Catalyst-free synthesis of novel 1,5-benzodiazepines and 3,4dihydroquinoxalines using isocyanide-based one-pot, three- and four-component reactions

Reagan L. Mohlala^{a,b}; E. Mabel Coyanis^{a*}; Manuel A. Fernandes^b; Moira L. Bode^{b*}

^a Advanced Materials Division, Mintek, Private Bag X3015, Randburg, 2125, South Africa

^b Molecular Sciences Institute, University of the Witwatersrand, PO Wits, 2050, South Africa

Corresponding authors:mabelc@mintek.co.za (EM. Coyanis); Moira.Bode@wits.ac.za (M.L Bode)

Table of contents

General procedure for the synthesis of 1H-Benzo[d]imidazol-2(3H)-one derivatives (6a-h)	l
General procedure for the synthesis of 2-methyl-N-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-	
methanobenzo[b][1,4]diazepin-10-ylidene)propan-2-amine derivatives (10a-f)	3
General method for the synthesis of N-,3,3-Dimethyl-3,4-dihydroquinoxalin-2(1H)-ylidene)-2-methylpropan-2-amine	
derivatives (11a-h)	5
General procedure for the synthesis of 2-methyl-N-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-	
methanobenzo[b][1,4]diazepin-10-ylidene)propan-2-amine derivatives using Acetone-d ₆ (10g-h) (Green-deuterated-	
atoms)	3
General method for the synthesis of N-,3,3-Dimethyl-3,4-dihydroquinoxalin-2(1H)-ylidene)-2-methylpropan-2-amine	
derivatives using Acetone-d ₆ (11j-k) (Green-deuterated-atoms))
General method for the synthesis of 4-oxo-4,5-dihydro-benzodiazepine-2-carboxylates (12a-j))
X-ray crystallographic data of compounds 10a, 10e, 11f and 11g15	5
NMR, HRMS and FTIR spectra	7

General procedure for the synthesis of 1*H*-Benzo[*d*]imidazol-2(3*H*)-one derivatives (6a-h)

The synthesis was done following the earlier method reported by Kadhim.¹ In a round-bottomed flask equipped with a magnetic stirrer bar, either urea (**15a**), thiourea (**15b**) or guanidine hydrochloride (**15c**) were reacted with a phenylenediamine derivative (**1**) and concentrated hydrochloric acid (HCl) in ethanol by refluxing for 8 h with TLC monitoring. The reaction was then allowed to cool to room temperature; forming a precipitate which was filtered and washed with isopropanol to obtain the solid product.

1*H*-Benzo[*d*]imidazol-2(3*H*)-one (6a)

Urea (2.81 g, 46 mmol), *o*-phenylenediamine (**1a**) (5.01g, 46 mmol) and HCl (1.68 g, 46 mmol) were reacted to form 1*H*benzo[*d*]imidazol-2(3*H*)-one (**6a**): **Physical characteristics**: yellow solid; Yield: 5.21 g, 84 %; **Mp**: 274-276 °C (lit.¹ 275-279 °C); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.69-6.67 (2H, m, Ar-H), 6.57-6.55 (2H, m, Ar-H), 5.44 (2H, br s, N-H); ¹³C **NMR** (101 MHz, DMSO-*d*₆) δ 159.7 (C=O), 132.9 (Ar-C), 119.3(Ar-CH), 116.8 (Ar-CH).

5,6-Dimethyl-1*H*-benzo[*d*]imidazol-2(3*H*)-one (6b)

Urea (0.88 g, 14.7 mmol), 4,5-dimethyl-1,2-phenylenediamine (**1b**) (2.01 g, 14.7 mmol) and HCl (0.53 g, 14.7 mmol) were reacted to form 5,6-dimethyl-1*H*-benzo[*d*]imidazol-2(3*H*)-one (**6b**): **Physical characteristics**: brown solid; Yield: 1.81 g, 76%; **Mp**: 394-396 °C, (lit.² 395 °C); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.46 (2H, s, Ar-H), 5.49 (2H, br s, N-H); 2.01 (6H, s, 2 x CH₃); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.9 (C=O), 130.8 (Ar-C), 126.4 (Ar-C) 118.4 (Ar-CH), 18.69 (2 x CH₃).

5,6-Dichloro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (6c)

Urea (0.68 g, 11.3 mmol), 4,5-dichloro-*o*-phenylenediamine (**1c**) (5.01g, 11.3 mmol) and HCl (1.68 g, 11.3 mmol) were reacted to form 5,6-dichloro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (**6c**): **Physical characteristics**: black solid; Yield: 1.6 g, 70 %; **Mp**: 397-399°C (lit.³398 °C); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.85 (2H, s, Ar-H), 5.49 (2H, br s, N-H); ¹³C **NMR** (101 MHz, DMSO-*d*₆) δ 159.9 (C=O), 133.4 (Ar-C), 119.8 (Ar-C), 117.0 (Ar-CH).

Methyl 2-oxo-2,3-dihydro-1*H*-benzo[*d*]imidazole-5-carboxylate (6d)

Urea (1.81 g, 30.09 mmol), methyl 3,4-diaminobenzoate (1d) (5.01g, 30.09 mmol) and HCl (1.09g, 30.09 mmol) were reacted to form methyl 2-oxo-2,3-dihydro-1*H*-benzo[*d*]imidazole-5-carboxylate:**Physical characteristics**: brown solid; Yield: 4.61 g, 80 %; **Mp**: 311-313 °C (lit.⁴ 312-313 °C); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.57 (1H, s, Ar-H), 7.45 (1H, d, *J*= 8.4 Hz, Ar-H), 6.74 (1H, d, *J*= 8.4 Hz, Ar-H), 5.54 (2H, br s, N-H), 3.75 (3H, s, O-CH₃); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.9 (C=O), 159.7 (C=O), 143.9 (Ar-C), 126.3 (Ar-CH), 123.2 (Ar-C), 121.7 (Ar-C), 117.3 (Ar-CH), 114.8 (Ar-CH), 51.5 (O-CH₃).

5-Fluoro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (6e)

Urea (0.95 g, 15.86 mmol), 4-fluoro-1,2 phenylenediamine (1e) (2.01 g, 15.86 mmol) and HCl (0.59g, 15.86 mmol) were reacted to form 5-fluoro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (6e): Physical characteristics: brown solid; Yield: 1.95 g, 81 %; **Mp**: 299-301 °C (lit.⁵ 300 °C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.71 (1H, t, *J*= 8 Hz, Ar-H), 6.42 (1H, d, *J*= 10.8 Hz, Ar-H), 6.27-6.22 (1H, m, Ar-H), 5.45 (2H, br s, N-H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 159.7 (C=O), 157.9 (d, *J*_{CF}=233.4 Hz, Ar-C), 139.2 (d, *J*_{CF}= 11.1 Hz, Ar-C), 124.6, 118.5 (d, *J*_{CF}=10.1 Hz, Ar-CH), 102.4 (d, *J*_{CF}=22.1 Hz, Ar-CH), 101.5 (d, *J*_{CF}=25.2 Hz, Ar-CH).

5-Chloro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (6f)

Urea (0.84 g, 14 mmol), 4-chloro-1,2 phenylenediamine (**1f**) (2.02 g, 14 mmol) and HCl (0.51 g, 14 mmol) were reacted to form 5-chloro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (**6f**): **Physical characteristics**: brown solid; Yield: 1.8 g, 75 %; **Mp**: 323-325 °C (lit.⁶ 324-326 °C); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.75-6.69 (2H, m, Ar-H), 6.53-6.50 (1H, m, Ar-H), 5.49 (2H, br s, N-H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 159.7 (C=O), 137.5 (Ar-C), 128.6 (Ar-C), 124.4 (Ar-C), 118.8 (Ar-CH), 117.1 (Ar-CH), 114.9 (Ar-CH).

1*H*-Benzo[*d*]imidazole-2(3*H*)-thione (6g)

Thiourea (3.51 g, 46.2 mmol), *o*-phenylenediamine (**1a**) (5.02 g, 46.2 mmol) and HCl (1.68 g, 46.2 mmol) were reacted to form 1*H*-benzo[*d*]imidazole-2(3*H*)-thione (**6g**): **Physical characteristics**: brown solid; Yield: 5.6 g, 81 %; **Mp**: 115-117 °C (lit.¹ 114-118-279 °C); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.56-6.54 (2H, m, Ar-H), 6.43-6.41 (2H, m, Ar-H), 4.71 (2H, br s, N-H); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 183.9 (C=O), 132.7 (Ar-C), 119.6 (Ar-CH), 117.0 (Ar-CH).

1*H*-Benzo[*d*]imidazol-2(3*H*)-imine (6h)

Guanidine hydrochloride (4.39 g, 46 mmol), *o*-phenylenediamine (**1a**) (5.01 g, 46 mmol) and HCl (1.68 g, 46 mmol) were reacted to form 1*H*-benzo[*d*]imidazol-2(3*H*)-imine (**6h**):**Physical characteristics**: brown solid; Yield: 4.61 g, 75 %; **Mp**:181-183 °C (lit⁷ 182-184 °C); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.09 (2H, br s, N-H); 6.59-6.57 (2H, m, Ar-H), 6.46-6.44 (2H, m, Ar-H), 5.51 (1H, br s, N-H); ¹³C **NMR** (101 MHz, DMSO-*d*₆) δ 158.2 (C=O), 133.9 (Ar-C), 118.3 (Ar-CH), 115.6 (Ar-CH).

General procedure for the synthesis of 2-methyl-*N*-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)propan-2-amine derivatives (10a-f)

In a round-bottomed flask equipped with a magnetic stirrer bar, a mixture of 1H-benzo[d]imidazol-2(3H)-one derivatives (**6a**-**d**), isocyanide derivative (**2a**-**d**) and 2 equivalents of acetone (**3a**) was stirred at room temperature (rt) for 24 h, while being monitored by TLC. The solution was put under reduced pressure and the residue was purified by silica gel column chromatography using hexane-ethyl acetate as eluent to obtain the product.

2-Methyl-N-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)propan-2-amine (10a)

H-Benzo[d]imidazol-2(3H)-imine (6h) (0.25 g, 1.87 mmol), tert-butyl isocyanide (2a) (0.17 g, 1.87 mmol) and acetone (3a) (0.22 g, 3.74 mmol, 0.30 ml) were reacted to give 2-methyl-*N* $-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1.5-diazepin-10-ylidene)propan-2-amine (10a): Physical characteristics: yellow crystalline solid; Yield: 0.43 g, 84 %; Mp: 125-127 °C, R_f: 0.8, hexane-ethyl acetate (80 % : 20 %); ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 6.94 (1H, t, *J*= 7.6 Hz, Ar-CH), 6.83 (1H, d, *J*= 7.6 Hz, Ar-CH), 6.67 (1H, t, *J*= 7.2 Hz, Ar-CH), 6.53 (1H, d, *J*= 8.0 Hz, Ar-CH), 3.90 (1H, br s, NH), 2.02 (1H, d, *J*= 13.2 Hz, CH₂), 1.78 (1H, d, *J*= 13.2 Hz, CH₂), 1.39 (3H, s, CH₃), 1.28 (9H, s, (CH₃)₃), 1.16 (3H, s, CH₃), 1.08 (3H, s, CH₃), ¹³C NMR (101 MHz, CDCl₃) δ 167.2 (C-10), 140.7 (Ar-C), 137.3 (Ar-C), 129.2 (Ar-CH), 126.7 (Ar-CH), 118.9 (Ar-CH), 116.5 (Ar-CH), 65.4, 61.1, 55.7, 53.4 (C-3), 32.5 (CH₃), 30.9 ((CH₃)₃), 26.6 (CH₃), 21.3 (CH₃); FT-IR ν_{max}/cm^{-1} : 3257, 2922, 1696, 1596, 1469; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₇H₂₆N₃⁺ 272.2121 found 272.2119.

2,4,4-Trimethyl-*N*-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)pentan-2-amine (10b)

 $\begin{array}{l} 1H-\text{Benzo}[d]\text{imidazol-2}(3H)\text{-imine} (\mathbf{6h}) (0.25 \text{ g}, 1.87 \text{ mmol}), 1,1,3,3-\text{tetramethylbutyl} \\ \text{isocyanide} (\mathbf{2b}) (0.26 \text{ g}, 1.87 \text{ mmol}) \text{ and acetone} (\mathbf{3a}) (0.22 \text{ g}, 3.74 \text{ mmol}, 0.30 \text{ ml}) \text{ were reacted to give 2,4,4-trimethyl-N-} \\ (2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1.5-diazepin-10-ylidene)pentan-2-amine (10b): Physical characteristics: brown paste; Yield: 0.49 \text{ g}, 80 %, R_f: 0.9, hexane-ethyl acetate (80 % : 20 %); ¹H NMR (400 MHz, CDCl_3) \\ \delta 6.94 (1H, t, J= 7.6 \text{ Hz}, \text{ Ar-CH}), 6.82 (1H, d, J= 8 \text{ Hz}, \text{ Ar-CH}), 6.66 (1H, t, J= 7.6 \text{ Hz}, \text{ Ar-CH}), 6.52 (1H, d, J= 8.0 \text{ Hz}, \text{ Ar-CH}), 3.87 (1H, br s, NH), 2.01 (1H, d, J= 13.2 \text{ Hz}, CH_2), 1.78 (1H, d, J= 13.2 \text{ Hz}, CH_2), 1.61 (1H, d, J= 14.0 \text{ Hz}, CH_2), 1.48 \\ 1.46 (1H, m, CH_2), 1.46 (3H, s, CH_3), 1.38 (3H, s, CH_3), 1.23 (3H, s, CH_3), 1.16 (3H, s, CH_3), 1.08 (3H, s, CH_3), 0.87 (9H, s, (CH_3)_3), ¹³C NMR (101 MHz, CDCl_3) \\ \delta 164.9 (C-10), 140.9 (Ar-C), 137.2 (Ar-C), 129.3 (Ar-CH), 126.7 (Ar-CH), 118.9 (Ar-CH), 126.7 (Ar-CH), 118.9 (Ar-CH), 126.7 (Ar-CH), 118.9 (Ar-CH), 126.7 (Ar-CH), 118.9 (Ar-CH), 126.7 (Ar-CH), 126.7 (Ar-CH), 118.9 (Ar-CH), 126.7 (Ar-CH), 126.7 (Ar-CH), 118.9 (Ar-CH), 126.7 (Ar-CH)$

CH), 116.4 (Ar-CH), 65.3, 61.3, 59.6, 57.4 (CH₂), 53.4 (C-3), 32.7 (CH₃), 31.8 ((CH₃)₃), 30.9 (CH₃), 30.2 (CH₃), 26.7 (CH₃), 21.4 (CH₃); **FT-IR** *v*_{max}/cm⁻¹: 2955, 1708, 1601, 1482; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₂₁H₃₄N₃⁺ 328.2747 found 328.2731.

N-(2,2,4-Trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)cyclohexanamine (10c)

H = H-benzo[d]imidazol-2(3H)-imine (6h) (0.25 g, 1.87 mmol), cyclohexyl isocyanide (2c) (0.21 g, 1.87 mmol) and acetone (3a) (0.22 g, 3.74 mmol, 0.30 ml) were reacted to give*N*-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)cyclohexanamine (10c): Physical characteristics: yellow solid; Yield: 0.47 g, 84 %, Mp: 120-122 °C, R_f: 0.5, hexane-ethyl acetate (80 % : 20 %); ¹H NMR (400 MHz, CDCl₃) δ 6.94 (1H, t,*J*= 7.6 Hz, Ar-CH), 6.86 (1H, d,*J*= 7.6 Hz, Ar-CH), 6.65 (1H, t,*J*= 7.6 Hz, Ar-CH), 6.51 (1H, d,*J*= 8.0 Hz, Ar-CH), 4.03 (1H, s, CH), 3.75 (1H, br s, NH), 2.06 (1H, d,*J*= 13.2 Hz, CH₂), 1.82 (1H, d,*J*= 13.2 Hz, CH₂), 1.73-1.49 (4H, m, cyclohexyl), 1.44 (3H, s, CH₃), 1.39-1.28 (2H, m, cyclohexyl), 1.25-1.13 (4H, m, cyclohexyl), 1.10 (3H, s, CH₃), 1.06 (3H, s, CH₃), ¹³C NMR (101 MHz, CDCl₃) δ 168.7 (C-10), 140.8 (Ar-C), 136.8 (Ar-C), 128.9 (Ar-CH), 126.9 (Ar-CH), 118.9 (Ar-CH), 116.1 (Ar-CH), 64.8, 60.1, 58.7 (CH), 54.0 (C-3), 33.9 (CH₂), 33.6 (CH₂), 32.1 (CH₃), 26.2 (CH₃), 25.88 (CH₂), 25.1 (CH₂), 24.9 (CH₂), 20.6 (CH₃); FT-IR*v*_{max}/cm⁻¹: 3235, 2923, 2851, 1696, 1598, 1470; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₉H₂₈N₃⁺ 298.2278 found 298.2278.

1-Tosyl-N-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)methanamine (10d)

1H-benzo[d]imidazol-2(3H)-imine (6h) (0.25 g, 1.87 mmol), toluenesulfonylmethyl isocyanide

(2d) (0.36 g, 1.87 mmol) and acetone (3a) (0.22 g, 3.74 mmol, 0.30 ml) were reacted to give 1-tosyl-*N*-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)methanamine (10d): Physical characteristics: yellow solid; Yield: 0.5 g, 71 %, Mp: 95-97 °C, \mathbf{R}_{f} : 0.2, hexane-ethyl acetate (80 % : 20 %) ; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (2H, d, *J* = 8 Hz, Ar-H), 7.11 (2H, d, *J* = 7.6 Hz, Ar-H), 6.84 (1H, t, *J* = 7.2 Hz, Ar-CH), 6.64 (1H, d, *J* = 7.6 Hz, Ar-CH), 6.53 (1H, t, *J* = 7.6 Hz, Ar-CH), 5.31 (1H, d, *J* = 13.6 Hz, S-CH₂), 4.69 (1H, d, *J* = 13.2 Hz, S-CH₂), 3.77 (1H, br s, NH), 2.29 (Ar-CH₃), 1.97 (1H, d, *J* = 13.2 Hz, CH₂), 1.68 (1H, d, *J* = 13.2 Hz, CH₂), 1.34 (3H, s, CH₃), 0.91 (3H, s, CH₃), 0.82 (3H, s, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 177.3 (C-10), 143.4 (Ar-C), 139.3(Ar-C), 133.7 (Ar-C), 133.6 (Ar-C), 128.3, (Ar-CH) 128.0 (Ar-CH), 127.7 (Ar-CH), 126.4 (Ar-CH), 118.0 (Ar-CH), 115.0 (Ar-CH), 71.0 (S-CH₂), 64.7, 59.5, 52.3 (C-3), 30.4 (CH₃), 24.9 (CH₃), 20.7 (CH₃), 18.9 (CH₃); **FT-IR** ν_{max}/cm^{-1} : 3348, 2961, 2925, 2855, 1704, 1598, 1480; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₂₁H₂₆N₃O₂S⁺ 384.1740 found 384.1742.

2-Methyl-*N*-(2,2,4,7,8-pentamethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)propan-2-amine (10e)

5,6-Dimethyl-1*H*-benzo[*d*]imidazol-2(3*H*)-one (**6b**) (0.25 g, 1.54 mmol), *tert*-butyl isocyanide (**2a**) (0.17 g, 1.54 mmol) and acetone (**3a**) (0.18 g, 3.08 mmol, 0.22 ml) were reacted to give 2-methyl-*N*-(2,2,4,7,8pentamethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)propan-2-amine (**10e**):**Physical characteristics**: white crystalline solid; Yield: 0.34 g, 74 %; **Mp**: 121-123 °C, **R**_f: 0.7, hexane-ethyl acetate (80 % : 20 %); ¹**H NMR** (400 MHz, CDCl₃) δ 6.59 (1H, s, Ar-H), 6.35 (1H, s, Ar-H), 3.71 (1H, br s, NH), 2.11 (6H, s, 2 x CH₃), 1.95 (1H, d, *J*= 13.2 Hz, CH₂), 1.74 (1H, d, *J*= 13.2 Hz, CH₂), 1.37 (3H, s, CH₃), 1.27 (9H, s, (CH₃)₃), 1.12 (3H, s, CH₃), 1.07 (3H, s, CH₃), ¹³C **NMR** (101 MHz, CDCl₃) δ 168.1 (C-10), 138.0 (Ar-C), 135.5 (Ar-C), 134.7 (Ar-C), 129.9 (Ar-CH) , 127.3 (Ar-C), 118.4 (Ar-CH), 65.1, 60.9, 55.6, 52.9 (C-3), 32.4 (CH₃), 30.9 ((CH₃)₃), 26.5 (CH₃), 21.5 (CH₃), 19.6 (CH₃), 19.1 (CH₃); **FT-IR** *ν***max/cm⁻¹**: 3277, 2923, 1723, 1596; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₁₉H₃₀N₃⁺ 300.2434 found 300.2436.

2,4,4-trimethyl-*N*-(2,2,4,7,8-pentamethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)pentan-2-amine (10f)

5,6-Dimethyl-1*H*-benzo[*d*]imidazol-2(3*H*)-one (**6b**) (0.25 g, 1.54 mmol), 1,1,3,3tetramethylbutyl isocyanide (**2b**) (0.21 g, 1.54 mmol) and acetone (**3a**) (0.18 g, 3.08 mmol, 0.27 ml) were reacted to give 2,4,4trimethyl-*N*-(2,2,4,7,8-pentamethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)pentan-2-amine (**10f**): **Physical characteristics**: brown solid; Yield: 0.36 g, 67 %; **Mp**: 91-93 °C, **R**_f: 0.9, hexane-ethyl acetate (80 % : 20 %); ¹**H NMR** (400 MHz, CDCl₃) δ 6.57 (1H, s, Ar-H), 6.33 (1H, s, Ar-H), 3.60 (1H, br s, NH), 2.09 (6H, s, 2 x CH₃), 1.93 (1H, d, *J*= 12.8 Hz, CH₂), 1.73 (1H, d, *J*= 13.2 Hz, CH₂), 1.60 (1H, d, *J*= 14 Hz, CH₂) 1.45 (1H, d, *J*= 12 Hz, CH₂), 1.44 (3H, s, CH₃), 1.35 (3H, s, CH₃), 1.19 (3H, s, CH₃), 1.19 (3H, s, CH₃), 1.05 (3H, s, CH₃), 0.87 (9H, s, (CH₃)₃), ¹³C **NMR** (101 MHz, CDCl₃) δ 166.0 (C-10), 138.2 (Ar-C), 135.5 (Ar-C), 134.7 (Ar-C), 129.97 (Ar-CH), 127.29 (Ar-C), 118.29 (Ar-CH), 65.05, 61.21, 59.42, 57.39 (C-3), 52.89 (CH₂), 32.53 (CH₃), 31.84 ((CH₃)₃), 31.06, 29.95 (CH₃), 26.64 (CH₃), 21.54 (CH₃), 19.60 (CH₃); 19.06 (CH₃); **FT-IR** *ν***max/cm⁻¹**: 3312, 2928, 1689, 1616; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₂₃H₃₈N₃⁺ 356.3060 found 356.3057.

General method for the synthesis of methyl 2-(*tert*-butylamino)-3,3-dimethyl-3,4-dihydroquinoxaline-6-carboxylate derivatives (11a-h)

In a round-bottomed flask equipped with a magnetic stirrer bar, a mixture of 1H-benzo[d]imidazol-2(3H)-one derivatives (**6e-h**), isocyanide derivative (**2a-b**) and 2 equivalents of acetone (**3a**) / or 3-pentanone (**3b**) was stirred at room temperature (rt) for 24 h, while being monitored by TLC. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography using hexane-ethyl acetate as eluent to obtain the product.

Methyl 2-(tert-butylamino)-3,3-dimethyl-3,4-dihydroquinoxaline-6-carboxylate (11a)

Methyl 2-oxo-2,3-dihydro-1*H*-benzo[*d*]imidazole-5-carboxylate (6d) (0.25 g, 1.30 mmol), *tert*-butyl isocyanide (2a) (0.11 g, 1.30 mmol) and acetone (3a) (0.15 g, 2.60 mmol, 0.14 ml) were reacted to give methyl 2-(*tert*-butylamino)-3,3-dimethyl-3,4-dihydroquinoxaline-6-carboxylate (11a): Physical characteristics: white solid; Yield: 0.18 g, 48%; Mp: 130-132 °C, \mathbf{R}_{f} : 0.2, hexane-ethyl acetate (80 % : 20 %); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (1H, d, J = 8Hz, Ar-H), 7.28 (1H, d, J = 1.6 Hz, Ar-H), 7.07 (1H, d, J = 8.4 Hz, Ar-H), 4.46 (1H, br s, NH), 3.89 (3H, s, O-CH₃), 3.60 (1H, br s, NH), 1.51 (9H, s, (CH₃)₃), 1.31 (6H, s, 2 x CH₃), ¹³C NMR (101 MHz, CDCl₃) 167.8 (C=O), 159.4 (C-2), 140.2 (Ar-C), 134.5 (Ar-C), 123.9 (Ar-C), 123.5 (Ar-CH), 121.94 (Ar-CH), 114.8 (Ar-CH), 52.2, 51.8 (CH₃-O), 50.7, 29.1 ((CH₃)₃), 26.23 (2 x CH₃); FT-IR ν_{max} /cm⁻¹: 3675, 3448, 3351, 2901, 2971, 1693, 1616, 1571; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₆H₂₄N₃O₂⁺ 290.1863 found 290.1865.

Methyl 2-oxo-2,3-dihydro-1*H*-benzo[*d*]imidazole-5-carboxylate (6d) (0.25 g, 1.30 mmol), 1,1,3,3-tetramethylbutyl isocyanide (2b) (0.18 g, 1.30 mmol) and acetone (3a) (0.15 g, 2.60 mmol, 0.23 ml) were reacted to give methyl 3,3-dimethyl-2-((2,4,4-trimethylpentan-2-yl)amino)-3,4-dihydroquinoxaline-6-carboxylate (11b): Physical characteristics: white solid; Yield: 0.23 g, 52%; Mp: 150-152 °C, \mathbf{R}_{f} : 0.5, hexane-ethyl acetate (80 % : 20 %); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (1H, d, *J* = 8 Hz, Ar-H), 7.29 (1H, d, *J* = 5.2 Hz, Ar-H), 7.06 (1H, d, *J* = 6.8 Hz, Ar-H), 4.52 (1H, br s, NH), 3.89 (3H, s, O-CH₃), 3.60 (1H, br s, NH), 1.93 (2H, s, CH₂), 1.58 (6H, s, 2 x CH₃), 1.30 (6H, s, 2 x CH₃), 1.07 (9H, s, (CH₃)₃), ¹³C NMR (101 MHz, CDCl₃) 167.8 (C=O), 158.8 (C-2), 140.4 (Ar-C), 134.5 (Ar-C), 123.7 (Ar-C), 123.4 (Ar-CH), 121.9 (Ar-CH), 114.8 (Ar-CH), 56.2, 52.3 (CH₂), 51.8, 50.6, 31.9, 31.8 ((CH₃)₃), 29.2, (CH₃), 26.2 (CH₃); **FT-IR** ν_{max}/cm^{-1} : 3675, 3478, 3346, 2971, 2901, 1696, 1620, 1567; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₂₀H₃₂N₃O₂⁺ 346.2489 found 346.2492.

6-Fluoro-3,3-dimethyl-*N*-(2,4,4-trimethylpentan-2-yl)-3,4-dihydroquinoxalin-2-amine (11c) and 7-Fluoro-3,3-dimethyl-*N*-(2,4,4-trimethylpentan-2-yl)-3,4-dihydroquinoxalin-2-amine (11d)

5-Fluoro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (**6e**) (0.25 g, 1.64 mmol), 1,1,3,3-tetramethyl butyl isocyanide (**2b**) (0.23 g, 1.64 mmol) and acetone (**3a**) (0.19 g, 3.28 mmol, 0.24 ml) were reacted to give (*E*)-*N*-(6-fluoro-3,3-dimethyl-3,4-dihydroquinoxalin-2(1*H*)-ylidene)-2,4,4-trimethylpentan-2-amine (**11c**) and (*E*)-*N*-(7-fluoro-3,3-dimethyl-3,4-dihydroquinoxalin-2(1H)-ylidene)-2,4,4-trimethylpentan-2-amine (**11d**): Physical characteristics (**11c**): yellow solid; Yield: 0.12 g, 30%; **Mp**: 108-110 °C, **R**_f: 0.5, hexane-ethyl acetate (80 % : 20 %); ¹H NMR (400 MHz, CDCl₃) δ 6.76 (1H, *J* = 6.8

Hz, Ar-H), 6.49-6.44 (2H, m, Ar-H), 4.36 (1H, br s, NH), 3.33 (1H, br s, NH), 1.89 (2H, s, CH₂), 1.52 (6H, s, 2 x CH₃), 1.24 (6H, s, 2 x CH₃), 1.03 (9H, s, (CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) 167.1 (C-2), 159.2 (d, J_{CF} = 254.6 Hz, Ar-C), 146.5 (Ar-C), 130.8 (Ar-C), 113.7 (d, J_{CF} = 9.1 Hz, Ar-CH), 110.5 (d, J_{CF} = 22.1 Hz, Ar-CH), 108.0 (d, J_{CF} = 24.1 Hz, Ar-CH), 65.6, 56.0, 52.3 (CH₂), 50.7, 31.9 (CH₃), 31.8 ((CH₃)₃), 29.2 (CH₃), 26.0 (2CH₃); FT-IR ν_{max} /cm⁻¹: 3675, 3455, 3351, 2901, 2971,2921, 1770, 1622, 1577; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₈H₂₉FN₃⁺ 306.2340 found 306.2348.

:Physical characteristics(11d): yellow solid; Yield: 0.09 g, 22%; Mp: 105-107 °C, R_f : 0.8, hexane-ethyl acetate (80 % : 20 %); ¹H NMR (400 MHz, CDCl₃) δ 6.76 (1H, *J* = 6.8 Hz, Ar-H), 6.51-6.42 (2H, m, Ar-H), 4.36 (1H, br s, NH), 3.33 (1H, br s, NH), 1.89 (2H, s, CH₂), 1.52 (6H, s, 2 x CH₃), 1.24 (6H, s, 2 x CH₃), 1.03 (9H, s, (CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) 160.5 (C-2), 158.1 (Ar-C), 157.7 (d, *J*_{CF} = 236.5 Hz, Ar-C), 130.8 (Ar-C), 113.7 (d, *J*_{CF} = 9.1 Hz, Ar-CH), 110.4 (d, *J*_{CF} = 23.1 Hz, Ar-CH), 108.0 (d, *J*_{CF} = 23.1 Hz, Ar-CH), 87.1, 56.0, 52.3 (CH₂), 50.7, 31.9 (CH₃), 31.8 ((CH₃)₃), 29.2 (CH₃), 26.0 (2CH₃); **FT-IR** ν_{max} /cm⁻¹: 3675, 3455, 2987, 2971, 2904, 1770, 1622, 1515; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₈H₂₉FN₃⁺ 306.2340 found 306.2345.

6-Chloro-3,3-dimethyl-N-(2,4,4-trimethylpentan-2-yl)-3,4-dihydroquinoxalin-2-amine (11e)

5-Chloro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (**6f**) (0.25 g, 1.48 mmol), 1,1,3,3-tetramethyl butyl isocyanide (**2b**) (0.21 g, 1.48 mmol) and acetone (**3a**) (0.17 g, 2.96 mmol, 0.27) were reacted to give 6-chloro-3,3-dimethyl-*N*-(2,4,4-trimethylpentan-2-yl)-3,4-dihydroquinoxalin-2-amine (**11e**): **Physical characteristics**: yellow solid; Yield: 0.18 g, 46%; **Mp**: 105-107 °C, **R**_f: 0.6, hexane-ethyl acetate (80 % : 20 %); ¹**H NMR** (400 MHz, CDCl₃) δ 7.02 (1H, s, Ar-H), 6.73 (1H, d, *J* = 8 Hz, Ar-H), 6.44 (1H, d, *J* = 8 Hz, Ar-H), 4.34 (1H, br s, NH), 3.44 (1H, br s, NH), 1.89 (2H, s, CH₂), 1.52 (6H, s, 2 x CH₃), 1.03 (9H, s, (CH₃)₃), ¹³C **NMR** (101 MHz, CDCl₃) 167.8 (C-2), 158.8 (Ar-C), 140.5 (Ar-C), 128.4 (Ar-CH), 121.9 (Ar-CH), 114.9 (Ar-CH), 56.3, 52.4 (CH₂), 51.8, 50.6, 31.9 (CH₃), 31.8 ((CH₃)₃), 29.2 (2CH₃), 26.2 (CH₃); **FT-IR** *v*_{max}/cm⁻¹: 3675, 2987, 2972, 2901, 1710, 1650; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₁₈H₂₉ClN₃⁺ 322.2045 found 322.2055.

N-(tert-butyl)-6,7-Dichloro-3,3-dimethyl-3,4-dihydroquinoxalin-2-amine (11f)

 \downarrow 5,6-Dichloro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (6c) (0.25 g, 1.28 mmol), *tert*-butyl isocyanide (2a) (0.17 g, 1.28 mmol) and acetone (3a) (0.15 g, 2.56 mmol, 0.22 ml) were reacted to give *N*-(*tert*-butyl)-6,7-dichloro-3,3dimethyl-3,4-dihydroquinoxalin-2-amine (11f): Physical characteristics: brown solid; Yield: 0.28 g, 74 %; Mp: 144-146 °C, R_f: 0.7, hexane-ethyl acetate (80 % : 20 %); ¹H NMR (400 MHz, CDCl₃) δ 7.09 (1H, s, Ar-H), 6.58 (1H, s, Ar-H), 4.31 (1H, br s, NH), 3.62 (1H, br s, NH), 1.45 (9H, s, (CH₃)₃), 1.26 (6H, s, 2 x CH₃), ¹³C NMR (101 MHz, CDCl₃) δ 158.2 (C-2), 135.4 (Ar-C), 134.5 (Ar-C), 124.7 (Ar-CH), 121.6 (Ar-C), 114.2 (Ar-CH), 68.3, 51.9, 28.9 ((CH₃)₃), 26.1 (CH₃), 18.9 (CH₃); FT-IR ν_{max}/cm^{-1} : 3675, 3460, 1700, 1605; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₄H₂₀C₁₂N₃⁺ 300.1029 found 300.1039.

6,7-Dichloro-3,3-dimethyl-N-(2,4,4-trimethylpentan-2-yl)-3,4-dihydroquinoxalin-2-amine (11g)

5,6-Dichloro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (**6c**) (0.25 g, 1.28 mmol), 1,1,3,3tetramethylbutyl isocyanide (**2b**) (0.18 g, 1.28 mmol) and acetone (**3a**) (0.15 g, 2.56 mmol, 0.23 ml) were reacted to give 6,7dichloro-3,3-dimethyl-*N*-(2,4,4-trimethylpentan-2-yl)-3,4-dihydroquinoxalin-2-amine (**11g**): Physical characteristics: brown solid; Yield: 0.34 g, 76 %; **Mp**: 157-159 °C, **R**_f: 0.7, hexane-ethyl acetate (80 % : 20 %); ¹**H** NMR (400 MHz, CDCl₃) δ 7.08 (1H, s, Ar-H), 6.59 (1H, s, Ar-H), 4.38 (1H, br s, NH), 3.62 (1H, br s, NH), 1.87 (2H, s, CH₂), 1.51 (6H, s, 2 x CH₃), 1.25 (6H, s, 2 x CH₃), 1.02 (9H, s, (CH₃)₃), ¹³C NMR (101 MHz, CDCl₃) δ 157.8 (C-2), 135.7 (Ar-C), 134.6 (Ar-C), 124.7 (Ar-CH), 124.3 (Ar-C), 121.7 (Ar-C), 114.3 (Ar-CH), 68.2, 56.1, 52.1 (CH₂), 50.5, 31.8 ((CH₃)₃), 29.2 (CH₃), 26.2 (CH₃), 19.0 (CH₃); **FT-IR** *ν*_{max}/cm⁻¹: 3456, 3356, 1609, 1573; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₁₈H₂₈C₁₂N₃⁺ 356.1655 found 356.1660.

N-(tert-butyl)-3,3-diethyl-3,4-dihydroquinoxalin-2-amine (11h)

¹ *1H*-benzo[*d*]imidazol-2(3*H*)-imine (**6h**) (0.25 g, 1.87 mmol), *tert*-butyl isocyanide (**2a**) (0.16 g, 1.87 mmol) and 3 pentanone (**3b**) (0.32 g, 3.73 mmol, 0.41) were reacted to give *N*-(*tert*-butyl)-3,3-diethyl-3,4-dihydroquinoxalin-2-amine (**11h**): **Physical characteristics**: yellow solid; Yield: 0.37 g, 76 %; **Mp**: 138-140 °C, **R**_f: 0.5, hexane-ethyl acetate (80 % : 20 %); ¹**H NMR** (400 MHz, CDCl₃) δ 6.95 (1H, d, *J* = 7.6 Hz, Ar-H), 6.74 (1H, t, *J* = 7.2 Hz, Ar-H), 6.61 (1H, t, *J* = 7.2 Hz, Ar-H), 6.42 (1H, d, *J* = 7.6 Hz, Ar-H), 4.09 (1H, br s, NH), 3.26 (1H, br s, NH), 1.68 (2H, q, *J* = 7.2 Hz, CH₂), 1.55 (2H, s, CH₂), 1.47 (9H, s, (CH₃)₃), 0.99 (6H, t, *J* = 7.2, 2 x CH₃), ¹³C **NMR** (101 MHz, CDCl₃) δ 154.9 (C-2), 135.5 (Ar-C), 133.7 (Ar-C), 123.9 (Ar-C), 118.1 (Ar-C), 111.8 (Ar-C), 57.9, 51.6, 32.4 (2 x CH₂), 29.1 ((CH₃)₃), 8.2 (2 x CH₃); **FT-IR** ν_{max}/cm^{-1} : 3449, 3359, 2962, 1683, 1611, 1584; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₁₆H₂₆N₃⁺ 260.2121 found 260.2125.

General procedure for the synthesis of 2-methyl-*N*-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)propan-2-amine derivatives using acetone-d₆ (10g-h) (Green-deuterated-atoms)

In a round-bottomed flask equipped with a magnetic stirrer bar, a mixture of 1*H*-Benzo[*d*]imidazol-2(3*H*)-one (**6a**), isocyanide derivative (**2b-c**) and 2 equivalents of acetone–*d6* (**3c**) was stirred at room temperature (rt) for 24 h, while being monitored by TLC. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography using hexane-ethyl acetate as eluent to obtain the product.

2,4,4-Trimethyl-*N*-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)pentan-2-amine (10g)

H 1*H*-Benzo[*d*]imidazol-2(3*H*)-one (**6a**) (0.25 g, 1.87 mmol), 1,1,3,3-tetramethylbutyl isocyanide (**2b**) (0.26 g, 1.87 mmol) and acetone-D (**3c**) (0.24 g, 3.74 mmol, 0.31 ml) were reacted to give 2,4,4-trimethyl-*N*-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)pentan-2-amine (**10g**)

Physical characteristics: maroon paste; Yield: 0.36 g, 57 %, **R**_f : 0.9, hexane-ethyl acetate (80 % : 20 %); ¹**H** NMR (400 MHz, CDCl₃) δ 6.93 (1H, t, *J*= 7.6 Hz, Ar-CH), 6.82 (1H, d, *J*= 8 Hz, Ar-CH), 6.65 (1H, t, *J*= 7.2 Hz, Ar-CH), 6.51 (1H, d, *J*= 8.0 Hz, Ar-CH), 3.86 (1H, br s, NH), 1.61 (1H, d, *J*= 14.4 Hz, CH₂), 1.45 (3H, s, CH₃), 1.37 (1H, m, CH₂), 1.22 (3H, s, CH₃), 0.86 (9H, s, (CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 164.9 (C-10), 140.9 (Ar-C), 1.38-1.36 (Ar-C), 129.3 (Ar-CH), 126.7 (Ar-CH), 118.9 (Ar-CH), 116.4 (Ar-CH), 59.6, 57.4 (CH₂), 31.8 (3CH₃), 30.9 ((CH₃)₃), 30.1 (2CH₃); **FT-IR** ν_{max}/cm^{-1} : 3675, 3256, 2986, 2969, 2901, 1687, 1599; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₂₁H₃₄N₃⁺ 328.2747 and 339.2747 –D (11D) found isotopes 339.3413.

N-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)cyclohexanamine (10h)

 $^{\circ}$ H 1*H*-Benzo[*d*]imidazol-2(3*H*)-one (**6a**) (0.25 g, 1.87 mmol), cyclohexyl isocyanide (**2b**) (0.21 g, 1.87 mmol) and acetone-D (**3c**) (0.24 g, 3.74 mmol, 0.31 ml) were reacted to give *N*-(2,2,4-trimethyl-2,3,4,5-tetrahydro-1,4-methanobenzo-1,5-diazepin-10-ylidene)cyclohexanamine (**10h**): **Physical characteristics**: yellow crystalline solid; Yield: 0.35 g, 61 %, **Mp**: 115-118, **R**_f: 0.5, hexane-ethyl acetate (80 % : 20 %); ¹**H NMR** (400 MHz, CDCl₃) δ 6.95 (1H, t, *J*= 7.6 Hz, Ar-CH), 6.87 (1H, d, *J*= 7.6 Hz, Ar-CH), 6.66 (1H, t, *J*= 7.2 Hz, Ar-CH), 6.52 (1H, d, *J*= 8.0 Hz, Ar-CH), 4.03 (1H, s, CH), 3.87 (1H, br s, NH), 1.79-1.69 (6H, m, cyclohexyl) 1.44-1.33 (2H, m, cyclohexyl), 1.21-1.01 (2H, m, cyclohexyl), ¹³C **NMR** (101 MHz, CDCl₃) δ 151.5 (C-10), 140.8 (Ar-C), 136.8 (Ar-C), 128.9 (Ar-CH), 126.9 (Ar-CH), 118.9 (Ar-CH), 116.1 (Ar-CH), 58.7 (CH), 33.9 (CH₂), 29.9 (CH₂), 25.9 (CH₂), 25.1 (CH₂); **FT-IR** *ν*_{max}/cm⁻¹: 3263, 2963, 2924, 2855, 1699, 1610; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₁₉H₂₈N₃⁺ 298.2278 and 309.2278-D (11-D) found isotopes 309.2884.

General method for the synthesis of *N*-,3,3-Dimethyl-3,4-dihydroquinoxalin-2(1*H*)-ylidene)-2-methylpropan-2-amine derivatives using Acetone-d₆ (11j-k) (Green-deuterated-atoms)

In a round-bottomed flask equipped with a magnetic stirrer bar, a mixture of 1H-Benzo[d]imidazol-2(3H)-one derivatives (**6a**) or **6c**, isocyanide derivative (**2a-b**) and 2 equivalents of acetone–d6 (**3c**) was stirred at room temperature (rt) for 24 h, while being monitored by TLC. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography using hexane-ethyl acetate as eluent to obtain the product.

N-(tert-butyl)-3,3-dimethyl-3,4-dihydroquinoxalin-2-amine (11i)

¹ *H*-Benzo[*d*]imidazol-2(3*H*)-one (**6a**) (0.25 g, 1.87 mmol), *tert*-butyl isocyanide (**2a**) (0.17 g, 1.87 mmol) and acetone-D (**3c**) (0.24 g, 3.74 mmol, 0.31 ml) were reacted to give *N*-(tert-butyl)-3,3-dimethyl-3,4-dihydroquinoxalin-2-amine (**11i**): **Physical characteristics**: white solid; Yield: 0.43 g, 70 %; **Mp**: 86-88°C, **R**_f: 0.8, hexane-ethyl acetate (80 % : 20 %) ; ¹**H NMR** (400 MHz, CDCl₃) δ 7.04 (1H, d, *J* = 7.2 Hz, Ar-H), 6.81-6.75 (2H, m, Ar-H), 6.53 (1H, d, *J* = 7.2 Hz, Ar-H), 4.19 (1H, br s, NH), 3.43 (1H, br s, NH), 1.47 (9H, s, (CH₃)₃), ¹³C **NMR** (101 MHz, CDCl₃) δ 157.6 (C-2), 135.6 (Ar-C), 134.9 (Ar-C), 124.1 (Ar-CH), 122.7 (Ar-CH), 119.6 (Ar-CH), 113.6 (Ar-CH), 51.7, 29.1 ((CH₃)₃); **FT-IR** *v*_{max}/cm⁻¹: 3438, 3371, 3261, 3047, 2953, 1697, 1617, 1582; **HRMS** (**ESI-TOF**) m/z: [M+H]⁺ Calculated C₁₄H₂₂N₃⁺ 232.1808 and 238.1808 (6-D) found isotope 238.2188.

N-(tert-butyl)-6,7-Dichloro-3,3-dimethyl-3,4-dihydroquinoxalin-2-amine (11j)

¹ 5,6-Dichloro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (**6c**) (0.25 g, 1.28 mmol), *tert*-butyl isocyanide (**2a**) (0.17 g, 1.28 mmol) and acetone-D (**3c**) (0.16 g, 2.56 mmol, 0.21 ml) were reacted to give *N*-(tert-butyl)-6,7-dichloro-3,3-dimethyl-3,4-dihydroquinoxalin-2-amine (**11j**): **Physical characteristics**: brown solid; Yield: 0.28 g, 72 %; **Mp**: 141-142 °C, **R**_f: 0.7, hexane-ethyl acetate (80 % : 20 %); ¹**H NMR** (400 MHz, CDCl₃) δ 7.09 (1H, s, Ar-H), 6.59 (1H, s, Ar-H), 4.31 (1H, br s, NH), 3.49 (1H, br s, NH), 1.45 (9H, s, (CH₃)₃), ¹³**C NMR** (101 MHz, CDCl₃) δ 158.36 (C-2), 135.6 (Ar-C), 134.6 (Ar-C), 124.9 (Ar-CH), 124.6 (Ar-C), 121.8 (Ar-C), 114.4 (Ar-CH), 52.09, 29.04 ((CH₃)₃); **FT-IR** *v*_{max}/cm⁻¹: 3675, 3460, 3354, 2972, 2901, 1770, 1605, 1574; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₁₄H₂₀C₁₂N₃⁺ 300.1029 and 306.1029-D (6-D) found isotope 306.1372.

6,7-Dichloro-3,3-dimethyl-N-(2,4,4-trimethylpentan-2-yl)-3,4-dihydroquinoxalin-2-amine (11k)

5,6-Dichloro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (**6c**) (0.25 g, 1.28 mmol), 1,1,3,3tetramethyl butyl isocyanide (**2b**) (0.18 g, 1.28 mmol) and acetone-D (**3c**) (0.16 g, 2.56 mmol, 0.21 ml) were reacted to give 6,7-dichloro-3,3-dimethyl-*N*-(2,4,4-trimethylpentan-2-yl)-3,4-dihydroquinoxalin-2-amine (**11k**): Physical characteristics: brown solid; Yield: 0.37 g, 80 %; **Mp**: 157-159 °C, **R**_f: 0.7, hexane-ethyl acetate (80 % : 20 %); ¹**H NMR** (400 MHz, CDCl₃) δ 7.08 (1H, s, Ar-H), 6.59 (1H, s, Ar-H), 4.36 (1H, br s, NH), 3.49 (1H, br s, NH), 1.87 (2H, s, CH₂), 1.51 (6H, s, 2 x CH₃), 1.02 (9H, s, (CH₃)₃), ¹³**C NMR** (101 MHz, CDCl₃) δ 168.8(C-2), 158.2 (Ar-C), 147.5 (Ar-C), 127.1 (Ar-C), 124.8 (Ar-CH), 121.0 (Ar-C), 114.4 (Ar-CH), 56.2, 52.2 (CH₂), 31.9, 31.8 ((CH₃)₃), 29.9 (CH₃), 29.22 (CH₃); **FT-IR** ν_{max} /cm⁻¹: 3675, 3357, 2987, 2971, 2922, 1657, 1608, 1573; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₁₈H₂₈C₁₂N₃⁺ 356.1655 and 362.1655 (6-D) found isotope 362.2024.

General method for the synthesis of 2,2,4-Trimethyl-2,3-dihydro-1H-benzo-1,5-diazepine derivatives (12a-b)

In a round bottomed flask equipped with a magnetic stirrer bar, a mixture of 4,5-dimethyl-1,2-phenylenediamine (**1b**) or 4,5-dichloro-1,2-phenylenediamine (**1c**), urea and acetone (2 eq) were set for reflux for 12 h, while being monitored by TLC. After completion the reaction was cooled to room temperature. Excess acetone was removed under reduced pressure to obtain a residue that was washed with water to remove urea, then ethyl acetate to obtain the product.

2,2,4,7,8-Pentamethyl-2,3-dihydro-1*H*-benzo-1,5-diazepine (12a)

Urea (0.11 g, 1.84 mmol), 4,5-dimethyl-1,2-phenylenediamine (**1b**) (0.25 g, 1.84 mmol) and acetone (**3a**) (0.16 g, 2.82 mmol, 0.21 ml) were reacted to give 2,2,4,7,8-pentamethyl-2,3-dihydro-1*H*-benzo-1,5-diazepine (**12a**): **Physical characteristics**: brown solid; Yield: 0.39 g, 85%; **Mp**: 88-90 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.70 (1H, s, Ar-H), 6.59 (1H, s, Ar-H), 4.43 (1H, s, N-H); 2.19 (3H, s, CH₃), 2.09 (6H, s, 2 x CH₃), 1.20 (6H, s, 2 x CH₃); ¹³C **NMR** (101 MHz, DMSO-*d*₆) δ 170.0 (C=N), 137.5 (Ar-C), 136.9 (Ar-C), 132.6 (Ar-C), 127.7 (Ar-C), 127.4 (Ar-CH), 122.2 (Ar-CH), 66.7, 45.3 (CH₂), 29.9 (CH₃), 29.4 (CH₃), 18.9 (CH₃), 18.5 (CH₃); **FT-IR** *ν*_{max}/cm⁻¹: 3314, 2914, 1633, 1477; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated C₁₄H₂₁N₂⁺ 217.1699 found 217.1702.

7,8-Dichloro-2,2,4-trimethyl-2,3-dihydro-1*H*-benzo-1,5-diazepine (12b)

Urea (0.08 g, 1.41 mmol), 4,5-dichloro-1,2-phenylenediamine (**1c**) (0.25 g, 1.41 mmol) and acetone (**3a**) (0.16 g, 2.82 mmol, 0.21 ml) were reacted to give 7,8-dichloro-2,2,4-trimethyl-2,3-dihydro-1*H*-benzodiazepine (**12b**): **Physical characteristics**: purple solid; Yield: 0.29 g, 80 %; **Mp**: 113-115 °C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.09 (1H, s, Ar-H), 7.03 (1H, s, Ar-H), 5.35 (H, s, N-H), 2.26 (2H, s, CH₂), 2.22 (3H, s, CH₃), 1.23 (6H, 2 x CH₃); ¹³C **NMR** (101 MHz, DMSO- d_6) δ 173.2 (C=N), 139.9 (Ar-C), 138.1 (Ar-C), 128.5 (Ar-CH), 126.4 (Ar-C), 121.1 (Ar-CH), 120.1 (Ar-C), 65.5, 45.6 (CH₂), 30.1 (CH₃), 29.7 (CH₃); **FT-IR** ν_{max} /cm⁻¹: 3299, 2960, 2923, 1733, 1641; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated C₁₂H₁₅Cl₂N₂⁺ 257.0607 found 257.0612.

General procedure for the synthesis of 13a-b

In a round bottomed flask equipped with a magnetic stirrer bar, isocyanide (2) was added to a mixture of 2,2,4,7,8-pentamethyl-2,3-dihydro-1*H*-benzo-1,5-diazepine derivative (12a), ethanol and montmorillonite k-10 clay or *p*-toluenesulfonic acid. The reaction mixture was allowed to stir at room temperature for 24 h while being monitored by TLC. After completion, the reaction was cooled and the solvent removed under reduced pressure to obtain a crude residue, which was then purified by silica gel column chromatography using hexane-ethyl acetate as eluent, to obtain the product.

7.8-Dimethyl-N-(tert-butyl)-2,4,4-trimethyl-2,3,4,5-tetrahydro-1H-benzo-1,5-diazepine-2-carboxamide (13a)

122, 2,2,4,7,8-Pentamethyl-2,3-dihydro-1*H*-benzo-1,5-diazepine (12a) (0.10 g, 0.46 mmol), isocyanide (2a) (0.04 g, 0.46 mmol) and *p*-toluenesulfonic acid (0.01 g 0.46 mmol) were reacted to give 7.8-dimethyl-*N*-(*tert*-butyl)-2,4,4-trimethyl-2,3,4,5-tetrahydro-1*H*-benzo-1,5-diazepine-2-carboxamide (13a); Physical characteristics: yellow solid; Yield: 0.11 g, 75 %, Mp: 200-202, R_f: 0.6, hexane-ethyl acetate (50 %: 50 %); ¹H NMR (400 MHz, CDCl₃) δ 7.19 (1H, d, *J*= 5.2 Hz, NH-C=O), 6.39 (2H, s, Ar-H), 2.39 (1H, br s, NH), 2.15 (1H, d, *J*= 14.8 Hz, CH₂), 2.07 and 2.06 (6H, 2 x s, 2 x CH₃), 1.53 (1H, d, *J*= 14.8 Hz, CH₂), 1.29 (3H, s, CH₃), 1.25 (9H, s, (CH₃)₃), 1.21 (1H, br s, NH), 1.14 (3H, s, CH₃), 1.06 (3H, s, CH₃), ¹³C NMR (101 MHz, CDCl₃) δ 175.6 (C=O), 135.0 (Ar-C), 134.4 (Ar-C), 130.6 (Ar-C), 129.9 (Ar-C), 124.2 (Ar-CH), 121.3 (Ar-CH), 60.6, 52.9, 50.7, 47.5 (CH₂), 32.5 (CH₃), 30.9 (CH₃), 29.3 (CH₃), 28.7 ((CH₃)₃), 19.0 (CH₃), 18.9 (CH₃); **FT-IR** ν_{max} /cm⁻¹: 3380, 3286, 2926, 1642, 1591; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₉H₃₂N₃O⁺ 318.2540 found 318.2521.

7,8-dichloro-N-cyclohexyl-2,4,4-trimethyl-2,3,4,5-tetrahydro-1H-benzo-1,5-diazepine-2-carboxamide (13b)

mmol), isocyanide (**2c**) (0.07 g, 0.62 mmol) and *p*-toluenesulfonic acid (0.12 g 0.62 mmol) were reacted to give 7,8-dichloro-*N*-

cyclohexyl-2,4,4-trimethyl-2,3,4,5-tetrahydro-1*H*-benzo-1,5-diazepine-2-carboxamide (**13b**); **Physical characteristics**: brown solid; Yield: 0.11 g, 83 %, **Mp**: 168-170 (lit.⁸ 169-172 °C), **R**_f: 0.5, hexane-ethyl acetate (50 % : 50 %); ¹H NMR (400 MHz, CDCl₃) δ 7.03 (1H, d, *J*= 8.4 Hz, NH-C=O), 6.72 (1H, s, Ar-H), 6.69 (1H, s, Ar-H), 3.78-3.69 (1H, m, CH), 3.47 (1H, br s, NH), 2.82 (1H, br s, NH), 2.32 (1H, d, *J*= 14.8 Hz, CH₂), 1.87-1.84 (1H, d, J =12Hz CH₂), 1.68-1.55 (4H, m), 1.38-1.37 (5H, m), 1.32 (5H, m), 1.21-1.22 (5H, m); ¹³C NMR (101 MHz, CDCl₃) δ 174.4 (C=O), 137.4 (Ar-C), 135.8 (Ar-C), 125.1 (Ar-C), 123.4 (Ar-C), 123.2 (Ar-CH), 119.7 (Ar-CH), 60.6, 53.6, 48.3 (CH), 47.1 (CH₂), 33.2 (CH₂, cyclohexyl), 32.6 (CH₂, cyclohexyl), 32.3 (CH₃,), 30.8 (CH₃), 29.9 (CH₃), 25.7 (CH₂, cyclohexyl), 24.9 (CH₂, cyclohexyl), 24.8 (CH₂, cyclohexyl); **FT-IR** *v*_{max}/cm⁻¹: 3299, 2960, 2923, 2853, 1642, 1591.

In a round-bottomed flask equipped with a magnetic stirrer bar, DMAD, DEtAD or DTAD (7) (1 eq) was added to 1Hbenzo[d]imidazol-2(3H)-one derivative (6) or o-phenylenediamine derivative (1) in ethanol (30 ml). The reaction mixture was refluxed for 8 h while being monitored by TLC. After completion, the reaction was cooled and the solvent removed under reduced pressure to obtain a residue, which was then purified by silica gel column chromatography using hexane- ethyl acetate as eluent, to obtain the product. Alternatively, the precipitate was washed with cold ethanol and filtered to give solid product.

Methyl 4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (14a)

 $H \quad U \quad 1H\text{-Benzo}[d]\text{imidazol-2}(3H)\text{-one} (6a) (0.25 \text{ g}, 1.89 \text{ mmol}) and dimethyl acetylenedicarboxylate (7a) (0.27 \text{ g}, 1.89 \text{ mmol}) were reacted to give Methyl 4-oxo-4,5-dihydro-1H-benzo-1,5-diazepine-2-carboxylate (14a): Physical characteristics: yellow solid; Yield: 0.34 g, 83 %, Mp: 224-226 °C, R_f: 0.8, hexane-ethyl acetate (50 % : 50 %); ¹H NMR (400 MHz, DMSO-$ *d* $₆) <math>\delta$ 11.74 (1H, s, NH), 11.03 (1H, s, NH), 7.39 (1H, d, *J* = 7.2 Hz, Ar-H), 7.07-6.99 (3H, m, Ar-H), 5.52 (1H, s, H-3), 3.68 (3H, s, CH₃), ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.3 (C=O), 155.4 (C=O), 143.9 (Ar-C), 125.0 (Ar-C), 124.7 (Ar-C), 123.3 (Ar-CH), 122.4 (Ar-CH), 115.2 (Ar-CH), 115.1 (Ar-CH), 83.4 (C-3), 50.5; FT-IR ν_{max} /cm⁻¹: 3215, 2902, 1686, 1614, 1501, 1598, 1429; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₁H₁₁N₂O₃⁺ 219.0764 found 219.0752.

Ethyl 4-oxo-4,5-dihydro-1H-benzo-1,5-diazepine-2-carboxylate (14b)

 $H = 0 \qquad 1H-\text{Benzo}[d]\text{imidazol-2}(3H)-\text{one (6a) } (0.25 \text{ g}, 1.89 \text{ mmol)} \text{ and diethyl acetylenedicarboxylate} (7b) (0.32 \text{ g}, 1.89 \text{ mmol}) were reacted to give Ethyl 4-oxo-4,5-dihydro-1H-benzo-1,5-diazepine-2-carboxylate (14b): Physical characteristics: yellow solid; Yield: 0.34 g, 79 %, Mp: 209-211 °C, R_f: 0.9, hexane-ethyl acetate (50 % : 50 %); ¹H NMR (400 MHz, DMSO-d_6) <math>\delta$ 11.74 (1H, s, NH), 11.05 (1H, s, NH), 7.39 (1H, d, J = 7.2 Hz, Ar-H), 7.08-7.00 (3H, m, Ar-H), 5.49 (1H, s, H-3), 4.15 (2H, q, J = 7.2 Hz, CH₂), 1.24 (3H, t, J = 6.8 Hz, CH₃), ¹³C NMR (101 MHz, DMSO-d_6) δ 169.1 (C=O), 155.5 (C=O), 143.9 (Ar-C), 125.1 (Ar-C), 124.8 (Ar-C), 123.4 (Ar-CH), 122.5 (Ar-CH), 115.4 (Ar-CH), 115.2 (Ar-CH), 83.7 (C-3), 59.1 (CH₂), 14.3 (CH₃); FT-IR ν_{max} /cm⁻¹: 3204, 2969, 1683, 1642, 1613, 1460, 1434; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₂H₁₃N₂O₃⁺ 233.0921 found 233.0920.

Tert-butyl 4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (14c)

 $H = 0 \qquad 1H-Benzo[d] \text{imidazol-2}(3H)-\text{one} \qquad (6a) \qquad (0.21 \quad \text{g}, \qquad 1.49 \quad \text{mmol}) \quad \text{and} \quad \text{di-tert-butyl} \\ \text{acetylenedicarboxylate (7c) (0.34 \text{ g}, 1.49 \quad \text{mmol}) \quad \text{were reacted to give } Tert-butyl 4-0x0-4,5-dihydro-1H-benzo-1,5-diazepine-2-carboxylate (14c): Physical characteristics: yellow solid; Yield: 0.29 g, 75 %, Mp: 210-212, Rf: 0.9, hexane-ethyl acetate (50 % : 50 %); ¹H NMR (400 MHz, DMSO-d_6) \delta 11.64 (1H, s, NH), 11.97 (1H, s, NH), 7.40 (1H, d,$ *J* $= 7.6 Hz, Ar-H), 7.05-6.99 (3H, m, Ar-H), 5.42 (1H, s, H-3), 1.48 (9H, s, ((CH_3)_3) ¹³C NMR (101 MHz, DMSO-d_6) \delta 169.1 (C=O), 155.7 (C=O), 143.5 (Ar-C), 125.0 (Ar-C), 124.9 (Ar-C), 123.4 (Ar-CH), 122.3 (Ar-CH), 115.3 (Ar-CH), 115.1 (Ar-CH), 95.6 (C-3), 79.2 C(CH_3)_3, 28.1 (CH_3)_3; FT-IR v_{max}/cm^{-1}: 2971, 2881, 1737, 1680, 1640, 1624; HRMS (ESI-TOF) m/z: [M+H]+ Calculated for C₁₄H₁₇N₂NaO₃+ 283.1059 found 283.1051.$

Methyl 7-nitro-4-oxo-4,5-dihydro-1H-benzo-1,5-diazepine-2-carboxylate(14d)

4-Nitro-*o*-phenylenediamine (**1h**) (0.25 g, 1.39 mmol) and dimethylacetylenedicarboxylate (**7a**) (0.19 g, 1.39 mmol) were reacted to give Methyl 7-nitro-4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (**14d**): **Physical characteristics**: yellow solid; Yield: 0.34 g, 92 %, **Mp**: 288-290, **R**_f: 0.9 ; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 12.19 (1H, NH), 11.09 (1H, NH), 8.53 (1H, s, Ar-H), 7.89-7.86 (1H, d, J = 8.8 Hz, Ar-H), 7.17-7.15 (1H, d, J = 8.8 Hz, Ar-H), 5.58 (1H, H-3), 3.71 (3H, s, CH₃); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 168.5 (C=O), 156.0 (C=O), 142.0, 142.5, 130.9, 125.5, 117.8, 115.3, 111.2, 86.0, 50.9; **FT-IR** *ν***max/cm⁻¹**: 3193, 3092, 2949, 1695, 1668, 1641, 1603, 1535; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₁₁H₁₀N₃O₅⁺ 264.0615 found 264.0611.

Ethyl 7-nitro-4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (14e)

4-Nitro-*o*-phenylenediamine (**1h**) (0.25 g, 1.39 mmol) and diethyl acetylenedicarboxylate (**7b**) (0.24 g, 1.39 mmol) were reacted to give Ethyl 8-nitro-4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (**14e**) : **Physical characteristics**: yellow solid; Yield: 0.33 g, 85 %, **Mp**: 279-281, **R**_f :0.8, hexane-ethyl acetate (50 %-50 %); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 12.17 (1H, br s, NH), 11.13 (1H, s, NH), 8.53 (1H, s, Ar-H), 7.87 (1H, d, *J* = 8.4 Hz, Ar-H), 7.16 (1H, d, *J* = 8.8 Hz, Ar-H), 5.57 (1H, s, H-3), 4.18 (2H, q, *J* = 7.2 Hz, CH₂), 1.25 (3H, t, *J* = 7.2 Hz, CH₃); ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 168.3 (C=O), 156.0 (C=O), 142.7 (Ar-C), 142.6 (Ar-C), 130.9 (Ar-C), 125.5 (Ar-C), 117.8 (Ar-CH), 115.3 (Ar-CH), 111.2 (Ar-CH), 86.3 (C-3), 59.3 (CH₂), 14.3 (CH₃); **FT-IR** *v*_{max}/cm⁻¹: 3187, 3136, 3084, 2904, 1695, 1633, 1602, 1530, 1493, 1487; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₁₂H₁₂N₃O5⁺ 278.0771 found 278.0762.

Tert-butyl 7-nitro-4-oxo-4,5-dihydro-1H-benzo-1,5-diazepine-2-carboxylate (14f)

4-Nitro-*o*-phenylenediamine (**1h**) (0.20 g, 1.17 mmol) and di-*tert*-butyl acetylenedicarboxylate (**7c**) (0.25 g, 1.17 mmol) were reacted to give *Tert*-butyl 7-nitro-4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (**14f**): **Physical characteristics**: yellow solid; Yield: 0.28 g, 80 %, **Mp**: 208-210, **R**_f: 0.5, hexane-ethyl acetate (50 % : 50 %); ¹**H NMR** (400 MHz, DMSO- d_6) δ 12.08 (1H, s, NH), 11.10 (1H, s, NH), 8.55 (1H, s, Ar-H), 7.86 (1H, d, *J* = 8.8 Hz, Ar-H), 7.15 (1H, d, *J* = 8.8 Hz, Ar-H), 5.51 (1H, s, H-3), 1.49 (9H, s, ((CH₃)₃), ¹³**C NMR** (101 MHz, DMSO- d_6) δ 168.2 (C=O), 156.1 (C=O), 142.7 (Ar-C), 142.1 (Ar-C), 130.9 (Ar-C), 125.7 (Ar-C), 117.7 (Ar-CH), 115.3 (Ar-CH), 111.1 (Ar-CH), 88.1 (C-3), 79.5 *C*(CH₃)₃, 28.0 (*C*H₃)₃; **FT-IR** ν_{max} /cm⁻¹: 2975, 1690, 1616, 1541; **HRMS (ESI-TOF)** m/z: [M+Na]⁺ Calculated for C₁₄H₁₆N₃NaO₅⁺ 328.0909 found 328.1013.

Methyl 7,8-dichloro-4-oxo-4,5-dihydro-1H-benzo-1,5-diazepine-2-carboxylate (14g)

H O 5,6-Dichloro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (**6c**) (0.25 g, 1.24 mmol) and dimethyl acetylenedicarboxylate (**7a**) (0.18 g, 1.24 mmol) were reacted to give Methyl 7,8-dichloro-4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (**14g**): **Physical characteristics**: grey solid; Yield: 0.29 g, 83 %, **Mp**: 270-272, **R**_f: 0.5, hexane-ethyl acetate (50 % : 50 %) ; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 11.84 (1H, s, NH), 10.97 (1H, s, NH), 7.88 (1H, s, Ar-H), 7.15 (1H, s, Ar-H), 5.56 (1H, s, H-3), 3.69 (3H, s, CH₃), ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 168.9 (C=O), 155.5 (C=O), 142.8 (Ar-C), 125.5 (Ar-C), 125.4 (Ar-C), 124.8 (Ar-C), 123.5 (Ar-C), 116.9 (Ar-CH), 115.9 (Ar-CH), 85.6 (C-3), 50.9 (CH₃); **FT-IR** *v*_{max}/cm⁻¹: 2991, 1688, 1622, 1500; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₁₁H₉Cl₂N₂O₃⁺ 286.9985 found 286.9982.

Ethyl 7,8-dichloro-4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (14h)

5,6-Dichloro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (**6c**) (0.20 g, 1.24 mmol) and diethyl acetylenedicarboxylate (**7b**) (0.21 g, 1.24 mmol) were reacted to give ethyl 7,8-dichloro-4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (**14h**): **Physical characteristics**: green solid; Yield: 0.28 g, 76 %, **Mp**: 265-267, **R**_f: 0.9, hexane-ethyl acetate (50 % : 50 %); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 11.81 (1H, s, NH), 10.99 (1H, s, NH), 7.85 (1H, s, Ar-H), 7.14 (1H, s, Ar-H), 5.54 (1H, s, H-3), 4.15 (2H, q, *J* = 6.8 Hz, CH₂) 1.24 (3H, t, *J* = 6.8 Hz, CH₃), ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 168.6 (C=O), 155.5 (C=O), 142.8 (Ar-C), 125.5 (Ar-C), 125.4 (Ar-C), 124.8 (Ar-C), 123.4 (Ar-C), 116.9 (Ar-CH), 115.9 (Ar-CH), 85.9 (C-3), 59.4 (CH₂), 14.3 (CH₃); **FT-IR** ν_{max} /cm⁻¹: 3182, 3072, 1693, 1650, 1625, 1615; **HRMS (ESI-TOF)** m/z: [M+H]⁺ Calculated for C₁₂H₁₁Cl₂N₂O₃⁺ 301.0141 found 301.0139.

Tert-butyl 7,8-dichloro-4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (14i)

5,6-Dichloro-1*H*-benzo[*d*]imidazol-2(3*H*)-one (6.c) (0.20 g, 0.99 mmol) and dimethyl acetylenedicarboxylate (7c) (0.22 g, 0.99 mmol) were reacted to give *tert*-butyl 7,8-dichloro-4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (14i): Physical characteristics: green solid; Yield: 0.29 g, 75 %, Mp: 216-218, R_f: 0.9, hexane-ethyl acetate (50 % : 50 %); ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.73 (1H, s, NH), 10.95 (1H, s, NH), 7.87 (1H, s, Ar-H), 7.14 (1H, s, Ar-H), 5.48 (1H, s, H-3), 1.48 (9H, s, (9H, ((CH₃)₃), ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.5 (C=O), 155.5 (C=O), 142.3 (Ar-C), 125.5 (Ar-C), 125.4 (Ar-C), 124.7 (Ar-C), 123.2 (Ar-C), 116.8 (Ar-CH), 115.8 (Ar-CH), 87.8 (C-3), 79.5 (C(CH₃)₃), 28.0 (CH₃)₃; FT-IR ν_{max}/cm^{-1} : 3226, 2970, 1693, 1653,1626; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calculated for C₁₄H₁₅Cl₂N₂NaO₃⁺ 351.0454 found 351.0366.

Methyl 7,8-dimethyl-4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (14j)

H O 5,6-Dimethyl-1*H*-benzo[*d*]imidazol-2(3H)-one (**6b**) (0.25 g, 1.54 mmol) and dimethyl acetylenedicarboxylate (**7a**) (0.22 g, 1.54 mmol) were reacted to give Methyl 7,8-dimethyl-4-oxo-4,5-dihydro-1*H*-benzo-1,5-diazepine-2-carboxylate (**14j**): Physical characteristics: yellow solid; Yield: 0.23 g, 62 %, Mp: 225-227, \mathbf{R}_{f} : 0.9, hexane-ethyl acetate (50 % : 50 %) ; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.67 (1H, s, NH), 10.98 (1H, s, NH), 7.17 (1H, s, Ar-H), 6.82 (1H, s, Ar-H), 5.46 (1H, s, H-3), 3.67 (3H, s, CH₃), 2.16 (6H,s, 2 x CH₃) ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.7 (C=O), 155.6 (C=O), 144.2 (Ar-C), 131.7 (Ar-C), 130.9 (Ar-C), 122.9 (Ar-C), 122.6 (Ar-C), 116.1 (Ar-CH), 115.9 (Ar-CH), 82.6 (C-3), 50.7 (CH₃-O), 19.0 (CH₃); FT-IR ν_{max} /cm⁻¹: 2948, 1679, 1615, 1508; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₃H₁₅N₂O₃⁺ 247.1077 found 247.1075.

X-ray crystallographic data

Intensity data of crystals of **10a**, **10e**, **11f** and **11g** were collected on a Bruker Apex-II CCD area detector diffractometer with graphite monochromated Mo K α radiation (50kV, 30mA). The collection method involved ω - and φ -scans of width 0.5° and 1024x1024 bit data frames. Using *Olex2*,^[10] the crystal structures were solved by with the *ShelXT*^[11] structure solution program using Intrinsic Phasing and refined with the *ShelXL*^[12] refinement package using Least Squares minimization. Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix

$\begin{array}{c cccccc} CCDC & 2087921 & 2087922 & 2087923 & 2087924 \\ Empirical formula & C_{17}H_{25}N_3 & C_{19}H_{29}N_3 & C_{14}H_{19}Cl_2N_3 & C_{18}H_{27}Cl_2N_3 \\ Formula weight & 271.40 & 299.45 & 300.22 & 356.32 \\ \end{array}$
Empirical formula $C_{17}H_{25}N_3$ $C_{19}H_{29}N_3$ $C_{14}H_{19}Cl_2N_3$ $C_{18}H_{27}Cl_2N_3$ Formula weight271.40299.45300.22356.32
Formula weight271.40299.45300.22356.32
Temperature/K 173.15 173.15 173.15 173.15
Crystal system monoclinic monoclinic orthorhombic orthorhombic
Space group $P2_1/c$ $P2_1/n$ $P2_12_12_1$ $P2_12_12_1$
a/Å 9.7065(8) 12.5443(4) 8.4799(2) 8.1778(2)
b/Å 18.7394(15) 10.8032(3) 11.2725(3) 10.8600(3)
c/Å 8.5024(7) 13.1304(4) 16.0259(5) 21.2146(6)
α/° 90 90 90 90 90
β/° 99.072(2) 90.6124(19) 90 90
γ/° 90 90 90 90 90
Volume/Å ³ 1527.2(2) 1779.31(9) 1531.91(7) 1884.09(9)
Z 4 4 4 4
$\rho_{calc}g/cm^3$ 1.180 1.118 1.302 1.256
μ/mm^{-1} 0.071 0.066 0.415 0.348
F(000) 592.0 656.0 632.0 760.0
Crystal size/mm ³ $0.366 \times 0.343 \times 0.526 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.411 \times 0.321 0.269 \times 0.256 \times 0.295 \times 0.256 \times 0$
0.108 0.197 × 0.134 0.196
Padiation $M_0K\alpha (\lambda = 0.71072)$ $M_0K\alpha (\lambda = M_0K\alpha (\lambda = M_0K\alpha (\lambda = 0.71072))$
NOKU (X = 0.71073) 0.71073) 0.71073) 0.71073)
2Θ range for data collection/° 4.25 to 56.94 4.466 to 56 4.418 to 3.84 to 55.996
4.25 10 50.54 4.400 10 50 56.616 5.64 10 55.590
$12 \le h \le 12$, $25 \le k$, $16 \le h \le 16$, $14 \le -11 \le h \le 11, -10 \le h \le 10, -10 \le$
Index ranges $25 \ 8 \le 1 \le 11$ $10 \le 10 \le 10$, $14 \le 10$, $12 \le k \le 15$, $-14 \le k \le 14, -28$
$\leq 23, -6 \leq 1 \leq 11$ $K \leq 14, -17 \leq 1 \leq 17$ $21 \leq 1 \leq 20$ $\leq 1 \leq 28$
Reflections collected 12390 28352 20413 36147
$3843 [R_{int} = 0.0590 + 4297 [R_{int} = 0.0405 + 3823 [R_{int} = 4542 [R_{i$
Independent reflections $B = 0.0869$ $R = 0.0701$ 0.0299 , $R_{sigma} = 0.0462$, R_{s
$R_{\text{sigma}} = 0.0007$ $R_{\text{sigma}} = 0.0247$ $= 0.0247$ 0.0307
Data/restraints/parameters 3843/0/191 4297/0/211 3823/0/185 4542/0/223
Goodness-of-fit on F^2 0.8251.0551.0451.069
Final R indexes $[1>2\sigma(1)]$ R ₁ = 0.0396, wR ₂ = R ₁ = 0.0421, wR ₂ = R ₁ = 0.0269, R ₁ = 0.0298,
$wR_2 = 0.0618 wR_2 = 0.0665$
Final R indexes [all data] $R_1 = 0.0883, wR_2 = R_1 = 0.0617, wR_2 = R_1 = 0.0311, R_1 = 0.0372,$
$wR_2 = 0.0638 wR_2 = 0.0692$
Largest diff. peak/hole / e Å ⁻³ 0.17/-0.21 0.23/-0.19 0.17/-0.16 0.19/-0.16

NMR, HRMS and FTIR spectra

17

0040040444	0 4	000 0 4 0 0 0 4
0 L D U U U U U U U U U U U U U U U U U U		00040000
0,00000000000	οœ	LL0440000
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4 M	
	1	
) (

260 020 453 4333	340	439	887 517 026
000017	4.	с	
$\nabla \nabla \mathcal{V}$			

m/z

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

Т

References

- 3 S. Bruan, *PhD Dissertation*, "New Inhibitors of bacterial hyaluronidase Synthesis and structure-activity relationships", Regensburg University, **2005**.
- 10 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- 11 G. M. Sheldrick, Acta Cryst., 2015, A71, 3.
- 12 G. M. Sheldrick, Acta Cryst., 2015, C71, 3.

4 J. P. English, R. C. Clapp, Q. P. Cole, I. F. Halverstadt, J. O. Lampen and J. R. Roblin, *J. Am. Chem. Soc.*, 1945, **67**, 295. 5 R. L. Clark and A. A. Pessolano, *J. Am. Chem. Soc*, 1958, **80**, 1657.

6 B. Lakhrissi, A. Benksim, M. Massoui, E. M. Essassi, V. Lequart, N. Joly, D. Beaupere, A. Wadouachi and P. Martin, *Carbohydr. Res.*, 2008, **343**, 421.

7 X. Guida, H. Jianhua and L. Xiaomin, Eur. J. Med. Chem., 2006, 41, 1080.

8 A. Shaabani, A. Maleki, and H. Mofakham, J. Comb. Chem., 2008, 10, 595.

¹ A. J. Kadhim., Orient. J. Chem., 2018, 34, 473.

² K. E. Schwiebert, D. N. Chin, J. C. MacDonald and G. M. Whitesides, J. Am. Chem. Soc., 1996, 118, 4018.