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Figure S1. Data distributions for Frag20-Aqgsol-100K with fixed data split. Sizes for
train/validation/test are 80K, 10K and 10K, respectively.
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Figure S2. Data distributions for FreeSolv with fixed data split. Sizes for train/validation/test are 502,
63 and 65, respectively.
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Figure S3. Scatter plots between predicted values and experimental values on the test set (65 compounds)

of FreeSolv for A3D-PNAConv-FT. The dashed blue lines correspond to +1 kcal/mol.



Table S1. 2D bond attributes and the corresponding descriptions and encoding methods

Type Single, double, triple, aromatic 4 One-hot
conjugated whether the bond is conjugated 1 -

Inring whether the bond is part of an aromatic system 1 -




Table S2. The related functions in MPNN for selected GNN modules

GIN! Ywen ) hly Rt + mt*t SUM NO (79K, 100K)
GINEConv?  Swen) ReLU(RL, + - SUM YES (80K, 110K)
€yw)
NNConv? Swen) hly * ey concat(hl, mt+ SUM YES (5.31M, 5.33M)
PNAConv* @ (nt + RS, +e,,) concat(hl, mitt PNA YES (1.21M, 1.23M)
5 Weighted NO 81K, 110K
SuperGAT Zwene) Fowhiy hy + summggtion ( )

“Besides the listed GNNs, we also applied D-MPNN for comparison. D-MPNN adopted more complex way to construct the
message and updating functions which are based on Loopy Belief Propagation. Edge information was used. Check the methods
section ‘Directed MPNN” in the original paper® for more details.

bTotal number of trainable parameters for 2D feature based and 3D feature-based models under each GNN. In the parenthesis, the

first number is for 2D and the second is for 3D, respectively. For D-MPNN, it has 71K for 2D and 120K for 3D.



Table S3. 2D atomic attributes and the corresponding descriptions and encoding methods.

Types Element symbols 11 One-hot

Hybridizations sp, sp2, sp3, sp3d, or sp3d2 5 One-hot

Degree 0,1,2,3,4,5 6 One-hot

Explicit valence 0,1,2,3,4,5,6 7 One-hot

Implicit valence 0,1,2,3,4,5 6 One-hot
Aromaticity whether the atom is part of an aromatic system 1 -

In ring of different sizes* Whether the atom is in a ring of size 3 or larger 11 One-hot

* Ring size ranges from 3 to 20. This atom attribute takes up 11 positions in the final atom feature vector because we assign the
first 10 positions for whether one atom is in a ring of size within [3,12], and the last 1 position for whether one atom is in a ring

of size within [13,20].



Table S4. Key hyper parameters for the model building and training. All internal hyper parameters in each

GNN modules are set as default.

# of encoder layers 3
# hidden size 120
# read out layers 3
Weights initialization method Xavier_norm
Optimizer Adam
Batch size 100
Learning rate 0.001
Learning rate scheduler Constant

Loss function L1




Table S5. 95% confidence interval (CI) on test set (10,000 samples) of Frag20-Aqsol-100K by each GNN

under 2D and A3D featurization from bootstrapping (500,000 iterations)

Models Median CI
2D-PNAConv 1.168 (1.133,1.205)
A3Dum-PNAConv 0.681 (0.659,0.704)
A3Dom-PNAConv 0432 (0.416,0.448)
2D-DMPNN 1.181 (1.148,1.216)
A3D-DMPNN 0.757 (0.733,0.785)
A3Dou- DMPNN 0.544 (0.519,0.572)
2D-GINConv 1.209 (1.179,1.239)
A3Dmm-GINConv 0.799 (0.773,0.825)
A3Dom-GINConv 0.557 (0.528,0.577)
2D-GINEConv 1.175 (1.141, 1.207)
A3Dmuv-GINEConv 0.742 (0.718,0.767)
A3Dou-GINEConv 0487 (0.470,0.507)
2D-NNConv 1.175 (1.145,1.206)
A3Dum-NNConv 0.715 (0.693,0.738)
A3Deu-NNConv 0.462 (0.443,0.485)
2D-superGAT 1.198 (1.166, 1.232)
A3Dmm-superGAT 0.786 (0.758,0.817)
A3Dqm-superGAT 0.531 (0.516,0.547)
2D-DNN 2.805 (2.752,2.858)
A3D-DNN 0.933 (0.906, 0.962)

A3Dou-DNN 0.707 (0.684,0.731)




Table S6. Statistical analysis between 2D-DMPNN-TS (Baseline) with other variants. The underscore

bold components indicate where the difference between variant models and baseline locates.

Models

2D-DMPNN-TS
(Baseline)

2D-PNAConv-TS

A3D-DMPNN-TS

2D-DMPNN-FT

A3D-PNAConv-TS

2D-PNAConv-EFT

A3D-DMPNN-FT

A3D-PNAConv-ET

General performance

(RMSE)

0.968+0.132

0.954+0.084

1.054+0.101

0.821+0.113

0.987+0.131

0.780+0.099

0.698+0.039

0.661+0.086

Median

0.967

0.930

1.035

0.789

0.939

0.743

0.677

0.647

90% CI

(0.636, 1.482)

(0.648, 1.255)

(0.780, 1.347)

(0.537,1.144)

(0.605, 1.420)

(0.537,1.090)

(0.476,0.933)

(0.446,0.884)

90% CI of difference
between baseline

(-0.411,0.573)

(-0.485,0.511)

(-0.357,0.789)

(-0.550,0.611)

(-0.241,0.790)

(-0.143,0.831)

(-0.062, 0.837)

Probability of difference >0
between baseline

58.03%

55.60%

71.02%

53.81%

76.84%

85.31%

89.76 %
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