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Supplementary Tables 
 

Supplementary Table 1. Tests of mean accuracy on non-neighbour trials against chance 
(Wilcoxon signed-rank tests against 0.5) in the individual experiments with partial feedback. 
 

 z n r 95% CI p-value 

Experiment 2 -4.68 31 0.84 [0.75,0.87] <.001 

Experiment 3 -6.00 48 0.87 [0.85, 0.87] <.001 

Experiment 4 -6.08 49 0.87 [0.87,0.87] <.001 

 
 
 
Supplementary Table 2. Fit of symmetric models (Q1, Q1*, Q1*+P, Q1*+Pi) tested against 
their asymmetric counterparts (Wilcoxon signed-rank tests comparing BICs, aggregated 
across Experiments 2-4 with partial feedback). 
 

 z n r 95% CI p-value 

Q1 vs. Q2  -4.06 128 0.36 [0.19, 0.50] <.001 

Q1* vs. Q2* -8.53 128 0.75 [0.67, 0.81] <.001 

Q1*+P vs. Q2*+P -7.79 128 0.69 [0.59, 0.76] <.001 

Q1*+Pi vs. Q2*+Pi -7.08 128 0.63 [0.52, 0.72] <.001 

 
 
 
Supplementary Table 3. Fit of symmetric versus asymmetric models (Wilcoxon signed-rank 
tests comparing BICs) in the individual experiments with partial feedback. 
 

 z n r 95% CI p-value 

Experiment 2 -4.67 31 0.76 [0.57, 0.85] <.001 

Experiment 3 -5.02 48 0.67 [0.49, 0.80] <.001 

Experiment 4 -5.37 49 0.70 [0.54,0.81] <.001 

 
 
 
Supplementary Table 4. Fit of previously proposed models compared to our winning model 
Q2*+P (Wilcoxon signed-rank tests comparing BICs, aggregated across Experiments 2-4). 
 

 z n r 95% CI p-value 

VAT -7.40 128 0.65 [0.55, 0.74] <.001 

RL-ELO -8.70 128 0.76 [0.70, 0.82] <.001 

VAT2+P -2.45 128 0.22 [0.06,0.39] 0.014 

RL-ELO2+P -3.73 128 0.33 [0.16,0.48] <.001 
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Supplementary Methods  
 

RL-ELO 

 
When fitting RL-ELO, we replaced our Q-learning process (Methods: Item-level learning, Eq. 1) 
by a rank learning process as proposed by Kumaran and colleagues1  
 

𝑉𝑡+1(𝑖)  =  𝑉𝑡(𝑖)  +  𝛼[    1 − 𝐶𝑃𝑤𝑖𝑛,𝑡] 

𝑉𝑡+1(𝑗)  =  𝑉𝑡(𝑗)  +  𝛼[−1 + 𝐶𝑃𝑤𝑖𝑛,𝑡] 
 
where 𝑉(𝑖) and 𝑉(𝑗) are the ranks of the winning item 𝑖 and the losing item 𝑗, 𝐶𝑃𝑤𝑖𝑛 is the 
probability of choosing the winning item, and 𝛼 is the learning rate. 𝐶𝑃𝑤𝑖𝑛 was computed with 
a logistic choice function (analogous to Eq. 5) of the difference in ranks between the winning 
and the losing item [𝑉(𝑖) − 𝑉(𝑗)].  

 

Value-transfer 

 
The value transfer model (VAT) proposed by von Fersen and colleagues2 assumes that the 
value of the losing item is updated with a proportion of the value of the winning item. We 
implemented VAT in a similar form as described previously1:  
 

𝑉𝑡+1(𝑖)  =  𝑉𝑡(𝑖)  +  𝛼[    1 − 𝑉𝑡(𝑖)] 
𝑉𝑡+1(𝑗)  =  𝑉𝑡(𝑗)  +  𝛼[−1 − 𝑉𝑡(𝑗)] + 𝑉𝑡(𝑖) ∗ 𝜃 

 
where 𝑉(𝑖) and 𝑉(𝑗) are the values of the winning item 𝑖 and the losing item 𝑗, 𝛼 is the learning 
rate, and 𝜃 controls the value transfer from the winning to the losing item. Interestingly, this 
formulation of VAT incorporates a form of asymmetric learning (through value transfer from 
winner to loser but not vice versa), and it can even predict below-chance performance for 
certain item pairings (through exceedingly large values of 𝜃), similar to our Q2* model family. 
However, the Q2* process provided a better description of our empirical data (see Results).  
 
For comparisons with our winning model (Q2*+P), we additionally fitted extended variants of 
RL-ELO and VAT where we included separate learning rates for winner and losers (𝛼+ and 𝛼−, 
analogous to our model Q2, see Methods, equation 3) as well as pair-level learning (+P, 
equations 6-7 and 9-10). 
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