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Identifying Dynamic Structures in Real Signals

Fig A presents selected recordings from the hippocampal subfields in the two conditions: interictal and ictal

activities. Although in different ranges, a same window of 50 s was used for each one to emphasize the dif-

ference in event rates. Note that important structures can be identified: i) for the interictal state, the interspike

intervals are less regular; also, depolarizing after-potentials and multiple spikes at once are clearly observed;

ii) for the ictal state, in turn, the interspike intervals are more regular and frequent, that is, the number of

spikes per unit of time is higher. Other background, more complex activities are naturally involved in each

of them; however, as a general observation via a thorough visual inspection, these features are considered the

most relevant ones, as explained and endorsed in the next section.

1



Fig A. Main structures found in the hippocampal subfields during the interictal (II) and ictal (PIS)
states. Note that a more irregular and less frequent spiking pattern is observed for all selected epochs from II,
whereas a more regular and frequent spiking pattern is observed for all selected epochs from PIS. All signals
were properly filtered to reduce the effect of background or unrelated activity. A time window of 50 seconds
is considered for all cases for purposes of visual comparison.

Adapting Neuron Dynamic Models to the Epileptiform Activity

As references for the behavior observed in the real signals analyzed in this work, we have chosen two com-

monly studied dynamic models: the Hindmarsh and Rose [1] and the Izhikevich [2] models. The main reasons

for doing so are as follows: both intend to represent, to a certain extent, physiological activities that biolog-

ical neurons undergo, such that their parameters may be potentially linked to physical factors; the first one

was essential to understanding how bursting activity is generated by neurons [1], whereas the second one is a
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rather flexible model able to represent a variety of spiking behaviors [2]; they are relatively simple and easily

addressable, presenting three and two variables, respectively; at last, their simulations provide a fairly good

representation for the structures covered in the previous section and are complementary, which also justifies

the option for two models instead of only one. The Hindmarsh-Rose (HR) model is expressed by the following

system [1]: 
ẋ = y − ax3 + bx2 + I − z
ẏ = c− dx2 − y
ż = r[s(x− xrest)− z]

(1)

where a, b, c and d are usually, but not necessarily, fixed parameters [1,3], which model the cubic and quadratic

nullclines in the phase portrait of the system [1]. I is intended to represent the current applied to the neuron

membrane, which either flows inward or outward the cell [1,3], r works as a time scale, controlling the speed

of variation of the slow variable z, which in turn is related to the efficiency of slow channels in exchanging

ions [3], and s is known as the adaptation variable [3]: lower values represent a weaker coupling with the

membrane potential x, thus leading to a weaker accomodation and higher spiking [1,3], whereas higher values

imply in stonger accomodation, leading to depolarizing after-potentials, for example [1]; y is known as a

recovery variable, which, albeit not measurable, helps unfold the attractor related to the spiking behavior [1];

at last, xrest is the resting potential of the system [1,3].

The Izhikevich (IZ) model, in turn, is given by [2]:{
v̇ = 0.04v2 + 5v + 140− u+ I
u̇ = a(bu− v) (2)

subjected to: if v ≥ 30mV, then v ← c and u ← u + d, where a, b, c and d are also usually fixed parameters,

representing, respectively [2]: the time scale of the recovery variable u, the sensitivity of variable u to the

subthreshold oscillations, the after-spike reset value of the membrane potential v, and the after-spike reset

value of the recovery variable. Note that this model presents a jump in the time domain to account for the

action potential; however, although relatively simpler than the first one, it is capable of reproducing many

different neuron behaviors remarkably, as well as ensembles of neurons interacting with each other, when

simulated as such [2].

To represent the dynamic structures present in the real signals I , b, r or s, from the Hindmarsh-Rose

model, and I or d, from the Izhikevich model, can be varied while keeping the remaining ones constant. As

demonstrated in recent works [3,4], each of these parameters may work as control variables, thus driving the
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system into or out of a chaotic behavior. In practical terms, there is not only one possible biophysical factor

responsible for providing more complexity, or chaoticity, to the system (in this case, neural tissues undergoing

epileptiform activity).

In this work, for simplicity, we chose to analyze I , from the Hindmarsh-Rose model, and d, from the

Izhikevich model, since their range of variation is conveniently large enough compared to the other ones,

especially for the first model [3]. Nonetheless, other parameters have been tested and similar results can be

obtained. Also, to better reproduce the amplitudes from Fig. 8, the responses were scaled and had their

baselines shifted upwards.

Applying RQA to the Dynamic Models

Before applying RQA to the dynamic models, some considerations must be made. As simulated signals, their

time scale is not equivalent to that verified in the real ones; that is, although their event ratio is similar, their

unit of time (or time window) is not. Therefore, we considered, for simplicity, time windows that account

for 1:3 and 2:3 ratios, as previously demonstrated. The RQA parameters were set to the ones used in the real

signals: embedding dimension m = 5, line parameters of lmin = 3 and vmin = 3, and Theiler window of width

3 (tw = 3). An exception is the time delay (set to 2), for the same reason as mentioned above. Nonetheless, as

stated by [5], this is not a crucial parameter for RQA; also, the value chosen was able to unfold the attractor

similarly to the real signals. Next, the following steps are adopted:

• different values for the control parameters of each model are tested in order to simulate the II and PIS

states. For the Hindmarsh-Rose model, the range chosen was from I = 5.0 to I = 8.0, using a step of

0.3, which, although not clearly defined, falls in a transtion between activities [3]. For the Izhikevich

model, the values of d are: -16, -15, -14, -13, -12.5, -12, -11.5, -11, -10, -9 and -8, which captures well

the transition between chaotic to regular spiking, with an interface around -12 [4]. In this case, since

each time window is analyzed separately, a multiple-stage step function (summing up to 11 cases) is

used instead of the sigmoid one, such that one of these values is kept constant throughout the whole

simulation to mimic the real signals;
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• for each time window of the models, the RQA parameters investigated in this work are calculated. In

total, to provide a good trade-off between number of samples and computational cost, 100 iterations are

run for each of the 11 cases explained above. The algorithm applied belongs to the PyRQA library [6].

Analysis of RQA parameters for both models

Fig B presents complementary results for both computational models considering ε = 0.025 and 0.05.

Fig B. Box plots for the six parameters studied in this work (an exception is the vertical entropy , which
is a complementary result) for the 11 cases considering the Hindmarsh-Rosel and Izhikevich models and
2 different treshold values (ε = 0.025, 0.05): 5 for interictal activity (II), 1 transition (TR) and 5 for the
ictal activity (PIS). Vertical blue dashed lines indicate a visual separation between the chaotic and regular
spiking.
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Biophysical meanings associated to the parameters of each model

Conceptually speaking, both models were designed to represent neuron firing and bursting, which are inherent

brain activities, whose richness in behavior is desired in terms of information transmission at neuronal levels.

Nevertheless, the HR model is at the core of recently proposed models that do mimic seizures, as the Epileptor

[7,8], and the dynamics described by both, IZ and HR models, provide a good representation of nonlinear

effects found in spiking patterns linked to general deterministic/chaotic systems.

The Hindmarsh-Rose, because it is modeled with 3 equations and thus more parameters, presents a more

likely link to biophysical factors, whose change in behavior is briefly explained below:

Current I: as demonstrated in both models, the higher the input current applied to the neuron, the less

chaotic/more regular its behavior becomes. However, it must stressed that, depending on the choice of I and

the other control parameters together, this behavior may be the opposite [3,4].

Parameter r and variable z: based on the study of molluscan neurons [1], a general mechanism for burst

generation is caused by the subthreshold inward current carried by Ca2+ ions, resulting from an interburst

increasing depolarizing process; during the burst, the inflow of Ca2+ leads to a slow outward Ca2+ activated

K+ current. Therefore, z plays the role of this latter outward current, thus switching the model from quiescence

to a firing behavior, i.e. z decreases at the benning of bursting and increases when it is stopped. Based on the

bifurcation diagrams [3], the higher r is, the less chaotic the system becomes. This implies that, when r

gets higher, variable z presents an even slower evolving behavior. Biophysically speaking: since z represents

adaptation, if its behavior is relatively slower, this represents a reduced efficiency of the slow channels in

exchanging ions.

Parameter s: its value couples variable z to the membrane potential x. According to its bifurcation diagrams

[3], increasing or decreasing its values may generate a more chaotic behavior, depending on the choice of the

other parameters. However, for moderate/standard currents I in this model, the general result is that higher s

corresponds to more adaptation, leading to prolonged depolarizing afterpotentials and less frequent spikings,

whereas lower values (lower adaptation) lead to more frequent neuron firings [1].

It must be stressed that, as neuron spiking models, both of them do not account for the physiology of

ensembles of neurons. However, in sum, three main reasons are identified as possible epileptiform triggering
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factors at a micro scale, which are simultaneously plausible due to the bifurcation diagrams [3]: increased

input current into the neuron cells, decreased efficiency of the slow channels for ion exchange, or, assuming

moderate/standard currents, lower adaptation values. Furthermore, all the analyses we were interested on the

evaluation of the spiking dynamics and how nonlinear features emerge by modulating parameters of coupling.

Adherence of the Computational Models to the Electrophysiological Record-
ings

To assess the consistency of the results with respect to the similarity between real signals and artificial signals

(produced by the two computational models), a preliminary analysis using autoregressive (AR) models was

carried out. AR modeling is a relatively simple black-box technique that is traditionally applied to time series

for purposes of system identification [9]. It involves a linear difference equation which aims to predict current

values based on previous observations [9,10]:

yk = φ0 −
K∑
i=1

φiyk−i + εk (3)

where k indicates a discrete-time series, φi, i = 1, ..., K, are coefficients that weigh the past observations yk−i,

i = 1, ..., K of variable yk, φ0 is the mean value of the time series, and εk is the error associated to the k discrete

time. Considering a reference signal (in this case, an electrophysiological recording), the coefficients φi can

be found through an optimization process involving a minimization function and the optimal least squares

algorithm [9].

Such a modeling is often used in civil and mechanical engineering applications for purposes of structural

health monitoring (SHM) [11-13]. Essentially, measurements of a vibrating structure are made in two main

conditions: healthy and damaged (when a damage is present). Then, since the AR coefficients or the residuals

of the model are sensitive to the presence of damage [12], classification can be performed. This is possible due

to the fact that each coefficient represents a regression of the signal onto its delayed version, thus revealing

how well past values determine future ones. In this work, the same concept is considered for the II and PIS

signals. It is thus expected that φi can distinguish both activities because they contain information about the

underlying brain dynamics.
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For simplicity, only the first coefficient, φ1, is adopted (while keeping φ0 = 0 as the baseline), but as

a random variable; that is, we reconstructed several 10-second epochs (same duration applied for the RQA

analysis) of each signal and saved their first coefficients. This procedure was done for all 22 real II and 13

real PIS recordings, as well as the artificial signals, considering the HR and IZ models. The total duration of

the simulated models was determined based on the longest real signal, but the epochs were also equal to 10

seconds. Moreover, different levels of noise, from 0.05% to 10% (in 20 steps of 0.05% each), were added to

the artificial signals for further comparisons. The vector of noise is represented by a zero-mean unity-variance

normal distribution multiplied by such levels.

Fig C presents the AR coefficients, in terms of confidence intervals, related to the probabilities of class

prediction (II or PIS) using logistic regression [14], where the AR coefficients of real signals (II and PIS) were

used as projectors for the classification of artificial signal coefficients, following:

ln
(πj
πr

)
= βj0 + βj1Xj1 + βj2Xj2 + ...+ βjpXjp, j = 1, ..., k − 1 (4)

where π stands for a categorical probability, r corresponds to the reference category, β are the coefficients,

X are the predictions and k is the last category (in this case k = 2). Here, we used the “mnrfit” Matlab®

function for nominal models, considering all coefficients of all HP subfields for II and PIS to construct the

projective basis. Afterward, we projected separately the artificial signal’s coefficients, labeled as II and PIS

activities, to quantify the probability of being classified as II or PIS. The mean and confident intervals were

considered for different trials (> 50) and for each noise level (0,05% to 10%).

The results show that the coefficients effectively recognized and distinguished between the two main pat-

terns, II and PIS, mainly the HR model. By considering low levels of noise, we observed that the IZ model

produces misclassifications, but as it increases the performance gets better. We must consider that these effects

might happen, firstly because the models do not reflect the whole complexity of real signals, and secondly

because by using only the first AR coefficient we may neglect important information required for a better clas-

sification performance using logistic regression. In addition, considering that they reflect sufficiently well the

underlying brain dynamics, the ranges of noise may indicate different levels of background activity in which

the dynamics of each signal is present.
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Fig C. Logistic regression to classify the computational models in II and PIS conditions based on the AR
coefficients obtained from real signals. The first picture (left above: II signals of HR model) indicates in blue
that the artificial coefficients labeled as II activities were correctly classified as II patterns, whereas orange color
indicates that the artificial coefficients from II activities were incorrectly classified as PIS patterns. The second
picture (left below: PIS signals for HR model) indicates in orange that the artificial coefficients labeled as PIS
activities were correctly classified as PIS patterns, whereas blue color indicates that the artificial coefficients
from PIS activities were incorrectly classified as II patterns. The pictures showed right above and right below
represent the same analysis for the IZ model. The curves are plotted considering their probability of correct
classification related to their confidence intervals at 95% confidence, for > 50 samples. Noise varies from 0%
to 10% in 20 steps of 0.05% each.

Fig D provides a counterproof, where multiple comparisons between real signals (II and PIS) and their

reconstructed models were made and their root mean square errors (RMSE) were calculated, presented in

terms of confidence intervals. For this situation, it is expected that comparisons of the type: real PIS signal

vs reconstructed PIS signal based on PIS coefficients provide a lower error than their reconstructions using II

coefficients, for example, and vice-versa. Note that this indeed holds true for PIS signals, but not for II signals.

The miscorrespondence presented mainly in II signals and AR models may be justified since the “a priori”

categorization of PIS and II was made using only the criterion of event rates (interictal-like events (II) present

r < 40/min, and periodic ictal spiking (PIS) presents r > 40/min). However, as we have shown there are

other statistical and physical properties under these two periods (or conditions) underlying these activities.

Therefore, some misclassification most probably has happened using only this linear criterion, and it was
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Fig D. Root Mean Square Error (RMSE) between combinations of real II/PIS activities and their recon-
structions using II/PIS coefficients (confidence intervals). The titles indicate which group of real signals are
compared (II or PIS). The legends indicate which types of coefficients were used to reconstruct them and the
respective computational models. Blue dots indicate reconstructions using II coefficients; red squares indicate
reconstructions using PIS coefficients. The curves are plotted considering their confidence intervals at 95%
confidence. Noise varies from 0% to 10% in 20 steps of 0.05% each.
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accused by the introduction of noise in the computational models. Nonetheless, it is important to emphasize

that these computational models are not able to capture all the statistical features related to the real signals.

Besides, II patterns, as the supposed corresponding models in chaotic conditions, present a much richer

spectrum of spiking behavior. That is, epochs from II/simulated chaotic activities have different irregular

patterns, thus leading to a higher variance of AR coefficients used for regression. In this way, reconstructions

of PIS activities are favored. This effect can be better illustrated in Fig E, where the results from Fig. D are

shown, but now as boxplots plotted in log scale. Note that the same tendency is present for both models: while

PIS signals reconstructed with PIS coefficients have a lower variance and error, their reconstructions with II

coefficients have higher number of outliners and variance; on the other hand, II signals reconstructed with PIS

and II coefficients have fairly similar medians, but the variance for II is slightly higher.
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HR Model

IZ Model

Fig E. Root Mean Square Error (RMSE) between combinations of real II/PIS activities and their recon-
structions using II/PIS coefficients (boxplots). The titles indicate which group of real signals are compared
(II or PIS). The curves are plotted considering boxplots in a log scale: to the left, boxplots of reconstructions
using II coefficients; to the right, the same but for PIS coefficients. Noise varies from 0% to 10% in 20 steps
of 0.05% each.

One limitation of this analysis is the fact that AR modeling is a linear technique and usually requires time

series to be stationary [15]. However, fairly good comparisons could be carried out in this work, suggesting that
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computational models can theoretically and minimally reflect real patterns. Further work is intended to obtain

a more comprehensive analysis of the adherence of AR models to real signals, especially considering more

coefficients or other alternatives, such as the ARMA (autoregressive moving average), ARIMA (autoregressive

integrated moving average) or NARMA (nonlinear autoregressive moving average) models [16-20].
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