Supporting information

Architecture of multi-channel and easy-to-make microfluidic paper-based colorimetric device (μ PCD) towards selective and sensitive recognition of uric acid by AuNPs: An innovative portable tool for the rapid and low-cost identification of clinically relevant

biomolecules

Fatemeh Farshchi ^{a,b}, Arezoo Saadati ^c, Mohammad Hasanzadeh ^{b,*}, Farzad Seidi ^{a**}

^a Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.

^b Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

^c Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Corresponding Author

* (Mohammad Hasanzadeh) Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

E-mail address: (*) hasanzadehm@tbzmed.ac.ir

** (Farzad Seidi) Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China E-mail address: (**) <u>f_seidi@njfu.edu.cn</u>

Fig. S1. The fabrication process of paper-based microfluidic device, A) Materials and equipment required B) Immersion of fiberglass paper in molten paraffin at 90 ° C, C) Dry paraffin-impregnated paper at room temperature, D) Place paraffin-free paper between paraffin-containing paper and a magnet, E) Place paraffin paper on the paraffin-free paper F)Place paraffin-free paper and paraffin-containing paper between the iron pattern and the magnet, G) Attract the pattern to the magnet H) Separation of pattern and magnet I) Formation of microfluidic channels in paraffin-free paper, J) Made paper-based microfluidic device K) Designed pattern size.

Fig. S2. FE-SEM images of AuNPs-CysA.

Fig. S3. EDC images of AuNPs-CysA.

Fig. S4. TEM images of AuNPs-CysA.

		С		Size (d.n	% Number:	St Dev (d.n
Z-Average (d.nm):	3969		Peak 1:	2185	94.6	548.3
PdI:	0.292		Peak 2:	5080	5.4	749.7
Intercept:	0.766		Peak 3:	0.000	0.0	0.000
B 1 1 1						

Result quality Refer to quality report

Fig. S5 A) Size distribution analysis of AuNPs-CysA by DLS. B) Recorded Zp for synthesized AuNPs-CysA, C) Size distribution analysis of AuNPs-CysA combined with UA.

Fig. S6. AFM images of AuNPs-CysA.

Fig. S7. A-C) FE-SEM images of AuNFs synthesized in pH = 6.15*,* D*-F)* pH = 4.19 *in different magnification, respectively.*

Fig. S8. EDC images of AuNFs.

Fig. S9. TEM images of AuNFs.

R		2	 te
	-	-	

ouno					St Dev (d.n
	В		Size (d.n	% Number:	
Z-Average (d.nm):	94.31	Peak 1:	71.86	0.0	24.77
Pdl:	0.316	Peak 2:	11.33	100.0	2.574
Intercept:	0.820	Peak 3:	0.000	0.0	0.000
Result quality	Refer to qu	ality report			

	С		Size (d.nm):	% Volume:	St Dev (d.nm):
Z-Average (d.nm):	2816	Peak 1:	3232	100.0	998.3
Pdl:	0.015	Peak 2:	0.000	0.0	0.000
Intercept:	0.724	Peak 3:	0.000	0.0	0.000
Result quality	Refer to qua	lity report			

Result quality Refer to quality report

Fig. S10. A-B) Size distribution analysis of AuNFs C-D) Size distribution analysis of AuNFs after the combination with UA by DLS *E-F*) Recorded Zp for synthesized AuNFs in the pH = 4.91 and pH = 6.15, respectively.

Fig. S11. A-B) AFM images of synthesized AuNFs prepared in the pH of 4.91 and 6.15, respectively.

Fig. S12. FE-SEM images of GNSs in different magnification.

Fig. S13. TEM images of GNSs in various magnification.

Α

Z-Average (d.nm):

Pdl:

Intercept:

Size (d.n... B % Number: St Dev (d.n... 73.05 9.318

930.3	Peak 1:	430.1	0.2	73.05
0.616	Peak 2:	59.31	99.8	9.318
0.841	Peak 3:	0.000	0.0	0.000

Fig. S14. A) Size distribution analysis of GNSs *B*) Size distribution analysis of GNSs with UA by DLS *C*) Recorded Zp for synthesized GNSs.

Fig. S15. AFM imaging of synthesized GNSs after covering on the slide.

Fig. S16. A) Photographic image and UV-Vis spectra recorded from reaction systems containing AuNPs-CysA, (TMB+H₂O₂+Met) and different concentration of UA (0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005 and 0.000001 M), *B*) Calibration curve of peak intensity versus concentration of UA.

Fig. S17. A) Photographic image and UV-Vis spectra recorded from reaction systems containing GNSs, (*TMB*+H₂O₂+Met) and different concentration of UA (0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005 and 0.000001 M), *B*) Calibration curve of peak intensity versus concentration of UA.

Fig. S18. *A*) Photographic image and UV-Vis spectra recorded from reaction systems containing AuNFs (Ph = 4.91) (TMB+H₂O₂+Met) and different concentration of UA (0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005 and 0.000001 M), **B**) Calibration curve of peak intensity versus concentration of UA.

Fig. S19. *A)* Photographic image and UV-Vis spectra recorded from reaction systems containing AuNFs (pH = 6.15) (TMB+H₂O₂+Met) and different concentration of UA (0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005 and 0.000001 M), B) Calibration curve of peak intensity versus concentration of UA.

Fig. S20. A) Absorption response for UA with increasing concentrations (0.00005 to 0.01 M) and AuNPs-CysA in human urine specimens, **B**) Calibration plot of peak intensity versus concentration of UA.

Fig. S21. A) Absorption response for UA with increasing concentrations (0.000001 to 0.001 M) and GNSs in human urine specimens, *B*) Calibration plot of peak intensity versus concentration of UA.

Fig. S22. A) Absorption response for UA with increasing concentrations (0.000001 to 0.01 M) and AuNFs pH=4.91 in human urine specimens, *B)* Calibration plot of peak intensity versus concentration of UA.

Fig. S23. A) Absorption response for UA with increasing concentrations (0.000001 to 0.01 M) and AuNFs pH=6.15 in human urine specimens, *B)* Calibration plot of peak intensity versus concentration of UA.

Table S1. Analytical Figure of merits.

Type of AuNPs	Linear range (M)	LLOQ(M)
AuNPs-CysA	10 ⁻⁶ to 10 ⁻³	10 -6
GNSs	10 ⁻⁴ to 10 ⁻²	10-4
AuNFs prepared in pH=4.91	10 ⁻⁶ to 10 ⁻²	10 -6
AuNFs prepared in pH=6.15	5×10^{-5} to 10^{-2}	5 ×10 ⁻⁵