNORE	TRUE					
SYMMETRY	false	:				
BASIS	def2-	QZVPP				
exchange	GEN					
XC_GRID	3					
ECP	def2-	ECP				
MAX_SCF_CYCLES	1000					
SCF_CONVERGENCE	7					
THRESH	12					
MEM_STATIC	2000					
SET_ITER	100					
MOLDEN_FORMAT	false	1				
PRINT_ORBITALS	10					
SCF_FINAL_PRINT	1					
DFT_D	D3_BJ					
DFT_D3_S6	52360					
DFT_D3_S8	0					
DFT_D3_A2	520000					
DFT_D3_A1	FT_D3_A1 0					
Şend						
<pre>\$xc_functional C LYP 0.4387 X HF 0.7100 X B88 0.2900 \$end</pre>						
\$molecule						
0 1						
C 0.00000000	0000	0.	000000000000000000000000000000000000000		0.000000000000	
0 0.00000000	0000	0.	000000000000000000000000000000000000000		1.131400000000	
Şend						
666						
\$molecule						
Sond						
şena						
Śrom						
SCF GUESS		read				
basis		def2_0	17.1700			
aux basis		rimp2_def2_0%VPPD				
correlation		rimp2 del2 gavila				
SCS		3				
SSS FACTOR		272400				
SOS FACTOR		616600				
SYMMETRY		FALSE				
SYM IGNORE		TRUE				
gen_scfman		true				
REGULARIZED O2		2				
REG_VARIABLE		2200				

MEM_TOTAL	64000
MEM_STATIC	2000
n_frozen_core	FC
SCF_CONVERGENCE	7
THRESH	12
MAXSCF	0
ECP	def2-ECP
\$end	

References:

- (1) Brémond, E.; Adamo, C. Seeking for Parameter-Free Double-Hybrid Functionals: The PBE0-DH Model. J. Chem. Phys. 2011, 135 (2), 024106. https://doi.org/10.1063/1.3604569.
- Goerigk, L.; Grimme, S. Double-Hybrid Density Functionals. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4 (6), 576–600. https://doi.org/10.1002/wcms.1193.
- (3) Brémond, É.; Savarese, M.; Sancho-García, J. C.; Pérez-Jiménez, Á. J.; Adamo, C. Quadratic Integrand Double-Hybrid Made Spin-Component-Scaled. J. Chem. Phys. 2016, 144 (12), 124104. https://doi.org/10.1063/1.4944465.
- (4) Sancho-García, J. C.; Brémond; Savarese, M.; Pérez-Jiménez, A. J.; Adamo, C. Partnering Dispersion Corrections with Modern Parameter-Free Double-Hybrid Density Functionals. *Phys. Chem. Chem. Phys.* 2017, 19 (21), 13481–13487. https://doi.org/10.1039/c7cp00709d.
- (5) Alipour, M. Seeking for Spin-Opposite-Scaled Double-Hybrid Models Free of Fitted Parameters. J. Phys. Chem. A 2016, 120 (20), 3726–3730. https://doi.org/10.1021/acs.jpca.6b03406.
- (6) Mehta, N.; Casanova-Páez, M.; Goerigk, L. Semi-Empirical or Non-Empirical Double-Hybrid Density Functionals: Which Are More Robust? *Phys. Chem. Chem. Phys.* 2018, 20 (36), 23175–23194. https://doi.org/10.1039/C8CP03852J.