

Figure S1. Epithelial cell-specific *Gpr35* deletion reduces goblet cell numbers

(A) Representative Gpr35-tdTomato expression by flow cytometry in epithelial cells (Epcam⁺, CD45⁻) from the proximal colon of Gpr35-tdTomato reporter mice (red unfilled histograms) and $Gpr35^{wt}$ mice (gray histograms) as the background control.

(B) *Ex vivo* fluorescence imaging of duodenum, jejunum, ileum, proximal colon and distal colon from *Gpr35*-tdTomato (red) x *Cx3cr1*-GFP (green) double reporter mice. The last panel shows the colon from a WT mouse as the background control.

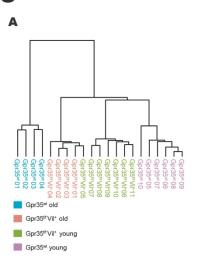
(C) Confocal immunofluorescence images of proximal colon sections obtained from $Gpr35^{ff}Vil^+$ and $Gpr35^{wt}$ littermates and stained for Gpr35 (red) and DAPI (blue). Scale bars, 100 µm.

(D) Transmission electron microscopy analysis of goblet cell morphology in the proximal colon of $Gpr35^{l/f}Vil^+$ and $Gpr35^{wt}$ co-housed littermates. Scale bars, 5 µm.

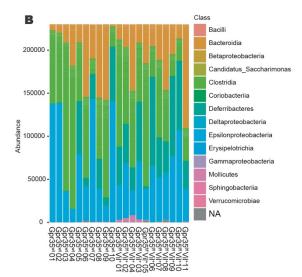
(E) Flow cytometry analysis of goblet cell percentages in the proximal colon of $Gpr35^{ff}Vil^+$ and $Gpr35^{wt}$ co-housed littermates.

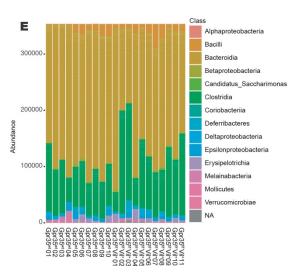
(F) Quantification of data from (E) indicating the percentages of goblet cells (n = 3) in each group.

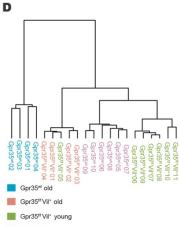
(G) Flow cytometry analysis of UEA1 percentage in the CD24⁻CD44⁺ and CD24⁻CD44⁺ populations.


(H) Representative AB/PAS staining of small intestine and distal colon sections obtained from $Gpr35^{ff}Vil^+$ and $Gpr35^{wt}$ co-housed littermates. Scale bars, 50 µm.

(I) Cell count of goblet cells in (H) performed blindly by two different investigators in at least 30 crypts.


(J) mRNA expression levels of *Muc2* measured by RT-qPCR in small intestine and distal colon samples obtained from $Gpr35^{f/f}Vil^+$ (n = 4) and $Gpr35^{wt}$ co-housed littermates (n = 4).


Data are represented as mean \pm SEM ns, not significant by Mann-Whitney test.

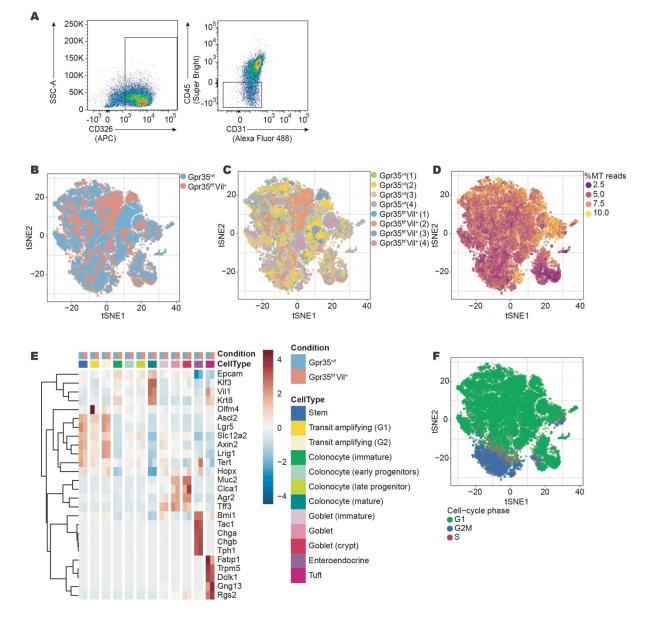


С	Y	oung	Old			
•	Gpr35 ^{wt}	Gpr35 ^{tr} Vil*	Gpr35 [™]	Gpr35 ^{t/†} Vil⁺		
Helicobacter	42.6	37.7	46.1	31.1		
Mucispirillum	20.5	31.8	0	29.1		
Lachnospiraceae_NK4A136_group	2.6	4.4	30.6	5.1		
Lachnospiraceae_UCG-001	7.7	0.8	11.7	7.8		
Alloprevotella	5.4	3.4	1.6	2.1	A/ D	
Fusimonas	1.4	5.9	0	0	% Read Abundance	
Alistipes	3.1	1.3	0	4	/ userre	
Prevotellaceae_UCG-001	1.8	3.2	1.1	1.1		
Lachnoclostridium	1.6	1.1	1	3.9	-	10.0
Ruminiclostridium	2.3	1.3	0.4	2.3		
Oscillibacter	1.9	0.9	2.3	1.2		
Odoribacter	1.2	1.3	0.9	2		1.0
Bacteroides	0.9	1.1	1.1	0.9		
Anaerotruncus	1.4	0.6	0.8	1.1		
Anaeroplasma	0	0.1	0	2.9		0.1
Rikenellaceae_RC9_gut_group	0.6	0.8	0	0.3		
Lachnospiraceae_UCG-006	0.5	0.3	0.3	1		
Prevotellaceae_NK3B31_group	0.8	0.5	0.2	0.2		
Desulfovibrio	0.3	0.3	0.9	0.1		
Blautia	0.5	0.3	0.3	0.2		

Gpr35^{wt} young

Figure S2. Epithelial cell-specific *Gpr35* deletion correlates with an altered mucosa-associated microbiome

(A) Hierarchical clustering of mucosal bacterial samples based on Bray-Curtis dissimilarity and Ward's minimum variance method (ward.D2).


(B) Relative abundance of mucosal bacterial communities at the class level in $Gpr35^{t/f}Vil^+$ and $Gpr35^{wt}$ mice at different age points.

(C) Relative abundance of taxonomic groups at the genus level averaged across mucosaassociated bacteria samples of old and young $Gpr35^{t/f}Vil^+$ and $Gpr35^{wt}$ littermates.

(D) Hierarchical clustering of fecal bacterial samples based on Bray-Curtis dissimilarity and Ward's minimum variance method (ward.D2).

(E) Relative abundance of fecal bacterial communities at the class level in $Gpr35^{l/f}Vil^+$ and $Gpr35^{wt}$ mice at different age points.

Figure S3

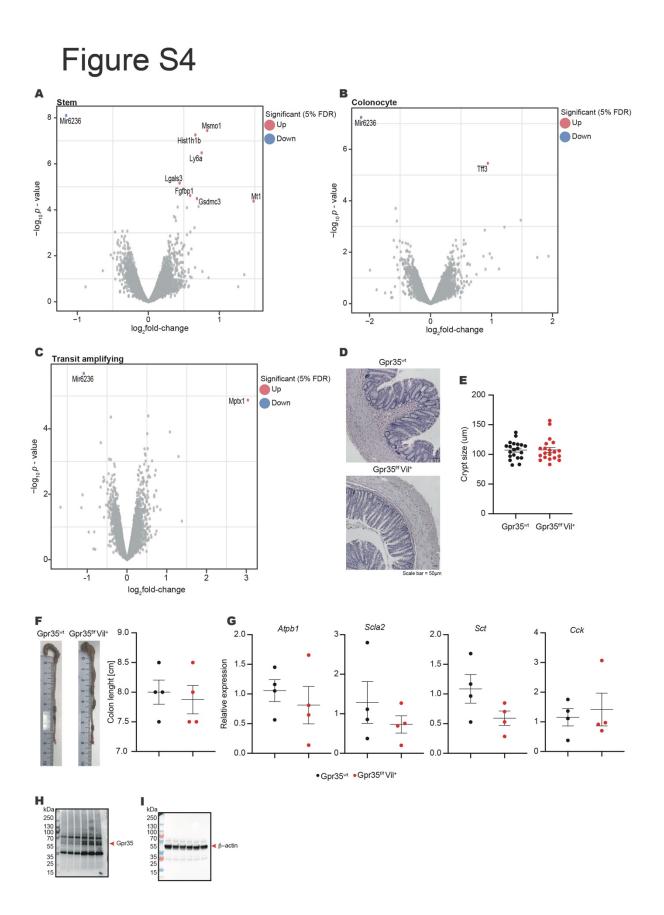


Figure S3. Heterogeneity of colonic epithelial cells in *Gpr35^{f/f}Vil*⁺ mice

(A) Flow cytometry analysis of cells isolated from proximal colons of $Gpr35^{l/l}Vil^+$ and $Gpr35^{wt}$ co-housed littermates before scRNA-seq.

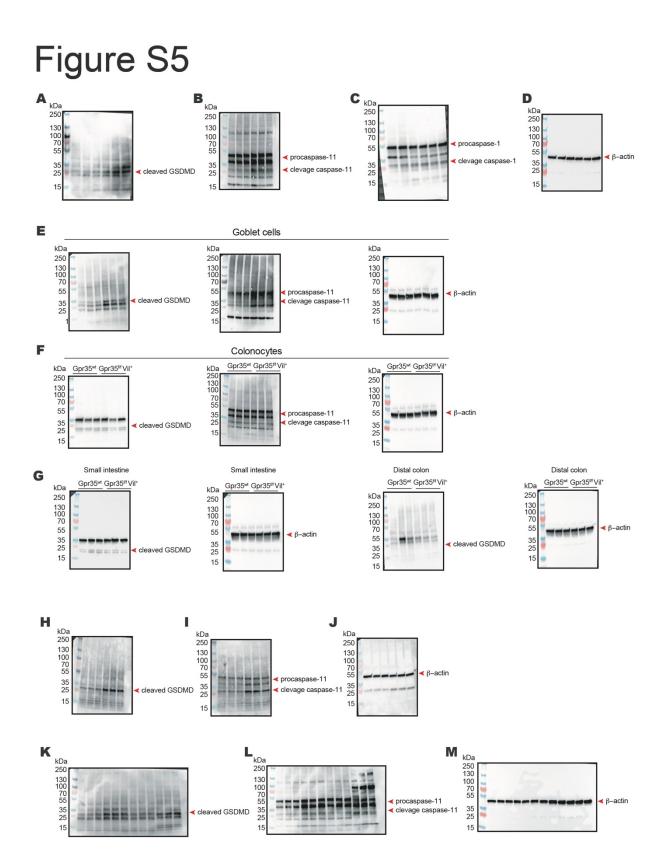
(B-D, F) *t*-SNE plot showing proximal colonic epithelial cells from $Gpr35^{ff}Vil^+(n = 4)$ and $Gpr35^{wt}$ (n = 4) co-housed littermates assayed via scRNA-seq, and highlighting: (B) the distribution of $Gpr35^{ff}Vil^+$ and $Gpr35^{wt}$ cells; (C) the distribution of cells from individual mice replicates; (D) the percentage of reads originating from mitochondrial genes; (F) the inferred cell-cycle phase.

(E) Heatmap showing the centered and scaled average expression across cell types and conditions of known cell type marker genes.

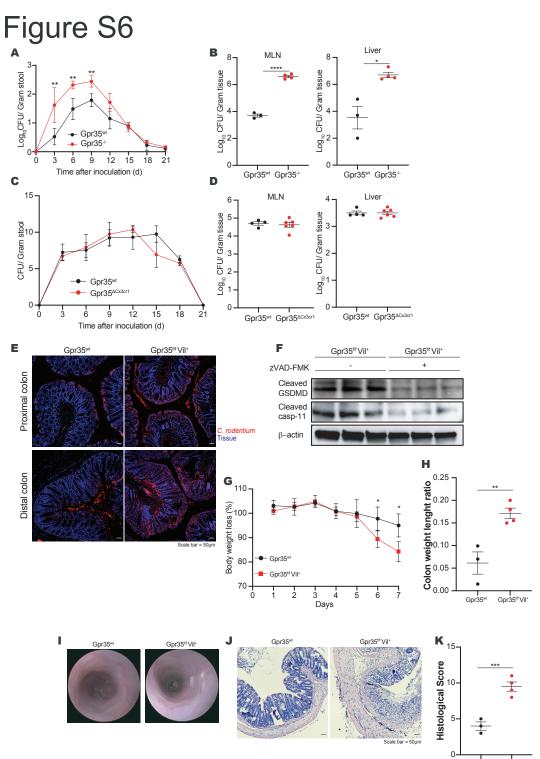
Figure S4. Increased pyroptotic signatures in goblet cells lacking epithelial Gpr35

(A-C) Volcano plot showing genes differentially expressed in $Gpr35^{f/f}Vil^+$ (n = 4) and $Gpr35^{wt}$ (n = 4) (A) stem cells, (B) colonocytes or (C) transit amplifying cells. Figure legend similar to Figure 4A. Gpr35 was omitted from the plots for readability.

(D) Representative H&E images of proximal colon sections obtained from $Gpr35^{t/t}Vil^+$ and $Gpr35^{wt}$ littermates.


(E) Crypt size quantification from (D).

(F) Colon lengths of 10-week-old *Gpr35^{f/f}Vil*⁺ and *Gpr35^{wt}* mice.


(G) mRNA expression levels of *Atpb1*, *Scla2*, *Sct and Cck* measured by qRT-PCR in proximal colon samples obtained from $Gpr35^{tf}Vil^+$ (n = 4) and $Gpr35^{wt}$ littermates (n = 4).

Each dot represents one animal with medians. Data are represented as mean \pm SEM *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001, where $p \leq$ 0.001 by Mann-Whitney in (E), (F) and (G).

(H-I) Whole membrane images of western blots represented in Figure 4F.

Figure S5. Pyroptosis upon *Gpr35* deletion is caspase-11 dependent (A-M) Whole membrane images of western blots represented in Figure 5A-5I.

Figure S6. Epithelial GPR35 protects against Citrobacter rodentium infection

(A and B) *C. rodentium* CFU/g of (A) feces, (B) MLN and liver from $Gpr35^{-/-}$ (n = 4) and $Gpr35^{wt}$ (n = 3) co-housed littermates.

(C and D) *C. rodentium* CFU/g of (C) feces, (D) MLN and liver from $Gpr35^{\Delta Cx3cr1}$ (n = 6) and $Gpr35^{wt}$ (n = 4) co-housed littermates.

(E) Confocal microscopy images of proximal and distal colon sections infected obtained from $Gpr35^{ff}Vil^+$ and $Gpr35^{wt}$ co-housed littermates and infected with the *C. rodentium* mutant ICC 169 expressing the red fluorescent protein mRubby.

(F) Protein expression of cleaved GSDMD and cleaved caspase-11 in crypt samples isolated from the proximal colon obtained from $Gpr35^{f/f}Vil^+$ mice treated with zVAD-FMK (n = 3) or not (n = 3).

(G) Body weight changes of $Gpr35^{ff}Vil^+$ (n = 4) and $Gpr35^{wt}$ (n = 3) co-housed littermates (normalized to initial weight).

(H) The colon weight/length ratio is represented as milligrams per centimeter of colon.

(I) Endoscopic images of *Gpr35thVil*⁺ and *Gpr35^{wt}* mice.

(J) Representative H&E images of proximal colon sections obtained from $Gpr35^{f/f}Vil^+$ and $Gpr35^{wt}$ co-housed littermates.

(K) Histology scores quantified from (I).

Each dot represents one animal with medians. Data are represented as mean \pm SEM *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001, ****p \leq 0.0001 by two-way ANOVA with Tukey's multiple comparisons test in (A), (C) and (F) or Mann-Whitney in (B), (D), (H) and (K).

Table S2: q-PCR primers.

CCC AGA AGG GAC TGT GTA TG
TGC AGA CAC ACT GCT CAC A
ACC TAC ACT TAA TCT CTA TGC
GAA CAC TGC TCA CTA CAA
TAT CTC CAC ACT GTA GTC
CAG AGT TCG GTA TTA GTG
AGG AAA CAA CCA CAC ATA CG
AGC ATA GCA ACA TTA GGT CTG
CTG CTG TTG CTG CTG CTG
CAT TCC GTC TGA GTG TCT TGG
CAT CAA GAA GGT GGT GAA GC
CCT GTT GCT GTA GCC GTA TT

Table S3: 16S primers.

Forward	GTG N CAGCMGCCGCGGTAA
Reverse	GGACTACHVGGGT n tctaa