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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The study by Dawn et al., reported the generation of activity-enhanced SaCas9 based on machine 

learning. The study used a machine learning package (MLDE) developed for predicting 

combinational protein fitness landscape to predict which combination of mutations can enhance 

Cas9 activity. The study first tested the MLDE with different sub-sets from a combinational 

mutation dataset (650 variants) of SpCas9 generated by the group in a previous study. The study 

found that with 10-20% of the variants as training dataset, the MLDE can predict functional 

variants with over 5-fold enrichment. The study then selected eight residues (three at the WED 

domain and five at the PI domains) at the KKH-SaCas9 protein. A total of 1296 combinational 

variants were designed. Combines MLDE prediction with 300 randomly picked data and 

experimental data generated by lentiviral library-based screening, the study showed that MLDE 

predicted SaCas9 variates with high activity is well correlated with those measured experimentally. 

The combined screening identified two variants exhibited marginal increased activity (see 

comments below), whereas the significance of increase was not documented yet. The study then 

applied structured-guided strategy to further improve the interaction of the two residues (N888 

and A889) with residue in the PI domain, reasoning that increasing the interaction between WED 

domain the PI domain will increase the interaction between SaCas9 and the PAM. Four combined 

variants were tested, and one variant (N888R/A889Q) exhibited enhanced editing activity. 

Depending on the gRNAs tested, the activity was increased range from 11% to 30%, although 

whether these increases were significant or not remained to be clarified by the authors. And lastly, 

the study introduced the same mutations to an unpublished high-fidelity SaCas9 variant from the 

group. Similar degree of increased activity was observed. The study also applied GUIDE-seq to 

evaluate the off-target effects. Based on the results, the author concluded that the modification 

increases activity whist does not compensate specificity. The conclusion on the effect of 

modification on specificity is questionable (see comments below). In general, it is a nice approach 

to combine ML to predict which combinational mutations will give better protein fitness. However, 

the prediction outcomes (precision, sensitivity, and specificity) are likely inflated by the data 

redundancy in the training and testing dataset. Most likely due to the residues selected, the degree 

of activity enhancement is still marginal. From the GUIDE-seq and mismatch results, the 

modification indicates a trends of increased cleavage at off-target sites as well. Thus, the SaCas9 

variants does not possess an outstanding advantage. 

Major comments 

1. To address whether the MLDE can predict SpCas9 activity, the study used five different input 

sample size as testing: 5%, 10%, 20%, 50% and the 70%. Three random/diverse replicates were 

generated for this sampling size. For measuring the MLDE prediction outcome, the study used 

specificity, sensitivity, and precision to evaluate the prediction outcomes based on an arbitrary 

cutoff of 70%. It is unclear what are the testing dataset, the method section was not clear enough. 

Based on the Figure 1a, it seems that the full possible combinational dataset was used as test sets 

after the top three MLDE models were obtained. If this was the case, there will be an overlap 

between the training set and the testing data set, particularly when three random triplicates were 

used was training dataset. In this case, with the 10% dataset as input, the scale of input data size 

is closed to 30% for the MLDE model establishment. 

In Figure 1, the variations for sample size with 50% and 70% is much smaller than the small 

sample size. One reason for this is that most of the data used for MLDE model training and testing 

are the same. 

The authors should carefully address this issue ensuring that this high prediction outcome was not 

an artifact caused by data overlapping. One solution is to randomly subset 1/3 of the experiment 

data and only used that for testing the model. 

2. When applying the MLDE for modeling the combinational mutations on SaCas9 efficiency, 300 

randomly selected sites were used to establish the model. Similar to point 1, it is unclear whether 

the training dataset and the testing dataset is overlapped. From Figure 2, the study has 

highlighted the top variants with enriched scores among three tested gRNAs. For sg2, the model 



predicts more variants with high enrichment score whilst there is not enrichment when measured 

experimentally. What is the cause that most variants from the MLDE are predicted as depleted? 

What is MLDE specificity, precision and sensitivity for the SaCas9 data? 

3. There is a generally lack of statistics for the whole study. Figure 3b and 3c, marginal increase in 

GFP disruption (3b) and editing efficiency at endogenous sites (3c) by the SaCas9 variants were 

observed. However, it does not seem like that these increases are statistically significant. The 

author has excluded that expression levels of SaCas9 variant are similar in the cells. However, the 

current data is not convincingly enough to draw the conclusion. When defining the editing 

efficiency of the endogenous loci, T7E1 was used for quantifying indels. It should be noted that 

although T7E1 is conventional, the method is limited by its accuracy. This will make it more 

difficult to distinguish an activity difference by 10-30%. More accurate method for indel 

quantification should be used for this purpose. 

4. Although the current study was not focus on the high fidelity SaCas9 and the results from 3c 

and 4a were not comparable, there is trends that KKH-SaCas9-SAV2 exhibits low activity 

compared to KKH-SaCas9. 

5. It is plausible that the study has used GUIDE-seq to quantify the specificity of the SaCas9 

variant. However, the current data does not support the claim that N88R-A889Q does not affect 

KKH-SaCas9 specificity. Figure 4c and S6, more off-target sites were found in the cells treated 

with the variant WT-plus. Figure S7, editing efficiency at the off-target sites are increased 

concordantly. 

Other minor comments. 

6. Abstract. KHH-SaCas9 should be KKH-SaCas9. 

7. Figure S2, not quite sure if labeling to the b panel is correct or not. The stable report cell line 

should be GFP positive. The uninfected should be positive for GFP. 

8. Figure S3, one mistake in the figure legend or the figure annotation. Left – right. Besides, it is 

unclear what that value of count means. 

9. Figure S4, it is not clear whether this marginal increase is significant or not. 

Reviewer #2: 

Remarks to the Author: 

In the manuscript “Machine learning-assisted engineering of activity-enhanced Staphylococcus 

aureus Cas9’s KKH variant for genome editing”, Thean et al. developed a machine learning-based 

Cas9 evolving system to optimize the KHH-SaCas9 and discovered several mutations within the 

WED and PI domains that enhance the editing efficiency of KHH-SaCas9. This method could be 

very useful to direct the engineering of new Cas9 and save a lot of bench work. But some aspects 

can be strengthened to improve the work. 

First, for the first part, the authors tested the MLDE models for SpCas9. Dozens of Cas9 variants 

have been developed to either improve the editing fidelity or the editing scope. For validation, the 

authors can use the published data for MDLE models to predict certain type of Cas9 variants and 

compare the predicted mutations with the published ones. 

Second, it’s very important to perform significant analysis between Cas9 and the mutants in all the 

bar-graph figures, e.g Fig. 3b, 3c, 4c and supplementary figure panels. The authors should draw 

conclusions after significant analysis. 

Third, more explanations are required to make the readers easier to follow the method. For 

example, a schematic representing the procedures and outcomes of each step should be placed in 

Figure 2; why choose those eight acid residues? Are they the only ones interacting with Cas9 PAM? 

How to calculate the total numbers of variants (e.g. a total of 1296 in the text)? Label errors in 



Fig. S2a. 



We sincerely thank both Reviewers for their detailed reading of the manuscript and 
their helpful and insightful suggestions. Based on the outstanding concerns of the Reviewers, 
we have performed additional experiments and analyses to enhance the quality of our 
manuscript. We believe that the substantial additional work incorporated into the revised 
manuscript has addressed all remaining issues, and hope that the Reviewers agree with us that 
the improved manuscript is now acceptable for publication in Nature Communications. 
 
Reviewer #1: 
The study by Dawn et al., reported the generation of activity-enhanced SaCas9 based on 
machine learning. The study used a machine learning package (MLDE) developed for 
predicting combinational protein fitness landscape to predict which combination of mutations 
can enhance Cas9 activity. The study first tested the MLDE with different sub-sets from a 
combinational mutation dataset (650 variants) of SpCas9 generated by the group in a 
previous study. The study found that with 10-20% of the variants as training dataset, the 
MLDE can predict functional variants with over 5-fold enrichment. The study then selected 
eight residues (three at the WED domain and five at the PI domains) at the KKH-SaCas9 
protein. A total of 1296 combinational variants were designed. Combines MLDE prediction 
with 300 randomly picked data and experimental data generated by lentiviral library-based 
screening, the study showed that MLDE predicted SaCas9 variates with high activity is well 
correlated with those measured experimentally. The combined screening identified two 
variants exhibited marginal increased activity (see comments below), whereas the 
significance of increase was not documented yet. The study then applied structured-guided 
strategy to further improve the interaction of the two residues (N888 and A889) with residue 
in the PI domain, reasoning that increasing the interaction between WED domain the PI 
domain will increase the interaction between SaCas9 and the PAM. Four combined variants 
were tested, and one variant (N888R/A889Q) exhibited enhanced editing activity. Depending 
on the gRNAs tested, the activity was increased range from 11% to 30%, although whether 
these increases were significant or not remained to be clarified by the authors. And lastly, the 
study introduced the same mutations to an unpublished high-fidelity SaCas9 variant from the 
group. Similar degree of increased activity was observed. The study also applied GUIDE-seq 
to evaluate the off-target effects. Based on the results, the author concluded that the 
modification increases activity whist does not compensate specificity. The conclusion on the 
effect of modification on specificity is questionable (see comments below). In general, it is a 
nice approach to combine ML to predict which combinational mutations will give better 
protein fitness. However, the prediction outcomes (precision, sensitivity, and specificity) are 
likely inflated by the data redundancy in the training and testing dataset. Most likely due to 
the residues selected, the degree of activity enhancement is still marginal. From the GUIDE-
seq and mismatch results, the modification indicates a trends of increased cleavage at off-
target sites as well. Thus, the SaCas9 variants does not possess an outstanding advantage. 

 
We are grateful for the Reviewer’s insightful suggestions. We also thank the 

Reviewer’s comment that it is a nice approach to combine ML to predict which 
combinational mutations will give better protein fitness. Below please find specific responses 
to the Reviewer’s concerns, and we believe our substantial additional work and analyses have 
improved the quality of our manuscript. 

Here we would also like to supplement information as below to highlight the 
significance of our work. This study represents the first demonstration of integrating machine 
learning into large-scale experimental screening of multi-domain combinatorial mutagenesis 
to engineer the multi-dimensional activities of complex enzymes like the widely used 
CRISPR-Cas proteins. Our approach could change the current practices that rely solely on 



either in silico prediction or a wet-lab-intensive approach towards combining both as a much 
more efficient strategy to engineer complex enzymes. 

There was not a resource-efficient way to characterize a large spectrum of complex 
enzyme variants harboring multi-domain combinatorial mutations. Considering that any of 
the amino-acid sites of Cas9 enzyme in spatial proximity to the sgRNA-DNA complex are 
potential sites for optimization, which reaches over 40 sites spanning over its multiple 
domains, the number of combinatorial variants to screen through for optimization is too many 
(i.e., 240 = 1.1 x 1012) for wet-lab experiment even if each site is restricted to two (wild-type 
or mutated) amino-acid residues. Indeed, except for the datasets that we generated previously 
on characterizing several hundreds of SpCas9 variants en masse, other Cas9-engineering 
studies relied on methods including random and site-directed mutagenesis to select limited 
(often only tens of) clonal isolates for characterization. There is a lack of large-scale 
experimental screening datasets available/suitable for establishing machine learning-assisted 
approach for Cas9 engineering. The true discovery rate of variants with enhanced 
fitness/activity from an in silico screening could never be known without an experimental 
dataset. Experimental testing of only the selected top variants predicted is often used to 
decide how many among them result in actual increase in fitness or function. Even so, their 
activities are often compared to the wild type protein but not to the whole population of 
variants to see if they are truly top hits, not to mention the other top hits within the full 
mutational landscape could have been missed out. To understand how well machine learning 
can perform and decide if it can couple with experimental screening to reduce screening 
burden for identifying top variants, we have created new datasets for SaCas9 in this study. In 
our revised paper, we have now extended our analysis and cross-validated a total of 10 in 
silico and experimental datasets of multi-domain combinatorial mutagenesis libraries for 
Cas9 engineering, and we demonstrate for the first time that a machine learning-coupled 
combinatorial mutagenesis approach reduces the experimental screening burden by as high 
as 95% while accurately enriching top-performing Cas9 variants by ~7.5-fold compared to 
the null model.  

In addition, we have now further demonstrated that our approach is capable of 
accurately predicting Cas9’s activity in all three key aspects: 1) editing activity, 2) fidelity, 
and 3) targeting scope, and facilitate the identification of bona fide high-activity variants. 
The machine learning algorithm MLDE was previously applied to engineer other small-sized 
proteins with up to 4 mutations that lie in closer proximity in the protein sequence. Our study 
took a step forward in applying MLDE approach for a bigger and more complex genome 
editing enzyme (like Cas9) with up to 8 mutations that are scattered over the multiple 
domains of the protein, chosen by structure-guided mutagenesis. Even with the often greater 
difficulty with larger size and more substitutions of amino acid residues, our MLDE 
workflow gives high predictability and help reduce experimental screening burden by >80% 
to engineer Cas9’s multi-dimensional activities for on- and off- target, PAM relaxation in 
parallel. For example, in our MLDE runs on SpCas9, using experimental screen data of only 
130 (out of 952) variants for generating the training dataset allowed the identification of 17 
top 5%-performing variants using MLDE, which represents a up to 3.8-fold increase in 
resource efficiency compared to a full-scale experimental screen (Please refer to 
Supplementary Table 8 and Discussion p.15-16 for details). High accuracy was also achieved 
when the same MLDE pipeline was applied to other cases to predict fitness for different sets 
of 5 to 8 residues at multiple domains being chosen for combinatorial mutagenesis. Our work 
also establishes parameters that can maximize MLDE usefulness in succeeding screens for 
accelerating Cas9 engineering with minimum wasted wet-lab resources. 

In summary, we believe our approach for Cas9 engineering and our new SaCas9 
variant datasets generated represent valuable strategy and resource that can be readily used in 



many laboratories and industries for genome editor engineering and development of 
advanced machine learning methods for complex protein engineering. We believe that our 
work will appeal to the wide research community including but not limited to genome 
engineers, protein engineers, synthetic biologists, and computational biologists. 
 
Major comments 
1. To address whether the MLDE can predict SpCas9 activity, the study used five different 
input sample size as testing: 5%, 10%, 20%, 50% and the 70%. Three random/diverse 
replicates were generated for this sampling size. For measuring the MLDE prediction 
outcome, the study used specificity, sensitivity, and precision to evaluate the prediction 
outcomes based on an arbitrary cutoff of 70%. It is unclear what are the testing dataset, the 
method section was not clear enough. Based on the Figure 1a, it seems that the full possible 
combinational dataset was used as test sets after the top three MLDE models were obtained. 
If this was the case, there will be an overlap between the training set and the testing data set, 
particularly when three random triplicates were used was training dataset. In this case, with 
the 10% dataset as input, the scale of input data size is closed to 30% for the MLDE model 
establishment. In Figure 1, the variations for sample size with 50% and 70% is much smaller 
than the small sample size. One reason for this is that most of the data used for MLDE model 
training and testing are the same. The authors should carefully address this issue ensuring that 
this high prediction outcome was not an artifact caused by data overlapping. One solution is 
to randomly subset 1/3 of the experiment data and only used that for testing the model. 

 
We sincerely thank the Reviewer’s recommendations, and we apologize for 

insufficiency of the information provided. We have now updated our analysis to ensure the 
high MLDE prediction outcome was not affected by overlapping of training and testing data.  

Specifically, for the Sg5 and Sg8 on-target datasets, we have now randomly subset 
and withheld 20% of variants in the library from the experimental dataset a priori, and they 
had never been fed to the MLDE algorithm. We used the dataset of editing activities 
measured from the CombiSEAL library of SpCas9 variants engineered at 8 amino-acid 
positions (R661, Q695, K848, E923, T924, Q926, K1003 and R1060) that interact with the 
sgRNA-DNA complex. First, we isolated 20% of the entire library (190 SpCas9 variants) as 
test data; among these selected variants, 122 of Sg5 and 136 of Sg8 have empirical 
measurements. We then generated input training datasets that do not overlap with the test 
data. The training datasets consist of 5%, 10%, 20%, 50%, and 70% of randomly drawn 
empirical measurements to test the minimal input for effective selection of top variants from 
MLDE prediction, corresponding to datasets of 33, 65, 130, 325, and 445 empirically 
measured Sg5 on-target activity and 37, 73, 146, 365, 510 Sg8 on-target activity 
measurements. We generated three replicates for each size, subjected to either randomized or 
diverse selection schemes for variants. To generate the randomized dataset, we used the 
sample_n() function from dplyr in R to randomly select the pre-defined number of E-scores. 
Taking the above-mentioned 20% (instead of 30%) of the entire library as non-overlapping 
test data allows the 70% randomly selected data not being the same for all three replicates, 
while maximizing the variant numbers for evaluation. With the above training and testing 
datasets, we have confirmed that MLDE using diverse and randomized training data led to 
similar high prediction results (Supplementary Figures 2; 3). 

In our revised manuscript, we have further included new datasets to evaluate the 
MLDE prediction outcome for engineering Cas9’s editing fidelity and editing scope. First, 
for editing fidelity, using the same method as for preparing the Sg5 on-target dataset, we 
prepared the datasets of Sg5 off-target activities (from Choi et al, Nature Methods, 2019) for 
MLDE. We withheld 190 variants as the test set for the off-target activities. Then we 



randomly sampled the remaining variants that consist of 5%, 10%, 20%, 50%, and 70% of 
the library to generate 3 replicates of training datasets for each size, corresponding to 41, 83, 
165, 414, and 579 empirical measurements of Sg5 off-target activity. The off-target activity 
was derived from min-max normalised E-score after setting a lower bound of -2.5. For Sg5 
datasets, the on-target activity was measured in screens where the sgRNA and target site have 
perfectly matched protospacer sequence, while off-target activity was measured where the 
sgRNA is targeting a site that bear an artificially introduced synonymous mutation. Second, 
for editing scope, we used the dataset with a total of 58 SpCas9 variants bearing rational 
substitutions at five positions located in the PI domain that had their activities on non-
canonical NGN PAMs assessed by HT-PAMDA (Walton et al., Science 2020). The on-target 
activity of the variant against 4 sgRNAs representing NGAT, NGCC, NGGG, and NGTA 
PAMs were used in the training data. To avoid having too few variants in the test set given 
the small dataset size, we withheld 29 variants (50% of the library) as test data that had not 
been fed to the MLDE algorithm for training, and performed MLDE with combinations of 
Bepler and Georgiev and modelling parameter p1 and p2 to predict on-target activity 
predictions using 10, 20, 25 and 50% input (empirical data of 29 and 15 variants). 

We have now included the above details on the datasets used in our Methods section 
(p.21-23) and in our revised manuscript (p.7).  

To confirm the high performance of MLDE prediction, we have performed evaluation 
with enrichment and normalized discounted cumulative gain (NDCG), which reflect the 
likelihood of identifying top-performing variants. NDCG, which compares the predicted 
ranking to the actual ranking, aligns with the goal of MLDE to identify high-fitness variants 
as top-ranking variants (Wu et al., PNAS, 2019; Wittmann et al., Cell Systems, 2021). If the 
predicted ranking and the actual ranking are identical, NDCG reaches its maximum value of 
1. Models that misidentify low-fitness variants as top-ranking ones would result in low 
NDCG. Similarly, enrichment evaluates the likelihood of identifying the high-fitness variants 
among the top 5% hits predicted by the model compared to random selection. Enrichment 
provides us with an estimate of identifying high-fitness variants when we select the top 5% 
variants by predicted fitness for downstream experimental validation. When the larger 
fraction of highest-fitness variants is captured in the top 5% prediction, enrichment increases 
from 1. In our ML runs, we found that NDCG and enrichments were robust metrics for 
scoring models and parameter performances (Supplementary Figure 2), especially for Sg8 
on-target activity where only about 10 variants (1.15% of the library) show activities 
comparable to wild type (Choi et al., Nature Methods, 2019). NDCG and enrichment were 
thus used for subsequent scoring, which align with our objectives to isolate the top-
performing Cas9 variants. Looking into NDCG and enrichment, all the embeddings and 
models combinations performed well, while Bepler and Georgiev embeddings with p2 
parameter outperformed other parameters when 5-20% of training data was fed to MLDE 
(Figure 1a). 

Taking NDCG and enrichment together into consideration, we determined that 20% 
of input can be used as the input threshold that gave relatively robust and consistent 
performance in identifying top-performing candidates (Figure 1a, b; Supplementary Figure 
4). 10% of input can also be used to further reduce the experimental screening burden with 
the metric scores slightly compromised (Figure 1a). Using merely 10% of input was 
sufficient to identify clusters of variants with high activity for the Sg5 dataset, and consistent 
identification of variants with at least 70% of wild-type activity across 10%, 20%, 50%, and 
70% of input was observed (Supplementary Figure 3). MLDE runs on the Sg8 dataset again 
successfully identified the top-performing variants (Figure 1b, Supplementary Figure 5), 
albeit that NDCG and enrichment were lower than those observed for the Sg5 dataset (Figure 
1a; see Supplementary Text). The top hits predicted from Sg5 and Sg8 datasets included 



Opti-SpCas9 that was experimentally confirmed in our previous study to exhibit high on-
target activities for both Sg5 and Sg8 (Choi et al., Nature Methods, 2019). Using MLDE, the 
enrichment in identifying top-performing variants reached about 8.6-fold for Sg5 (and about 
5.8-fold for Sg8) with 20% input compared to the null model (Figure 1a; Supplementary 
Table 2). The enrichment reached about 7.5-fold with 5% and 10% input for Sg5 (Figure 1a; 
Supplementary Table 2). We further applied MLDE for off-target prediction. We took the 
same set of variants used for on-target activity prediction constituting 10, 20, 50 and 70% of 
empirical data of Sg5 off-target activities as training data for MLDE. MLDE achieved 
similarly high NDCG scores and about 5.5-fold enrichment with 20% input in off-target 
activity prediction (Supplementary Figure 6; Supplementary Table 3). 

PAM relaxation is another key research area on SpCas9 engineering and thus we 
explored whether MLDE could facilitate screening on variants that cleave effectively on non-
canonical PAMs. Specifically, we tested MLDE on SpCas9 variants’ activities on non-
canonical NGN PAMs from the abovementioned HT-PAMDA experiment. We run MLDE 
using 10, 20, 25 and 50% input (6, 12, 15, 29 variants). Due to the small size of the library, 
we were not able to calculate enrichment since there were only 3 variants warranted to be top 
5% in the dataset. We focused on NDCG and again observed high scores on MLDE’s 
prediction (Figure 1c; Supplementary Table 4). All the modelling parameters performed well 
when supplied with 50% training data while Bepler and Georgiev embeddings with p2 
parameter outperformed other parameters when only 10 and 20% training data were fed to 
MLDE (Figure 1c). Across the four PAMs tested, supplying 20% training data to MLDE 
could achieve comparable performance to MLDE runs using 25 and 50% training data. Thus, 
we used MLDE results from 20% training data for the rest of the analysis. Looking into the 
best runs for each PAM, SpG was detected correctly to be amongst the top 20% variants with 
high activity at NGAT and NGCC PAMs (Figure 1d; Supplementary Figure 7).  

Taking together the accurate prediction and the ability to isolate bona fide high-
activity variants, we found that MLDE is compatible with rational-design guided library in 
various aspects of SpCas9 engineering.   

We have also now included these new analyses in our revised manuscript (p.7-9; 
p.24-25). We hope that our detailed clarifications and revisions have addressed the 
Reviewer’s concerns. 

 
2. When applying the MLDE for modeling the combinational mutations on SaCas9 
efficiency, 300 randomly selected sites were used to establish the model. Similar to point 1, it 
is unclear whether the training dataset and the testing dataset is overlapped. From Figure 2, 
the study has highlighted the top variants with enriched scores among three tested gRNAs. 
For sg2, the model predicts more variants with high enrichment score whilst there is not 
enrichment when measured experimentally. What is the cause that most variants from the 
MLDE are predicted as depleted? What is MLDE specificity, precision and sensitivity for the 
SaCas9 data? 
 

We thank the Reviewer’s comments, and we apologize for the insufficiency of the 
above information.  

We have now added detailed description on our dataset generation for MLDE in the 
Methods section and have ensured that the MLDE prediction outcome was not affected by 
overlapping of training and testing data. The in-house SaCas9 dataset consists of 1,296 
variants that were constructed and tested in this study. Substitutions on 8 amino acid 
positions (887, 888, 889, 985, 986, 988, 989, 991) that are widely scattered over the WED 
and PI domains were rationally chosen based on protein structure analyses (see 
Supplementary Table 3 for details). The SaCas9 variants’ on-target activities against sg1, sg2, 



and sg3 were measured as the E-score derived from the high-throughput fluorescent protein 
disruption assay. We again withheld 20% of the empirical data (260 variants) as the test set, 
and they have been unseen to MLDE algorithm. From the remaining variants, we generated 3 
replicates of randomly selected datasets that consisted of 65, 130, 260, 648 and 907 variants 
that corresponding to 5, 10, 20, 50, and 70% of the full library as training data for MLDE.  

We also thank the Reviewer for raising the point that the model predicts more variants 
with high enrichment score whilst there is not enrichment when measured experimentally in 
some cases, which could be due to the embedding and modelling parameters used. We run 
MLDE using the training data of different sizes and evaluated the MLDE performance using 
the test set variants, and we have compared our in silico prediction results and experimental 
screen data. MLDE using the Georgiev embedding with the ensemble of random forest and 
SVM algorithm (parameter 2) (i.e., Georgiev.p2) showed the best performance (revised 
Figure 3a, Supplementary Table 7). The enrichment in identifying top-performing variants 
reached about 6.7-fold for sg1, 9.2-fold for sg2, 5.1-fold for sg3 with 20% input, and about 
5.1-fold for sg1, 7.2-fold for sg2, 4.1-fold for sg3 with 10% input performance (revised 
Figure 3a, Supplementary Table 7). Although using the other parameters (i.e., Bepler.p1, 
Bepler.p2, and Georgiev.p1) also achieved high enrichment scores (Supplementary Figures 9-
11), our results indicated that these parameters gave more predicted variants with high 
enrichment score that were not enriched in the experimental datasets. Indeed, Georgiev.p2 
parameter gave the best prediction performance across most datasets used in our ten in silico 
and experimental cross-validation work throughout this study. Our findings also indicate the 
importance of this work to help select the best-performing embedding and modelling 
parameters for more consistent predictions in succeeding screens.  

In addition, we noticed that for certain datasets that lack high-fitness variants in the 
training input could result in most variants from MLDE being predicted as depleted. 
Specifically, when training datasets only contained variants with poor activities (< 55% of the 
activity of the top experimentally validated variant), MLDE performance was hindered 
(Supplementary Figures 9-11). Such condition was prominent in datasets of sg3 that 2 out of 
3 training datasets failed to sample any high-fitness variants. Our results are in line with the 
MLDE developer’s recommendation that we ought to focus on surveying diverse sequence 
spaces believed to contain functional variants for MLDE (Wittmann et al., Cell Systems, 
2021). Thus, the good performance of MLDE also requires the presence of variants with 
higher fitness in the input training datasets. Our results thus highlight the importance of 
improving strategies on sampling more variants with higher fitness to yield high-quality 
MLDE predictions. 

Overall, with datasets that contained higher fitness variants for our MLDE runs, we 
found that the three independent sets of activity measurements on KKH-SaCas9 variants 
using sgRNA sg1, sg2 or sg3 yielded consistent predictions with the experimental screen 
data, especially in MLDE predictions using the Georgiev embedding and modelling 
parameter 2 (Figure 3b; Supplementary Figure 8). This result is in line with our SpCas9 
activity prediction showing that MLDE identifies top-performing variants readily. The top-
5%-hits predicted from the three sets included N888Q and N888Q/A889S variants identified 
in our experimental screen data (Figure 3b). The high level of consistency, in particular the 
identification of the common top-performing variants, between the in silico and experimental 
screen data confirms that the MLDE model can be used to predict KKH-SaCas9’s variants 
with high activity. In addition to NDCG and enrichment, we have included specificity, 
precision, and sensitivity metrics in Supplementary Table 7 to present the MLDE 
performance for the SaCas9 data.  



We have now included the above analyses in our revised manuscript (p.11-12; p.23). 
We hope that our detailed clarifications and revisions have addressed the Reviewer’s 
concerns. 
 
3. There is a generally lack of statistics for the whole study. Figure 3b and 3c, marginal 
increase in GFP disruption (3b) and editing efficiency at endogenous sites (3c) by the SaCas9 
variants were observed. However, it does not seem like that these increases are statistically 
significant. The author has excluded that expression levels of SaCas9 variant are similar in 
the cells. However, the current data is not convincingly enough to draw the conclusion. When 
defining the editing efficiency of the endogenous loci, T7E1 was used for quantifying indels. 
It should be noted that although T7E1 is conventional, the method is limited by its accuracy. 
This will make it more difficult to distinguish an activity difference by 10-30%. More 
accurate method for indel quantification should be used for this purpose. 

 
We sincerely thank the Reviewer’s comments and suggestions, and we apologize for 

the missing information. We have added back statistical analyses to confirm the significant 
increases in GFP disruption (revised Figure 4b) and editing efficiency at endogenous sites 
(revised Figure 4c) by KKH-SaCas9-plus are statistically significant. We have now also 
performed deep sequencing assay, a more accurate method for indel quantification, to 
confirm the significant enhancement (17-33%) of KKH-SaCas9-plus’s editing efficiency at 
the endogenous sites (Figure 4d). To strengthen our conclusion that our identified mutations 
could increase KKH-SaCas9’s editing activity, we have extended our validation work by 
grafting the N888R/A889Q mutations onto the KKH-SaCas9-derived cytosine base editor 
(BE4max). Our deep sequencing results found that these mutations also increased the base 
editor’s activity at four endogenous loci (by 11-93% at the most edited base within the target 
sites) (Supplementary Figure 14). This result suggests that the increased editing activity 
brought by the mutations is likely dictated at the DNA binding level. We have now included 
these new data and analyses in our revised manuscript (p.14). 
 
4. Although the current study was not focus on the high fidelity SaCas9 and the results from 
3c and 4a were not comparable, there is trends that KKH-SaCas9-SAV2 exhibits low activity 
compared to KKH-SaCas9. 

 
We thank the Reviewer for raising this point. In the work on characterizing KKH-

SaCas9-SAV2 (Yuen et al., Nucleic Acids Research, 2022), it was noticed that this variant 
exhibited lower editing activity compared to KKH-SaCas9 while acquiring increased ability 
to discriminate single-base mismatches. This is in line with the results from revised Figure 4c 
and Supplementary Figure 15c. These results indicate the need to increase KKH-SaCas9-
SAV2’s editing activity. We thus tested whether the addition of N888R/A889Q could 
improve the activity of KKH-SaCas9-SAV2. We found that N888R/A889Q also enhanced 
the on-target activity of SAV2 (i.e., showed 121% of SAV2’s activity, averaged from 
sgRNAs targeting 8 loci), while 5 out of the 8 loci showed 9-48% enhancement of the editing 
activity (revised Supplementary Figure 15c, d). This combined mutant (KKH-SaCas9-SAV2-
plus) generated comparably few genome-wide off-target edits (revised Supplementary Figure 
15a, b), while we observed increased edits at some of the tested off-target sites with single 
mismatches (revised Supplementary Figure 16). Our results indicate the feasibility to 
combine activity- and specificity- enhancing mutations for further optimizing the KKH-
SaCas9’s performance. This data also affirms that the abilities of KKH-SaCas9 to bind the 
DNA and distinguish base mismatches between sgRNA and the DNA target probably act 



through distinct mechanisms, and thus its activity and specificity could be engineered 
independently. We have now clarified these points in our revised manuscript (p.17). 
 
5. It is plausible that the study has used GUIDE-seq to quantify the specificity of the SaCas9 
variant. However, the current data does not support the claim that N88R-A889Q does not 
affect KKH-SaCas9 specificity. Figure 4c and S6, more off-target sites were found in the 
cells treated with the variant WT-plus. Figure S7, editing efficiency at the off-target sites are 
increased concordantly. 
 

We thank the Reviewer’s comment, and we apologize for the lack of clarification on 
this point. We acknowledge that while N888R/A889Q increases the on-target activity of 
KKH-SaCas9, it may also increase off-target editing. Our GUIDE-seq results indicated that 
KKH-SaCas9-plus showed comparable on-to-off target editing ratio to wild-type, albeit that 
there were alternative off-target sites identified (revised Supplementary Figure 15a, b). KKH-
SaCas9-plus showed more off-target edits at some of the target sequences with single-base 
mismatches (revised Supplementary Figure 16). We have now elaborated our data 
interpretation and updated our claim in our revised manuscript (p.17). 
 
Other minor comments. 
6. Abstract. KHH-SaCas9 should be KKH-SaCas9. 

 
We apologize for the typo and have made the correction in our revised manuscript. 

 
7. Figure S2, not quite sure if labeling to the b panel is correct or not. The stable report cell 
line should be GFP positive. The uninfected should be positive for GFP. 

 
We thank the Reviewer for raising this point. We have now updated our labels to 

clarify on which samples harbor or not the reporter, KKH-SaCas9, and sgRNA in our revised 
Figure 2b. 
 
8. Figure S3, one mistake in the figure legend or the figure annotation. Left – right. Besides, 
it is unclear what that value of count means. 

 
We apologize for the mistake and missing information. We have now corrected the 

figure legend of our revised Supplementary Figure 8 to indicate the top and bottom panels 
refer to the experimental screen data and MLDE prediction, respectively. We have also now 
indicated in the figure legend that the value of count means the occurrences of the amino-acid 
residues per site among the top 5% variants identified in the experimental screens and the 
best MLDE runs using Georgiev embedding and modelling parameter 2.  
 
9. Figure S4, it is not clear whether this marginal increase is significant or not. 

 
We thank the Reviewer for raising this point. We have now carried out statistical 

analyses to confirm the significant increase in GFP disruption brought by the N888Q variant 
(revised Supplementary Figure 12). The validation results were consistent with the screening 
data, from which we revealed that the N888Q variant exhibited increased editing activities 
over KKH-SaCas9 when paired with sg1 and sg3 sgRNAs. 
 
 
 



Reviewer #2: 
In the manuscript “Machine learning-assisted engineering of activity-enhanced 
Staphylococcus aureus Cas9’s KKH variant for genome editing”, Thean et al. developed a 
machine learning-based Cas9 evolving system to optimize the KHH-SaCas9 and discovered 
several mutations within the WED and PI domains that enhance the editing efficiency of 
KHH-SaCas9. This method could be very useful to direct the engineering of new Cas9 and 
save a lot of bench work. But some aspects can be strengthened to improve the work. 

 
We are grateful for the Reviewer’s support of our paper and insightful suggestions. 

We also thank the Reviewer’s comment that our method could be very useful to direct the 
engineering of new Cas9 and save a lot of bench work. Below please find specific responses 
to the reviewer’s remaining concerns, which we believe have improved the quality of the 
work. 
 
1. First, for the first part, the authors tested the MLDE models for SpCas9. Dozens of Cas9 
variants have been developed to either improve the editing fidelity or the editing scope. For 
validation, the authors can use the published data for MDLE models to predict certain type of 
Cas9 variants and compare the predicted mutations with the published ones. 

 
We sincerely thank the Reviewer’s recommendations. We have now analyzed 

additional published datasets and validated the good MLDE prediction outcome for 
engineering Cas9’s editing fidelity and editing scope.  

First, we have now applied MLDE for off-target prediction. We took the same set of 
variants used for on-target activity prediction constituting 10, 20, 50 and 70% of empirical 
data of Sg5 off-target activities from Choi et al., Nature Methods, 2019 as training data for 
MLDE. We evaluated MLDE prediction performance with enrichment and normalized 
discounted cumulative gain (NDCG), which reflect the likelihood of identifying top-
performing variants. NDCG, which compares the predicted ranking to the actual ranking, 
aligns with the goal of MLDE to identify high-fitness variants as top-ranking variants (Wu et 
al., PNAS, 2019; Wittmann et al., Cell Systems, 2021). If the predicted ranking and the actual 
ranking are identical, NDCG reaches its maximum value of 1. Models that misidentify low-
fitness variants as top-ranking ones would result in low NDCG. Similarly, enrichment 
evaluates the likelihood of identifying the high-fitness variants among the top 5% hits 
predicted by the model compared to random selection. Enrichment provides us with an 
estimate of identifying high-fitness variants when we select the top 5% variants by predicted 
fitness for downstream experimental validation. When the larger fraction of highest-fitness 
variants is captured in the top 5% prediction, enrichment increases from 1. In our runs, we 
found that MLDE achieved high NDCG scores for Sg5 off-target prediction (which is similar 
to those achieved for Sg5 on-target prediction) and about 5.5-fold enrichment with 20% input 
in off-target activity prediction (Supplementary Figure 6; Supplementary Table 3). 

Second, PAM relaxation is another key research area on SpCas9 engineering and thus 
we explored whether MLDE could facilitate screening on variants that cleave effectively on 
non-canonical PAMs. Specifically, we have now tested MLDE on SpCas9 variants’ activities 
on non-canonical NGN PAMs from the previously published High-Throughput PAM 
Determination Assay (HT-PAMDA) experiment (Walton et al., Science 2020). We run 
MLDE using 10, 20, 25 and 50% input (6, 12, 15, 29 variants). Due to the small size of the 
library, we were not able to calculate enrichment since there were only 3 variants warranted 
to be top 5% in the dataset. We looked at NDCG and again observed high scores on MLDE’s 
prediction (Figure 1c; Supplementary Table 4). All the modelling parameters performed well 
when supplied with 50% training data while Bepler and Georgiev embeddings with p2 



parameter outperformed other parameters when only 10 and 20% training data were fed to 
MLDE (Figure 1c). Across the four PAMs tested, supplying 20% training data to MLDE 
could achieve comparable performance to MLDE runs using 25 and 50% training data. Thus, 
we used MLDE results from 20% training data for the rest of the analysis. Looking into the 
best runs for each PAM, the previously validated SpG variant was detected correctly to be 
amongst the top 20% variants with high activity at NGAT and NGCC PAMs (Figure 1d; 
Supplementary Figure 7).  

Despite dozens of Cas9 variants that have been developed to either improve the 
editing fidelity or scope, most of those Cas9-engineering studies relied on methods including 
random and site-directed mutagenesis to select limited (often less than or only tens of) clonal 
isolates for characterization. Thus, there are only limited large-scale experimental screening 
datasets available/suitable for MLDE validation.  

In sum, we have successfully applied MLDE for the first time to predict Cas9’s 
activity in three key aspects: editing activity, fidelity, and targeting scope. We have now 
included these new validation analyses in our revised manuscript (p.7-9; p.15) and the 
Methods section (p.21-25). 

 
2. Second, it’s very important to perform significant analysis between Cas9 and the mutants 
in all the bar-graph figures, e.g Fig. 3b, 3c, 4c and supplementary figure panels. The authors 
should draw conclusions after significant analysis. 

 
We thank the Reviewer for raising this point, and we apologize for the missing 

information. We have added back statistical analyses in the bar-graph figures to confirm the 
significant increases in GFP disruption (revised Figure 4b and Supplementary Figure 12) and 
editing efficiency at endogenous sites (revised Figure 4c) by KKH-SaCas9 variants are 
statistically significant. We have further performed deep sequencing assay, a more accurate 
method for indel quantification, and confirmed the significant enhancement (17-33%) of 
KKH-SaCas9-plus’s editing efficiency at the endogenous sites (revised Figure 4d). With the 
statistical analyses, we have now confirmed that N888R/A889Q also significantly enhanced 
the on-target editing activity of SAV2 at the endogenous loci (revised Supplementary Figure 
15c, d). To strengthen our conclusion that our identified mutations could increase KKH-
SaCas9’s editing activity, we have extended our validation work by grafting the 
N888R/A889Q mutations onto the KKH-SaCas9-derived cytosine base editor (BE4max). Our 
deep sequencing results found that these mutations also significantly increased the base 
editor’s activity at four endogenous loci (revised Supplementary Figure 14). This result 
suggests that the increased editing activity brought by the mutations is likely dictated at the 
DNA binding level. We have now indicated the statistical analyses in the revised figures and 
legends, as well as updated the text based on conclusions drawn after significant analysis 
(p.14) in our revised manuscript. 
 
3. Third, more explanations are required to make the readers easier to follow the method. For 
example, a schematic representing the procedures and outcomes of each step should be 
placed in Figure 2; why choose those eight acid residues? Are they the only ones interacting 
with Cas9 PAM? How to calculate the total numbers of variants (e.g. a total of 1296 in the 
text)? Label errors in Fig. S2a. 

 
We thank the Reviewer for raising these points, and we appreciate the Reviewer’s 

recommendations.  
We have now included a schematic representing the procedures and outcomes of each 

step (revised Figure 5). We started with structure-guided design to select sites and residues 



for mutagenesis and built multi-domain combinatorial variant libraries. We then run MLDE 
and tested embedding and model parameters to generate in silico predictions. With our cross-
validation of a total of ten in silico and experimental datasets of multi-domain combinatorial 
mutagenesis libraries for Cas9 engineering, our work informed parameters for accurate 
prediction of Cas9’s activity in three key aspects: 1) editing activity, 2) fidelity, and 3) 
targeting scope, and the identification of true high-performing variants. We show that 
integrating machine learning into large-scale experimental screening of multi-domain 
combinatorial mutagenesis reduces experimental screening burden by as high as 95% while 
enriching top-performing Cas9 variants by ~7.5-fold compared to the null model. This 
approach also increases the resource efficiency by up to 3.8-fold compared to a full-scale 
experimental screen (details presented in Supplementary Table 8 and Discussion p.15).  

We have now also added more details to explain our selection of the eight amino acid 
residues for library variant generation. We sought to augment the editing activity of KKH-
SaCas9 and speculated that introducing additional non-base-specific interactions between 
KKH-SaCas9 and the PAM duplex of the target DNA could increase the enzyme’s 
efficiency. Such strategy was shown effective in compensating the reduced DNA base-
specific interactions of an engineered SpCas9 variant that broaden its PAM compatibility and 
restoring the enzyme’s activity (Nishimasu et al., Science, 2018). For SaCas9, Nishimasu et 
al., Cell 2015 has illustrated in the crystal structure (5CZZ) its amino acid residues that show 
direct contact with the target DNA of the PAM duplex. Specifically, it was highlighted that 
amino acid residues at position 985, 986, 991, and 1015 on its PI domain form water-
mediated hydrogen-bonds with the non-target DNA strand at the PAM duplex, while residues 
at positions 789, 882, 886, 888, 889, and 909 on its WED domain interact with the phosphate 
backbone of the PAM duplex. Mutations at positions 988 and 989 were also reported to alter 
SaCas9’s PAM constraint (Ma et al., Nature Communications, 2019). In this study, we 
focused on modifying eight amino acid positions (887, 888, 889, 985, 986, 988, 989, and 
991) that interact with and surround the PAM duplex for combinatorial mutagenesis (Figure 
2a; Supplementary Table 5). Up to two amino-acid alternatives to the wild-type residue were 
selected for each site based on structural predictions. This could potentially increase non-
base-specific interactions between KKH-SaCas9 and the DNA and relieve the PAM 
constraint. To facilitate the changes, we selectively chose sites in the WED domain to 
reinforce the protein binding to the DNA backbone (Supplementary Table 5). This led to a 
total of 1,296 variant combinations including the wild-type residues (i.e., 12 mutation 
combinations at WED domain x 108 mutation combinations at PI domain). We did not 
modify residue position 1015 because this R1015H was shown to be important for 
maintaining the high activity of KKH-SaCas9 to act on NNNRRT PAM (Kleinstiver et al., 
Nature Biotechnology, 2015). Residue positions 789, 882, 886, and 909 were not included to 
confine the library size for combinatorial mutagenesis, while they are potential sites for 
future engineering. We have included the above information in our revised manuscript (p.9-
10) and revised Figure 2a. 

We apologize for the label errors, and we have now made the corrections to clarify on 
which samples harbor or not the reporter, KKH-SaCas9, and sgRNA in our revised Figure 2b. 

 



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

In this revision, they have performed substantial analyses to support the validity of the ML-based 

prediction of SaCas9 variants with increased activity. Targeted deep sequencing was performed to 

validate the increased activities in some gRNA sites. They have also showed that the activity 

increased variant also increase base editing efficiency. The study provides a nice ML framework for 

the prediction of Cas9 variants with enhanced properties, in this case with on-target activity. 

However, I still have to point out that the level of activity enhancement with KKH-SaCas9-plus, as 

compared to KKH-SaCas9, is still quite low (17-33%) in 2 out 3 gRNAs (Figure 2) and 3 out of 7 

gRNAs (Figure 4) tested. In the discussion (p.17, line 411-413) the authors have commented that 

analyzing a large panel of sgRNA pairs is required to define the design rules of KKH-SaCas9-plus. 

Apart from this, the authors have thoroughly addressed all my concerns in the previous version of 

their manuscript. A few minor comments are highlighted below for consideration of changes, not 

very critical: 

1. abstract: line 33 “one of the variants”, better write out the mutant (N888R/A889Q). 

2. abstract: line 34 “…at multiple endogenous loci…”, please write the exact number, "multiple is 

not precise". It is important to highlight here, how many gRNAs out of the total number of gRNAs 

tested exhibited enhance activity. 

3. Line 53, “variants”, better changed to “orthologs”. 

4. Line 96, “… the WED domain of SaCas9 thus far”, include a short introduction to the WED 

domain function, i.e., “which is responsible for the gRNA scaffold recognition”. 

5. Line 121, “; we”, should be “. We” 

6. Line 214, is 887 missing in the sentence? “…, while residues at position 789, 882, 886, 888, and 

909…” 

7. Discussion, line 445, I will be careful to pursuing the concept of “PAMless”. This will mean that 

delivering the PAMless Cas9 with e.g., plasmids and DNA viral vectors will encounter the problem 

of self-targeting. 

8. Data availability, there is no accession number for the GUIDE-seq, or targeted deep sequencing 

data. 

9. Figure 2 A, color for the Bin A. It might be better to use blue color instead of red. I first thought 

that it was referring to RFP. Figure 2d, scale is needed for the enrichment score of sg2. 

Reviewer #2: 

Remarks to the Author: 

The authors have addressed all my concerns. The revised manuscript has been greatly improved 

and is clear to me. Therefore, I recommend the publication of this work in Nature 

Communications. 



We sincerely thank all Reviewers for their detailed reading of the manuscript and 

their positive feedbacks, and the editors for offering in principle our manuscript to be 

published in Nature Communications. Based on the editorial guidelines for the final 

submission of our manuscript, we have completed the required documents and revisions. 

Below please also find our responses to the Reviewers’ comments. We look forward to 

receiving the formal acceptance of our manuscript and its publication in Nature 

Communications. 

 

Reviewer #1: 

In this revision, they have performed substantial analyses to support the validity of the ML-

based prediction of SaCas9 variants with increased activity. Targeted deep sequencing was 

performed to validate the increased activities in some gRNA sites. They have also showed 

that the activity increased variant also increase base editing efficiency. The study provides a 

nice ML framework for the prediction of Cas9 variants with enhanced properties, in this case 

with on-target activity. However, I still have to point out that the level of activity 

enhancement with KKH-SaCas9-plus, as compared to KKH-SaCas9, is still quite low (17-

33%) in 2 out 3 gRNAs (Figure 2) and 3 out of 7 gRNAs (Figure 4) tested. In the discussion 

(p.17, line 411-413) the authors have commented that analyzing a large panel of sgRNA pairs 

is required to define the design rules of KKH-SaCas9-plus. Apart from this, the authors have 

thoroughly addressed all my concerns in the previous version of their manuscript. A few 

minor comments are highlighted below for consideration of changes, not very critical: 

We are grateful that the Reviewer found all the concerns in the previous version of the 

manuscript were thoroughly addressed, and our work provides a nice ML framework for the 

prediction of Cas9 variants with enhanced properties, in this case with on-target activity. We 

acknowledge that the level of activity enhancement with KKH-SaCas9-plus shown is low 

(17-33%) in 2 out of 3 gRNAs (Figure 2) and 3 out of 7 sgRNAs (Figure 4) tested. As also 

pointed out by the Reviewer, we have added comments in the discussion that analyzing a 

large panel of sgRNA pairs is required to define the design rules of KKH-SaCas9-plus in 

future. Below we have addressed the remaining minor comments raised by the Reviewer. 

Here we would like to thank again the Reviewer for his/her insightful comments throughout 

the peer-review process.  

 

1. abstract: line 33 “one of the variants”, better write out the mutant (N888R/A889Q). 

We appreciate the Reviewer’s suggestion. “N888R/A889Q” mutant is now written out 

in the abstract. 

 

2. abstract: line 34 “…at multiple endogenous loci…”, please write the exact number, 

"multiple is not precise". It is important to highlight here, how many gRNAs out of the total 

number of gRNAs tested exhibited enhance activity. 

We appreciate the Reviewer’s suggestion and agree that it would be precise to write 

the exact number. However, due to word limitation, we have to shorten our abstract and the 

technical details on the editing performance of the variant are now removed from the abstract. 

The exact number has been described in p.14 of our manuscript. 

 

3. Line 53, “variants”, better changed to “orthologs”. 

We thank the Reviewer’s suggestion. “variants” is now changed to “orthologs”. 

 

4. Line 96, “… the WED domain of SaCas9 thus far”, include a short introduction to the 

WED domain function, i.e., “which is responsible for the gRNA scaffold recognition”. 



We thank the Reviewer’s suggestion. We have now added a short introduction (i.e., 

“which is responsible for the gRNA scaffold recognition” to describe the WED domain 

function in the sentence. 

 

5. Line 121, “; we”, should be “. We” 

We thank the Reviewer’s suggestion. We have now updated “; we” as “. We”. 

 

6. Line 214, is 887 missing in the sentence? “…, while residues at position 789, 882, 886, 

888, and 909…” 

We apologize for missing 887 in the sentence. We have now added it back in the 

sentence. 

 

7. Discussion, line 445, I will be careful to pursuing the concept of “PAMless”. This will 

mean that delivering the PAMless Cas9 with e.g., plasmids and DNA viral vectors will 

encounter the problem of self-targeting. 

We thank the Reviewer for raising this point. We have now replaced “PAMless 

SaCas9” with “SaCas9 with much relaxed PAM constraint” in the sentence. 

 

8. Data availability, there is no accession number for the GUIDE-seq, or targeted deep 

sequencing data. 

We thank the Reviewer for raising this point. We have now added the accession 

numbers for the GUIDE-seq and deep sequencing data. 

 

9. Figure 2 A, color for the Bin A. It might be better to use blue color instead of red. I first 

thought that it was referring to RFP. Figure 2d, scale is needed for the enrichment score of 

sg2. 

We thank the Reviewer for raising this point and we apologize for the confusion. We 

have updated Figure 2A to use blue color instead of red for the Bin A. We have also added 

the scale for the enrichment score of sg2 in Figure 2d. 

 

 

Reviewer #2: 

The authors have addressed all my concerns. The revised manuscript has been greatly 

improved and is clear to me. Therefore, I recommend the publication of this work in Nature 

Communications. 

We are grateful that the Reviewer found all the concerns were addressed and the 

revised paper is greatly improved and clear, as well as recommends the publication of this 

work in Nature Communications. We would like to thank again the Reviewer for his/her 

insightful comments throughout the peer-review process. 
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