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Materials and Methods Supplement

Bin splitting, and additional genome quality assessment

Two MAGs that classified as members of the Acidobacteria and Deinococcus-Thermus phyla
had high contamination estimates of 74% and 68%, respectively. After analyzing each MAG in
greater detail using both refineM [1] alongside manual TNF frequency and coverage plots
(Supplementary Figure 2a), we found that each could be split to create two additional MAGs.
The Acidobacteria MAG could be separated using read coverage and TNF into a low coverage
and high coverage MAG, after which the contamination was reduced to 5.8% and 3%. The
contaminated Deinococcus-Thermus MAG appeared to represent two distinct species, as the
refineM BLAST taxonomy assignments were largely split between Thermus antranikianii and
Thermus islandicus, corresponding to two different clouds on the TNF plot (Supplementary
Figure 2b). Separation of these sequences reduced the contamination estimates to less than 5%
for the two new MAGs. Furthermore, the TNF-based diversity of the Thermus antranikianii
MAG largely coincided with the diversity of the dominant Deinococcus-Thermus SAG
population (Supplementary Figure 2c), thus the Thermus antranikianii MAG was used for the

downstream Deinococcus-Thermus SAG to MAG comparisons.

SSU rRNA collection and primer mismatch analysis

16S rRNA genes were extracted from the assemblies using cmsearch of the Infernal package [2]

and the RF00177 covariance module of the 16S rRNA gene [3]. Only 16S rRNA genes greater
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than 1 kb in length were used in subsequent analyses (n = 151 16S rRNA gene sequences). As
expected, lower quality genomes were less likely to contain a 16S gene (completeness estimate
average was 54% for genomes with a 16S gene, and 33% for those without). Once 16S rRNA
genes had been collected and filtered to 1 kb and above, primer binding was assessed with
PrimerProspector [4] using default parameters. Any sequence with an overall weighted score
greater than 1.0 suggested that the 16S rRNA gene would be missed by the tested primer set

(see Eloe-Fadrosh et al. 2016 for additional details [5]).

Construction of concatenated marker gene phylogenies and 16S rRNA gene phylogeny

Concatenated marker gene phylogenies were constructed by combining a dereplicated
reference set of genomes together with query genomes (e.g. Dewar Creek SAGs and MAGs).
Marker proteins were extracted from each genome using hmmsearch (version 3.1b2) and
alignments were constructed with MAFFT [6] using the mafft-linsi option. Alignments were
trimmed with trimAl 1.4 [7], removing sites when more than 90% of taxa contained a gap. For
the 16 ribosomal protein tree and 56 marker gene tree, genomes were removed if they
contained less than 50% of the markers in the set. The presence of all 3 subunits for the RNA
polymerase gene were required for a genome to be included in the 3 subunit RNA polymerase
phylogeny. Individual protein alighnments were then concatenated to produce an alignment of
51,239 sites. Maximum likelihood phylogenies were constructed with IQ-TREE [8], using the
WAG substitution model and 1,000 bootstraps. The set of reference genomes was collected by

dereplicating the full set of IMG (Integrated Microbial Genomes) isolate genomes (64,005
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genomes) [9] based on cd-hit [10] clustering of the RNA polymerase gene (rpoB) at 65%. This
produced a dereplicated set of unique family-level genomes, spanning all bacteria and archaea

(n=681).

Lineage-specific trees (Figure 5a and Supplemental Figure 4) were constructed in a similar
manner, however, only the UNI56 marker set was used. Outgroups were selected as the
nearest neighbor taxa from the full UNI56 archaea/bacteria tree. For these trees, the full set of
genomes were collected for each phylum from IMG/M (Integrated Microbial Genomes /
Metagenomes) [11], then dereplicated using the rpoB gene at different clustering levels,
ranging from 90 to 100%. The clustering level was varied by clade in order to produce roughly
50 references per phylum. The reference set for the Crenarchaeota was dereplicated at 80%
rpoB similarity, as this was a broader phylogenetic clade than the other sets of lineage specific
trees. The query genomes (Dewar creek SAGs and MAGs) were dereplicated at 100% RNA
Polymerase beta-subunit gene identity. The lineage-specific trees were constructed in the same

manner as outlined above.

The reference set for the 16S rRNA gene phylogeny was based on sequences extracted from the
681 reference genomes used in the multi-marker gene trees. Dewar Creek SAG and MAG query
sequences only included 16S rRNA gene sequences that were greater than 1kb in length (n =

151). The combined set of query and reference 16S rRNA genes was aligned using cmalign using

the -matchonly option, resulting in an alignment length of 1534 bp, and the tree was
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constructed with IQ-TREE [8] under the general time-reversible evolutionary model with 1,000

bootstraps. All trees (16S rRNA gene and protein markers) were visualized with ggtree [12] in R.

Relative abundance comparison between amplicon, SAG and MAG datasets

Since community composition was compared across SAGs, MAGs and amplicon datasets, the
generation of abundance profiles from the three distinct approaches should be briefly
described. Relative abundances of amplicon groups were the result of 97% OTU clustering,
taxonomic assignment, and grouping at the phylum level. The SAG abundances were
straightforward, as taxon assignments were based on the UNI56 maker gene tree, then counts
were based on phylum level assignments. Taxonomy assignments of MAGs were also based on
the UNI56 marker gene tree and abundances were based on read mapping where reads from
the bulk metagenome were mapped to the collective set of MAGs using bbsplit from the

bbtools package [13], where a read could only be mapped once.

Note on phylum level classifications

Candidatus Kryptonia is described as a phylum within NCBI and the corresponding publication
[5] while the GTDB-Tk [14] places Kryptonia within the Bacteroidetes phylum, and Candidatus
Parcubacteria [15] within the Patescibacteria phylum. For the current work, we are using the
names from the original publications as both classifications are based on the commonly cited

16S rRNA phylum designations [16] and a concatenated ribosomal tree in the case of the
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Patescibacteria [15], though we acknowledge the new names in GTDB-tk and note that specific
phylum names are not of critical importance to this manuscript as much of the study focusses
on comparisons between SAGs and paired MAGs, and further dissection within and between

dominant populations.

Pairwise average nucleotide identity (ANI) and definition of species level clusters used in

downstream analyses

Pairwise genomic ANI analysis was performed with fastANI [17]. Genome pairs were filtered to
include only those pairs with an alignment fraction > 70%, which were then grouped into
clusters sharing > 95% ANI using mcl [18]. Pairwise ANIs > 95% were used to define species level
clusters [19]. These ANI clusters were used for downstream intra-species analyses including

gene family/orthologue clustering and population analyses.

Gene annotations, gene content comparisons and gene family diversity assessment

Genes were called and annotated using the Integrated Microbial Genomes (IMG) [11]. The
naming of contigs and genes followed JGI’s in house nomenclature and can be cross-referenced
with the IMG webserver (img.jgi.doe.gov). For gene content comparisons, annotations of
individual genes were used in combination with gene family clustering using OrthoFinder 2.1.3
[20], and the ANI/species level genome collections as input. In addition to clustering genomes

into 95% ANI groups, completion cutoffs of 40% were used for ortholog clustering.
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Identification of SNPs

In preparation for SNP calling, the highest quality SAG (SAG with the highest completeness
estimate and contamination less than 5%) from each 95% ANI group was identified and used as
the reference genome. Reads of all SAGs were mapped to the references and SNPs were called
using the MIDAS pipeline [21]. Briefly SNP calling was done by mapping all reads belonging to
genomes within an ANI group using bowtie2 (--very-sensitive, global alignment mode) and
reads with less than 95% similarity to the reference, average read quality of less than 30,
mapping quality less than 20, and base quality scores of less than 30 were discarded. For a SNP

to be counted, it had to have a minor allele frequency (MAF) of at least 10%.

Whole genome phylogenies of the dominant populations

Population level phylogenies based on the variant sites between SAGs were created by taking a
collection of within species genomes, identifying variant sites using NUCmer from the MUMmer
package [22], then producing a neighbor joining tree. Identification of strain level clusters was
performed via RhierBAPS [23] using the same NUCmer whole genome multiple sequence
alignment as input, by partitioning each genome sequence into the appropriate cluster based

on the allele frequencies within each cluster.

Estimates of recombination



133

134

135

136

137

138

139

140

141

142

143

We generated SNP linkage disequilibrium (LD) profiles for the Hydrogenobacter sp., Kryptonium
sp., and Thermus antranikianii lineages, where the MIDAS constructed SNP depth and
frequency tables were used as input and converted to a SNP pair correlation matrix (R?). LD
plots were created by reading in the SNP pair correlation matrix, creating a table of R? values by
distance, then plotting in ggplot2 [24]. The number of SNPs per kb was also calculated on a per
gene basis and mapped to their corresponding annotations (COG database used in figures).
SNPs per kb were calculated using the MIDAS script SNP_diversity.py

(https://github.com/snayfach/MIDAS) [21].
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Supplemental Figure 1. The community composition of the single Dewar Creek sediment
sample using the three approaches. This figure is similar to Figure 1b, but with more

resolved taxonomic assignments.

A TNF of DC4 metagenome bins B
0028
£ o000

~-0.025|

Deinococcus-Thermus MAG 8

Tetranucleotide PC1 vs Coverage

pC1
TNF of DC4 metagenome bins C

PC1

) o0 ) L o =0T

500 L1} LL
PC1 PC1

Supplemental Figure 2. Example of bulk metagenome bin cleaning. a Tetranucleotide
frequency plot of all bins extracted from the bulk metagenome. All but one of the bins were
either high or medium quality MAGs based on the MIMAG/MISAG standards [25]. b
Demonstration of bin cleaning using the original highly contaminated Deinococcus-Thermus
MAG 8§, colored by contig taxonomy assignments. The majority of contigs classified to either
Thermus antranikianii or Thermus islandicus. b, left shows two clear TNF compositional clouds
and b, right shows that these bins could not be separated based on coverage and PC1 alone. ¢
demonstrates that most Deinococcus-Thermus SAGs are most similar to the Thermus
antranikianii MAG. Left MAG contigs combined with SAG contigs. Right shows the same plot,
but where SAGs are colored by the HBAPS population clusters assigned to the Thermus

antranikianii SAGs.
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Supplementary Figure 3. Phylogenetic trees of the Dewar Creek bacteria and archaea using
different phylogenetic markers and marker sets including a the 56 universal markers used in
main manuscript figure (Figure 2a), b the three subunits of the RNA Polymerase gene, ¢ a set of
16 conserved ribosomal proteins, and d the 16S rRNA genes derived from the same set of
genomes used in the multi-protein phylogenies. Abundance counts within concatenated protein
phylogenies (a — ¢) represent relative proportions within SAG and MAG datasets where MAG
relative abundances are the result of bulk metagenome reads mapped to each MAG. Abundance
counts within the 16S rRNA gene phylogeny are the result of 16S clustering at 87.5 % similarity
(family level based on Yarza 16S rRNA standards [16]). Note: if any Dewar Creek lineages are
missing from one phylum within one marker set, but present when using a different marker set,
this means the genome either did not contain the markers or did not have enough markers to
remain in the tree after quality filtering (cutoffs for the universal 56 marker genes and 16
ribosomal proteins were set to contain at least 50% of the marker set).
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Supplementary Figure 6. a Observed synteny between 5 putative ICE plasmid sequences
identified from two Hydrogenobacter sp. genomes. The “anchor” gene codes for a
TraG/TraD ATPase, involved in T4SS transport. Sequences, 3300014482_Ga0170314_101
and 3300013893__Ga0170528_1001 both contain integrases, phage repressor proteins,
and the first has a tRNA-Ala adjacent the integrase, a potential host integration site. b
Synteny between 4 putative phage / prophage sequences. Note the tRNA, putative
integration site adjacent to one of two Terminal inverted repeat sequences, designated by
the blue vertical bars. The “ANCHOR” gene was the gene used to center both plots.
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Supplementary Figure 6. pN/pS boxplots grouped by COG category. COG categories of interest
are colored, and genes with pN/pS > 1 are noted by the red stars, as these are genes that may
be under selection.

Reference Genome size

Population Completeness (%) (Mb) SNPs | % Polymorphic | NonSyn/kb | Syn/kb | Nuc div
Hydrogenobacter sp. 99 1.7 22810 1.36 4.4 42 2.0

Kryptonium sp. 96 2.6 23866 0.92 1.7 26 1.5
Thermus_antranikianii 71 1.4 8571 0.61 7.2 50 1.8

Supplementary Table 1. SNP statistics for each of the three analyzed populations.
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