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SUMMARY
Endometriosis is associated with increased risk of epithelial ovarian cancers (EOCs). Using data from large
endometriosis and EOC genome-wide association meta-analyses, we estimate the genetic correlation and
evaluate the causal relationship between genetic liability to endometriosis and EOC histotypes, and identify
shared susceptibility loci. We estimate a significant genetic correlation (rg) between endometriosis and clear
cell (rg = 0.71), endometrioid (rg = 0.48), and high-grade serous (rg = 0.19) ovarian cancer, associations sup-
ported by Mendelian randomization analyses. Bivariate meta-analysis identified 28 loci associated with both
endometriosis and EOC, including 19 with evidence for a shared underlying association signal. Differences in
the shared risk suggest different underlying pathways may contribute to the relationship between endome-
triosis and the different histotypes. Functional annotation using transcriptomic and epigenomic profiles of
relevant tissues/cells highlights several target genes. This comprehensive analysis reveals profound genetic
overlap between endometriosis and EOC histotypes with valuable genomic targets for understanding the
biological mechanisms linking the diseases.
INTRODUCTION

Endometriosis is a chronic gynecological disease affecting up to

12%of reproductive-agewomen.1–3 Thedisease is characterized

by the presence of endometriotic lesions outside the uterus and is
Cell R
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associated with pelvic pain and subfertility.2 Lesions are

frequently categorized according to lesion location and depth of

infiltration into the surrounding tissue and include superficial peri-

toneal lesions, deep infiltrating disease, and cysts (endometrio-

mas), most commonly found on the ovary.4 While endometriosis
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Table 1. Genetic correlation (rg) between endometriosis and EOC histotypes estimated using linkage disequilibrium score regression

and HDL

EOC histotype

LDSC HDL

rg (SE) p rg (SE) p value

Clear cell 0.71 (0.26) 0.007 0.58 (0.10) 1.01 3 10�8

Endometrioid 0.48 (0.20) 0.016 0.42 (0.10) 4.20 3 10�5

High-grade serous 0.19 (0.09) 0.033 0.13 (0.06) 0.018

Low-grade serous NA NA 0.10 (0.07) 0.158

Low malignant potential serous 0.88 (0.85) 0.401 0.23 (0.09) 7.21 3 10�3

Mucinous �0.18 (0.15) 0.227 0.08 (0.07) 0.31

LDSC, linkage disequilibrium score; SE, standard error.
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is a benign condition, it shares features with cancer, including

metastatic-like behavior, tissue invasion, proliferation, angiogen-

esis, anddecreasedapoptosis. Large epidemiologic studies have

reproducibly shown that women with endometriosis have

increased risk of epithelial ovarian cancer (EOC; standardized

incidence ratio = 1.8–8.95), although the absolute risks are quite

small, and there is currently no way to predict which endometri-

osis patients are most likely to develop EOC later in life.5–7 So-

matic mutations shared between benign endometriotic lesions

andadjacent tumors suggest these lesionsare cellular precursors

to endometriosis-associated EOCs. Examples include loss of

function mutations in ARID1A and gain of function mutations in

PIK3C.8–10

Ovarian cancer is thedeadliest gynecologic cancer. Fewer than

50% of women survive beyond 5 years after diagnosis due to the

rapid development of chemoresistance and the absence of effec-

tive early detection strategies.Research is needed toadvanceun-

derstanding of disease etiology, identify risk factors, and develop

early detection methods and effective targeted therapies. The

major histological subtypes of EOC include high-grade serous

(HGSOC), low-grade serous (LGSOC), mucinous (MOC), endo-

metrioid (ENOC), and clear cell (CCOC) EOC. Borderline tumors

of low malignant potential also exist, most typically with serous

(LMPSOC) or mucinous differentiation. CCOC and ENOC are

the two histotypes most strongly and reproducibly associated

with endometriosis.11–13 Concurrent endometriosis is observed

in 21%–51% of patients with CCOC and 23%–43% women

with ENOC.14–16 These histotype-associations are supported by

observational study data from 7,911 women with invasive EOC

in theOvarian Cancer Association Consortium that showed a sig-

nificant association between history of endometriosis and spe-

cific histological subtypes of EOC, including CCOC (odds ratio

[OR] = 3.05), ENOC (OR = 2.04) and, to a lesser extent, LGSOC

(OR = 2.11).13

Recent genome-wide association studies (GWASs) have pro-

vided strong evidence for a genetic contribution to risk of both

endometriosis and EOC. A total of 19 independent genomic re-

gions have been associated with endometriosis risk and 34

have been associated with different histotypes of EOC.17,18

Germline variants may also contribute to increased risk of devel-

oping both diseases. Lu et al.19 used genetic data from 84,000

single-nucleotide polymorphisms (SNPs) genotyped in EOC

(10,065 cases) and endometriosis (3,194 cases) cohorts to esti-

mate the genetic correlation between the diseases and found a
2 Cell Reports Medicine 3, 100542, March 15, 2022
strong significant genetic correlation between endometriosis

and CCOC (0.51), ENOC (0.48), and LGSOC (0.40) and smaller

correlation with high-grade serous ovarian cancer (HGSOC)

(0.25). That study, however, was limited by the relatively small

number of SNPs and sample numbers and did not provide evi-

dence for a causal relationship between genetic liability to endo-

metriosis and EOC risk or shared risk loci. The aim of the present

study was to use data from more recent and larger endometri-

osis (14,949 cases/190,715 controls) and EOC (25,509 cases/

40,941 controls) GWAS meta-analyses and a battery of state-

of-the-art genetic methods to evaluate the relationship between

endometriosis and EOC histotypes. We used Mendelian

randomization (MR) to demonstrate that genetic liability to endo-

metriosis was causally associated with histotype-specific EOC

risk and established directionality from endometriosis to EOC

risk rather than vice versa. We then evaluated the genetic rela-

tionship between endometriosis and EOC histotypes to identify

shared risk loci, candidate functional target genes, and

pathways.

RESULTS

Genetic correlation between endometriosis and ovarian
cancer histotypes
Genetic correlation can be used to describe the genetic relation-

ship between two traits and is an estimate of the proportion of

variance that two traits share that is attributed to genetics. Esti-

mating the genetic correlation between traits contributes to our

understanding of shared underlying genetic risk factors and bio-

logical pathways. To estimate the genetic correlation between

EOC histotypes and endometriosis, we used GWAS summary

statistics from meta-analyses conducted by Phelan et al.18 and

Sapkota et al.17 respectively, and linkage disequilibrium (LD)

score regression (LDSC).20 SNPs were matched on position

and alleles to ensure effect size estimates were harmonized

across datasets to obtain a set of 7,617,581 SNPs represented

in the EOC histotypes and endometriosis datasets. We esti-

mated significant (p < 0.05) positive genetic correlations (rg) be-

tween endometriosis and CCOC (rg = 0.71), ENOC (rg = 0.48),

and HGSOC (rg = 0.19) (Table 1). The rg for genetic correlation

with LMPSOC was 0.88 but this did not reach statistical signifi-

cance, and we were unable to estimate rg for LGSOC due to

this histotype having the smallest sample size (1,012 cases). Ge-

netic correlation between the diseases was also estimated using



Table 2. MR results considering genetic liability to endometriosis as the exposure and EOC histotypes as the outcome

EOC histotype MR method OR (95% CI) p

MR-PRESSO

global test p

MR-Egger

intercept test p

High-grade serous IVW 1.22 (1.07–1.38) 0.002 <0.001 0.95

weighted median 1.16 (1.02–1.32) 0.025

MR-Egger 1.23 (0.82–1.86) 0.319

MR-PRESSOa 1.22 (1.09–1.35) 0.004

Low-grade serous IVW 1.27 (0.96–1.67) 0.091 0.281 0.368

weighted median 1.27 (0.87–1.84) 0.212

MR-Egger 0.86 (0.35–2.09) 0.742

Low malignant

potential serous

IVW 1.45 (1.17–1.79) 0.001 0.167 0.943

weighted median 1.52 (1.16–1.99) 0.003

MR-Egger 1.42 (0.71–2.83) 0.323

Mucinous IVW 1.24 (1–1.53) 0.046 0.508 0.217

weighted median 1.03 (0.77–1.39) 0.821

MR-Egger 0.83 (0.42–1.63) 0.583

Endometrioid IVW 1.66 (1.42–1.93) 1.4E-10 0.867 0.954

weighted median 1.58 (1.27–1.97) 3.0 3 10�5

MR-Egger 1.63 (1–2.67) 0.051

Clear cell IVW 2.59 (2.09–3.21) 2.8 3 10�18 0.786 0.951

weighted median 2.48 (1.82–3.39) 9.6 3 10�8

MR-Egger 2.54 (1.28–5.02) 0.007

CI, confidence interval; OR, odds ratio.

Results for the MR-PRESSO global and MR-Egger intercept tests for the detection of pleiotropy.
aMR-PRESSO result after removal of the outlier variant rs1802669.
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high-definition likelihood inference (HDL),21 which has been

shown to reduce the variance of the estimate by fully accounting

for LD. Genetic correlation estimates generated using HDL were

consistent with LDSC, identifying a significant correlation be-

tween endometriosis and CCOC (rg = 0.58), ENOC (rg = 0.42),

HGSOC (rg = 0.13), and LMPSOC (rg = 0.23) (Table 1). There

was no evidence of a significant correlation between either

MOC or LGSOC and endometriosis.

MR analysis
We then used MR based on the inverse-variance weighted (IVW)

method22 and sensitivity analyses based on the weighted me-

dian23 and Mendelian randomization-Egger (MR-Egger)24

methods, which involvemodels that aremore robust to horizontal

pleiotropy, to investigate the association between genetic liability

to endometriosis andEOChistotypes.Genetic liability to endome-

triosis as predicted by 25 independent genome-wide significant25

(p < 5 3 10�8) endometriosis lead SNPs was associated with

increased risk of CCOC, ENOC, HGSOC, and LMPSOC in the

IVWanalysis and the resultswereconsistent in sensitivity analyses

(Table2). Thestrongestassociationswereobserved forENOC(p=

1.4 3 10�10, OR = 1.66 [1.42–1.93]) and CCOC (p = 2.8 3 10�18,

OR = 2.59 [2.09–3.21]). Next, we applied the Mendelian Random-

ization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) MR

method, which includes a test for the detection of horizontal plei-

otropy, outlier (potentially pleiotropic) SNP removal if pleiotropy is

detected, and a test to detect distortion of the MR estimate after

removal of outlier SNPs.26 MR-PRESSO did not yield evidence

of horizontal pleiotropy in any of our MR analyses except for the
endometriosis to HGSOC association, wherein outlier removal

did not significantly alter theMRestimate (Table 2). TheMR-Egger

intercept test24 alsodid not identify anystatistical evidenceofplei-

otropy (Table 2). Finally, we did not find any evidence for bidirec-

tional associations; i.e., genetic liability to EOChistotypeswas not

associated with endometriosis risk (Table S1).

Genetic associations shared between endometriosis
and ovarian cancer histotypes
To identify genetic associations with some evidence of a shared

contribution from both diseases, we combined the EOC histo-

types and endometriosis susceptibility datasets using two com-

plementary approaches; first, meta-analysis using approximate

Bayes factors computed and combined by the Meta-Analysis

with an Approximate Bayes Factor (MetABF) method in both an

independent and fixed model,27 and, second, meta-analysis

based on the modified Han and Eskin random-effects model

and fixed-effects model implemented in themodified random ef-

fects model (RE2C).28,29 The cross-trait meta-analysis identified

several genome-wide significant associations, and a summary of

the number of SNPs nominally associated with both endometri-

osis and each EOC histotype using MetABF and RE2C are listed

in Table 3. SNPswere considered asmarkers of a shared genetic

association with both traits if they had (1) a log10 approximate

Bayes factor (ABF) >4 in the cross-trait MetABF analysis using

either model, (2) a p value <53 10�8 in the cross-trait RE2C anal-

ysis using either model, and (3) a p value <0.05 in each single trait

meta-analysis. A combined log10 ABF>4 is equivalent to a poste-

rior probability of combined association >90% given a prior
Cell Reports Medicine 3, 100542, March 15, 2022 3



Table 3. Number of significant SNPs and genomic loci identified in the EOC histotype and endometriosis cross-trait meta-analyses

EOC histotype that was

combined with endometriosis

No. SNPs with ABF >4 in

combined data

No. SNPs with RE2C p < 5 3 10�8 in

combined data

No. of genomic loci significant

in both MetABF and RE2Ca

Clear cell 1,055 336 14

Endometrioid 759 309 6

High-grade serous 2,814 1,851 13

Low-grade serous 733 237 3

LMP serous 1,114 514 5

Mucinous 899 365 5

LMP, low malignant potential.
aThe number of genomic loci significant in bothMetABF and RE2C reported here is the set of loci where the lead SNPs achieved ABF > 4 and RE2C p <

53 10�8 in the combined data and had nominal evidence of association (p < 0.05) in each individual GWAS dataset (i.e., in the endometriosis dataset

and in the corresponding EOC histotype dataset). Independent loci were identified by linkage disequilibrium-based pruning at r2 < 0.6.
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probability of association at anySNPof one in 1,000. All SNPs (n=

2,237 non-redundant) with p value <5 3 10�8 in RE2C had log10
ABF >4 in MetABF, suggesting good consistency between the

methods. Filtering out SNPs that did not have evidence for nom-

inal association in each single-trait meta-analysis (p < 0.05)

filtered out �68% of the 3,612 SNPs, leaving 1,144 SNPs that

met all three aforementioned criteria. The largest number of

shared genome-wide significant loci (or regions) were identified

between endometriosis and CCOC (14 loci; Tables 3 and 4).

This was followed by 13 risk loci shared between endometriosis

and HGSOC, six risk loci with ENOC, five risk loci with MOC,

five risk loci with LMPSOC, and three risk loci with LGSOC (Ta-

bles 3 and 4). Four loci had lead SNPs with opposite directions

of allelic association between endometriosis and the EOC histo-

type (Table 4). Significant SNPs in eachanalysis are listed inTable

S2. Several loci also contain lead SNPs that have been associ-

ated with other reproductive traits and diseases including uterine

fibroids, sex hormone levels, polycystic ovarian syndrome

(PCOS), and age at menarche (Table S3).

Colocalization analyses to identify shared candidate
causal variants
Our MetABF and RE2C analyses identified shared susceptibility

loci for endometriosis and EOC. However, it is not clear whether

the same candidate causal variants underlie the associations at

these loci or whether the associations at these loci are driven by

distinct candidate causal variants for endometriosis and EOC.

We examined the underlying shared genetic architecture of

endometriosis and EOC further using a statistical model to esti-

mate the posterior probability of association (PPA) that a

genomic region (1) contains a variant associated only with endo-

metriosis (PPA_1), (2) contains a variant associated only with

EOC (PPA_2), (3) contains a variant associated with both traits

(PPA_3), and (4) contains both a variant associated with endo-

metriosis and an independent variant associated with EOC

(PPA_4). These models were implemented in GWAS-PW (pair-

wise analysis of GWAS).30 Genomic regions with a PPA_3 >

0.5, evidence of the same candidate causal variants influencing

both diseases, or PPA_4 > 0.5, evidence that the candidate

causal variants underlying the association with each trait were

distinct, are listed in Table 5. CCOC had the largest number of

genomic regions (n = 13) with evidence of shared causal variants
4 Cell Reports Medicine 3, 100542, March 15, 2022
with endometriosis. All regions identified with PPA_3 or PPA_4 >

0.5 contained lead SNPs significant in the cross-trait meta-ana-

lyses (log10 ABF >4 in the cross-trait MetABF analysis, p < 5 3

10�8 in the cross-trait RE2C analysis and p < 0.05 in each sin-

gle-trait meta-analysis) except for one region on chromosome

3 (Chr 3:126,215,130–128,194,265) where only colocalization

offered evidence for a shared association between MOC and

endometriosis. Two regions with PPA_3 > 0.5 that achieved

genome-wide significance in the meta-analyses (p < 5 3 10�8

and log10ABF >4) were >1 Mb from any risk locus previously re-

ported for endometriosis and EOC: 2q24.3 (rs13000026) and

18p11.31 (rs10048393). One of the four loci (9p21) with lead

SNPs with opposite directions of effect, identified in the cross-

trait meta-analysis between endometriosis and CCOC, also

had evidence for the same causal variant underpinning both dis-

eases from the colocalization analysis. Another on chromosome

17 (17q12) had evidence for two distinct signals for endometri-

osis and HGSOC. The remaining two had no evidence of coloc-

alization. Several genomic regions containing genome-wide sig-

nificant associations identified in the cross-trait meta-analyses

only achieved PPA_1/2> 0.5, suggesting the associations were

only driven by one of the two traits. However, this can also occur

due to the limited power to detect colocalization with the smaller

sample sizes that were available for cross-trait colocalization an-

alyses involving the less common EOC histotypes.

Gene-based association analysis of endometriosis and
ovarian cancer histotypes
We conducted a gene-based association analysis using fast set-

based association analysis (fastBAT),31 a statistical association

test that calculates the combined association for all SNPs map-

ped to each gene while taking into account correlation between

SNPs due to LD. Nine genes were associated at genome-wide

significance (p < 2.45 3 10�6) with endometriosis (GREB1,

MIR4429, KDR, WNT4, SYNE1, CDKN2B-AS1, CDC42, ID4,

PTPRO), 67 with HGSOC, one with LGSOC (KIAA1024), four

for LMPSOC (TERT, SLC6A18, MIR4457, CLPTM1L), and 27

for MOC in single-trait gene-based analysis (Table S4).

Genome-wide significant genes for endometriosis were nomi-

nally significant (p < 0.05) for CCOC (GREB1, MIR4429,

WNT4), ENOC (CDNK2B-AS1), and HGSOC (CDNK2B-AS1,

MIR4429, WNT4) (Table S4).



Table 4. Lead SNPs in genomic loci that demonstrated shared associations with an EOC histotype and endometriosis from the RE2C

meta-analyses

rsID Chr Posa ABF Be p value RE2Cp Pval_Ovarian Pval_Endo

Nearest gene or gene with

functional evidence

Clear cell ovarian cancer + endometriosis

rs61768001 1 22,465,820 10.92 0.13 9.54 3 10�14 1 2.03 3 10�2 1.59 3 10�12 LINC00339

rs11674184 2 11,721,535 13.27 �0.11 3.86 3 10�16 1 3.02 3 10�3 3.19 3 10�14 GREB1

rs10167914 2 113,563,361 8.07 0.11 9.57 3 10�11 1 2.59 3 10�4 4.94 3 10�8 IL1A

rs4516787 4 56,010,165 10.97 �0.11 9.10 3 10�14 1 8.20 3 10�4 1.88 3 10�11 KDR

rs1311245 5 64,272,107 5.5 0.07 4.55 3 10�8 1 2.27 3 10�2 5.58 3 10�7 CWC27

rs1971256 6 151,816,011 6.17 0.09 9.57 3 10�9 1 3.20 3 10�2 9.68 3 10�8 CCDC170

rs17803970 6 152,553,718 6.83 �0.15 1.62 3 10�9 1 2.40 3 10-3 9.82 3 10�8 SYNE1

rs71575922 6 152,554,014 8.04 0.12 1.01 3 10�10 1 4.34 3 10�4 2.02 3 10�8 SYNE1

rs12700667 7 25,901,639 7.27 0.09 6.583 10�10 1 1.18 3 10�2 1.51 3 10�8 AK057379

rs78103255 8 75,311,331 6.08 �0.09 1.19 3 10�8 1 6.64 3 10�4 2.47 3 10�6 GDAP1

rs566679b,c 9 22,634,893 6.26 0.07 2.60 3 10�5 2.10 3 10�8 8.64 3 10�3 6.62 3 10�8 LINC01239

rs7309252 12 95,687,497 5.69 0.07 2.84 3 10�8 1 4.53 3 10�3 1.07 3 10�6 VEZT

rs11651755b 17 36,099,840 6.08 0.05 4.52 3 10�5 1 6.78 3 10�9 2.02 3 10�2 HNF1B

rs8069263 17 46,286,778 5.54 0.07 4.10 3 10�8 8.03 3 10�8 3.86 3 10�2 3.88 3 10�7 SKAP1

Endometrioid ovarian cancer + endometriosis

rs56318008 1 22,470,407 10.11 0.12 6.77 3 10�13 1 3.37 3 10�2 3.50 3 10�12 LINC00339

rs495590 1 172,122,809 5.7 0.08 2.97 3 10�8 1 2.00 3 10�4 2.42 3 10�5 DNM3

rs1971256 6 151,816,011 7.36 0.1 5.28 3 10�10 1 1.26 3 10�3 9.68 3 10�8 CCDC170

rs6475610 9 22,141,894 8.39 0.08 4.33 3 10�11 1 7.29 3 10�3 1.73 3 10�9 CDKN2B-AS1

rs11031005 11 30,226,356 7.39 �0.11 4.94 3 10�10 1 1.06 3 10�3 1.03 3 10�7 FSHB

rs10445377 17 46,214,168 6.66 0.08 2.71 3 10�9 1 1.95 3 10�3 3.20 3 10�7 SKAP1

High-grade serous ovarian cancer + endometriosis

rs12037376b 1 22,462,111 10.99 0.1 3.15 3 10�13 3.06 3 10�14 3.51 3 10�3 1.04 3 10�12 LINC00339

rs7570979 2 11,717,429 7.76 0.08 1.91 3 10-10 1 6.59 3 10�3 1.43 3 10�9 GREB1

rs13000026 2 165,558,884 7.03 �0.07 1.08 3 10�9 1 1.10 3 10�5 2.27 3 10�5 COBLL1

rs1250244b 2 216,297,796 5.57 �0.07 1.36 3 10�7 1.61 3 10�8 2.69 3 10�2 8.73 3 10�8 FN1

rs6908034b,c 6 19,773,930 7.23 0.04 2.25 3 10�3 1.65 3 10�9 2.21 3 10�2 2.09 3 10�9 ID4

rs111610638 6 152,449,994 5.54 �0.15 3.65 3 10�8 1 1.84 3 10�3 3.90 3 10�6 SYNE1

rs1981046 9 22,173,407 5.44 �0.06 4.66 3 10�8 1 2.31 3 10�2 1.03 3 10�7 CDKN2B-AS1

rs635634b 9 136,155,000 10.64 0.09 9.40 3 10�13 6.92 3 10�14 2.25 3 10�11 3.39 3 10�4 ABO

rs7084454 10 21,821,274 10.39 0.08 3.50 3 10�13 1 2.77 3 10�9 9.06 3 10�6 MLLT10

rs11658063b,c 17 36,103,872 7.87 �0.03 1.50 3 10-2 2.98E-10 3.63 3 10-10 1.83 3 10�2 HNF1B

rs62065444b 17 43,565,599 11.11 0.12 2.08 3 10�13 2.68 3 10�14 1.20 3 10�13 4.77 3 10�2 PLEKHM1

rs7217120b 17 46,484,755 13.5 0.09 7.96 3 10�15 1.08 3 10�16 2.08 3 10�14 3.69 3 10�4 SKAP1

rs10048393 18 3,476,253 5.62 0.06 3.09 3 10�8 1 2.12 3 10�5 3.23 3 10�4 AX721193

Low-grade serous ovarian cancer + endometriosis

rs77294520 2 11,660,955 10.72 0.15 1.39 3 10�13 1 4.70 3 10-2 9.91 3 10�13 GREB1

rs584336b,c 6 152,616,173 6.35 0.07 4.28 3 10�6 1.61 3 10�8 1.11 3 10�2 4.17 3 10�8 SYNE1

rs10445377 17 46,214,168 5.72 0.08 2.69 3 10�8 1 1.90 3 10�2 3.20 3 10�7 SKAP1

LMP serous ovarian cancer + endometriosis

rs4654785 1 22,491,843 6.78 0.09 2.18 3 10�9 1 3.78 3 10-2 1.89 3 10�8 LOC105376850

rs10748858b 10 105,639,514 5.81 0.07 6.06 3 10�7 1.30 3 10�8 1.09 3 10�6 5.31 3 10�4 OBFC1

rs11031005 11 30,226,356 6.24 �0.11 8.14 3 10�9 1 2.73 3 10�2 1.03 3 10�7 FSHB

rs10445377 17 46,214,168 7.46 0.08 4.06 3 10-10 1 4.56 3 10�5 3.20 3 10�7 SKAP1

rs35713035b 17 46,501,710 6.43 0.09 1.75 3 10�8 1.74 3 10�9 4.32 3 10�6 3.60 3 10�5 SKAP1

(Continued on next page)
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Table 4. Continued

rsID Chr Posa ABF Be p value RE2Cp Pval_Ovarian Pval_Endo

Nearest gene or gene with

functional evidence

Mucinous ovarian cancer + endometriosis

rs11674184 2 11,721,535 12.11 �0.1 6.13 3 10�15 1 3.23 3 10�2 3.19 3 10�14 GREB1

rs6546324 2 67,856,490 5.91 �0.08 1.71 3 10�8 1 1.76 3 10�2 3.02 3 10�7 LINC01812

rs10167914 2 113,563,361 6.98 0.1 1.36 3 10�9 1 7.23 3 10�3 4.94 3 10�8 IL1A

rs4849174b 2 113,973,467 12.14 0.09 2.66 3 10�9 2.00 3 10�15 2.53 3 10�14 2.89 3 10�3 PAX8

rs67808862b 3 138,849,543 10.26 0.07 5.94 3 10�7 2.53 3 10�13 2.14 3 10�13 4.64 3 10�2 BPESC1

ABF, logarithm (base 10) approximate Bayes factor Be, Estimated beta coefficient from the fixed-effects model; p value, fixed-effects model p value;

RE2CP, RE2C p value (RE2Cp is 1 for SNPs where there is little or no evidence of heterogeneity across the two traits, and for such SNPs the fixed-

effects model and its corresponding association p value become the model of choice).
aSNP with significant heterogeneity and results presented from independent MetABF and RE2C random-effects model.
bBuild 37 positions.
cDirection of effect is different for each trait.
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We looked at the overlap between the top 1% of genes asso-

ciatedwith each trait (204/20,439 genes evaluated in the fastBAT

analysis) and observed an overlap of 5%between endometriosis

and HGSOC (11 genes), 4% with CCOC (nine genes), 3% with

LMPSOC (seven genes), 3% with ENOC (six genes), 3% with

MOC (five genes), and 1%with LGSOC (two genes). Two genes,

SNX11 and CBX1, were associated with endometriosis, ENOC,

HGSOC, and LMPSOC. SKAP1 was associated with HGSOC,

LMPSOC, and endometriosis. However, none of the genes in

the top 1% that overlapped between endometriosis and CCOC

were in the top 1% of genes associated with other histotypes.

Using an over-representation analysis in WebGestalt,32 no spe-

cific pathways were significantly enriched (false discovery rate

[FDR] <0.05) for overlapping genes. This was also the case

when the analysis was extended to the top 5% of genes associ-

ated with each trait and the overlapping genes between endo-

metriosis and each EOC histotype in the top 5% considered

(Table S4).

Functional annotation
We collated all candidate causal variants by identifying all SNPs

in tight LD with the lead SNPs (r2 > 0.7) from the cross-trait meta-

analyses (log10 ABF >4 in the cross-trait MetABF analysis, p <

5 3 10�8 in the cross-trait RE2C analysis, and p < 0.05 in each

single trait meta-analysis). The set of candidate causal variants

included 4,044 unique SNPs, which we functionally annotated

to genes and epigenomic biofeatures.

Overlap with noncoding DNA biofeatures

To identify putative functional SNPs, we overlapped all candidate

causal SNPs with noncoding regulatory elements (biofeatures)

identified by epigenomic profiling of disease-relevant tissues

and cell lines. The biofeature catalog consisted of 11 consensus

peak sets (see STAR Methods, Table S5) derived from 45 epige-

nomic profiles. Epigenome features included open chromatin

(18 Assay of Transposase Accessible Chromatin sequencing

[ATAC-seq] datasets) and active chromatin (27H3K27ac chro-

matin immunoprecipitation sequencing [ChIP-seq] profiles; Table

S5). Thespecimensprofiled includednon-cancerousgynecologic

tissues (fallopian tube, endometriosis, andendometriosis-associ-

ated stroma) and EOC (clear cell, endometrioid, high-grade se-

rous, and mucinous) tissues or cell line models.33,34 Consensus
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peak sets averaged 33.6 (standard deviation (SD) = 22, range =

[9, 84.3]) thousand peaks spanning, on average, 1.04%of the hu-

man genome (SD = 0.37, range = [0.42, 1.53]) (Figures S1A–S1C,

TableS5).Genomecoveragewasmarginally correlatedwithnum-

berofdonors (Spearman’s rho=0.43,p=0.18; FiguresS1D–S1F).

We reduced the 1,144 candidate SNPs to 824 non-redundant

variants most strongly associated with both endometriosis and

EOC histotypes (log10 ABF >4 in the cross-trait MetABF analysis,

a p value <5 3 10�8 in the cross-trait RE2C analysis, and a p

value <0.05 in each individual trait meta-analysis). Of these 824

candidate causal variants, 119 (14.4%) overlapped at least one

biofeature (Figure 1A; Table S6). The proportion of independent

loci containing SNPs intersecting with biofeatures varied by EOC

histotype, with only 33.3% of loci associated with endometriosis

plus LGSOC overlapping at least one biofeature, while 71.4% of

endometriosis and CCOC loci overlapped one or more relevant

biofeatures (Figure 1B, Figures S2A–S2F; Table S7). As ex-

pected, ATAC-seq consensus peak sets provided different infor-

mation compared with H3K27ac ChIP-seq peak sets. We

observed that H3K27ac ChIP-seq consensus peak sets for fallo-

pian tube, endometriosis-associated stroma, and endometriosis

primary tissues and ATAC-seq consensus peaks for CCOC and

fallopian tube intersected a similar set of SNPs, possibly reflect-

ing the epidemiologic links between these tissues and diseases

(Figure S3).

The 119 SNPs that overlapped at least one consensus peak

set were distributed across 28 distinct loci (Table S6). Overlaps

provided functional evidence that these SNPs in risk loci shared

between endometriosis and EOC histotypes were located

within regulatory regions. The MLLT10 and FSHB loci con-

tained the SNPs with the most functional evidence and highest

number of overlaps, rs4071559 and rs10828247, each overlap-

ping 11 biofeatures (Table S6). The VEZT locus harbored the

SNPs with the second highest number of overlaps, where

rs6538618 overlapped 10 biofeatures at the putative bidirec-

tional VEZT/FGD6 promoter (Figure 1C). SNP rs6538618 had

additional functional evidence and has been associated with

the expression of both VEZT and FGD6 in endometrium,35 fi-

broblasts, artery, and muscle tissue36 (Figure 1C). SKAP1 and

PAX8 contained the greatest number of SNPs overlapping bio-

features (26 SNPs).



Table 5. GWAS-PW results for analyses between EOC histotypes and endometriosis. Posterior probabilities of GWAS-PW models

EOC histotype Chr Region (posa) PPA_1 PPA_2 PPA_3 PPA_4

Clear cell 1 21,736,898:23,086,667 0.3 0 0.69 0.01

Clear cell 2 10,298,766:12,418,752 0.07 0 0.93 0

Clear cell 2 110,857,126:113,921,639 0.01 0 0.99 0

Clear cell 4 55,429,886:56,547,412 0.03 0 0.97 0

Clear cell 5 63,968,304:65,910,972 0.26 0 0.72 0.01

Clear cell 6 150,256,048:151,912,653 0.31 0 0.63 0.01

Clear cell 6 151,912,703:153,093,958 0.06 0 0.93 0

Clear cell 7 25,077,628:25,909,208 0.32 0 0.67 0.01

Clear cell 8 73,817,199:75,444,858 0.04 0 0.95 0

Clear cell 9 22,206,559:24,157,796 0.17 0 0.81 0

Clear cell 12 94,514,787:96,019,818 0.13 0 0.85 0

Clear cell 17 34,812,273:36,808,793 0 0.01 0.97 0.01

Clear cell 17 45,876,022:47,516,523 0.37 0 0.61 0.01

Endometrioid 6 150,256,048:151,912,653 0.42 0 0.54 0

Endometrioid 17 45,876,022:47,516,523 0.46 0 0.53 0.01

High-grade serous 1 21,736,898:23,086,667 0.16 0 0.7 0.15

High-grade serous 2 10,298,766:12,418,752 0.37 0 0.06 0.57

High-grade serous 2 165,178,853:167,160,029 0.02 0 0.89 0.03

High-grade serous 6 151,912,703:153,093,958 0.35 0 0.05 0.6

High-grade serous 9 135,298,917:137,040,737 0 0 0.97 0.03

High-grade serous 10 19,717,815:22,772,115 0 0 0.99 0.01

High-grade serous 17 34,812,273:36,808,793 0 0.02 0.43 0.55

High-grade serous 17 43,056,905:45,875,506 0 0.04 0.18 0.78

High-grade serous 17 45,876,022:47,516,523 0 0 0.06 0.94

High-grade serous 18 1,943,138:3,890,554 0.02 0 0.76 0.06

LMP serous 10 104,380,686:106,694,980 0.01 0.01 0.92 0.04

LMP serous 17 45,876,022:47,516,523 0.02 0 0.73 0.25

Mucinous 2 113,922,276:116,772,246 0 0.11 0.87 0.03

Mucinous 3 126,215,130:128,194,265 0.4 0 0.53 0.02

PPA_1, posterior probability of model 1 (association only to endometriosis); PPA_2, posterior probability of model 2 (association only to EOC); PPA_3,

posterior probability of model 3 (shared association to both phenotypes) PPA_4, posterior probability of model 4 (two distinct associations, one to each

phenotype).
aBuild 37 positions.
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Tissue-specific effects and disease-relevant pathways

Using functional mapping and annotation (FUMA),37 we identified

that the expression of genes containing, or nearby to, SNPs

shared between endometriosis and two EOC histotypes (CCOC

and HGSOC) clustered across reproductive tissues including

ovary, fallopian tube,anduterus (FiguresS4A–S4C).Several path-

ways were enriched within the set of genes annotated to signifi-

cant SNPs (Table S8). Unlike the fastBAT analysis, genes were

not identified using a gene-based association analysis (SNPs

within gene) but were instead annotated based on position

(gene within 10 kb of an SNP). Focusing on enriched pathways

containing three ormore genes, pathways related to cell adhesion

and nuclear division were enriched for genes annotated to SNPs

associated with both endometriosis and CCOC. Gene sets asso-

ciated with other reproductive traits and diseases were also

enriched, including uterine fibroids, endometrial cancer, dysmen-

orrheic pain severity, and gestational age at birth (Table S8).
Causal associations with gene expression and

methylation

The fastBAT analysis involved a purely statistical gene-level

association test. To complement fastBAT, we used summary-

data-based Mendelian randomization (SMR),38 which integrates

gene-level expression and methylation with the GWAS data to

elucidate potential gene-level functional mechanisms. SMR

enabled the identification of potentially causal associations be-

tween shared susceptibility to endometriosis and EOC histotypes

and gene expression using SNPs associated with the traits from

their individual GWAS meta-analyses. We performed an SMR

analysis using summary statistics from the endometriosis and

each of the EOC histotype GWASmeta-analyses, and expression

quantitative trait locus (eQTL) data (eQTL p value < 53 10�8) from

endometrium,35,39 blood,40 and Genotype-Tissue Expression

(GTEx) uterus and ovary36 (Table S9). When restricted to regions

with evidence of a shared variant associated with both
Cell Reports Medicine 3, 100542, March 15, 2022 7



Figure 1. Functional annotation of SNPs

associated with risk of endometriosis and

epithelial ovarian cancer

(A) Histogram of number of non-redundant SNPs

for all epithelial ovarian cancer (EOC) histological

subtypes that overlap n biofeatures. Inset: histo-

gram of number of non-redundant SNPs for all

histological subtypes that overlap at least one

biofeature.

(B) Proportion of loci shared between endometri-

osis and each EOC histotype containing SNPs that

overlap at least one biofeature.

(C) A promoter SNP at the VEZT/FGD6 locus

overlaps 10 biofeatures and intersects with an

active open region of chromatin that lies in a bidi-

rectional promoter associated with these two

genes. Biofeatures are shown as peaks on the

ATAC-seq and H3K27ac ChIP-seq tracks for pri-

mary tissues and cell lines. Endo, endometriosis;

FT, fallopian tube; Stroma, endometriosis-associ-

ated stroma; CCOC, clear cell ovarian cancer; CL,

cell lines; ENOC, endometrioid ovarian cancer;

HGSOC, high-grade serous ovarian cancer; MOC,

mucinous ovarian cancer; PT, primary tissues.

Specimens are primary tissues unless otherwise

indicated. The gray shaded area highlights peaks

overlapping rs6538618. Boxplots show the

association between rs6538618 genotypes and

expression of VEZT and FGD6 in endometrium.
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endometriosis and an EOC histotype from the colocalization anal-

ysis (GWAS-PW PPA_3 > 0.5), SMR identified two gene-level as-

sociations (SMR p value < 0.05) based on expression in the endo-

metrium: variants were associated with risk of endometriosis,

HGSOC and expression of LINC00339 (also known as

HSPC157) and endometriosis, MOC and expression of PAX8 (Ta-

ble S9). The heterogeneity in dependent instruments (HEIDI)38 test

p value was >0.05 for both these associations, indicating colocal-

ization between expression-associated SNPs and risk SNPs

associated with both diseases. No significant SMR associations

were identified inuterusorovary geneexpressiondata fromGTEx.

Previous studies have shown a large proportion of eQTLs are

shared between tissues.35,36 To increase power, the analysis

was repeated using a large blood cis-eQTL dataset from eQTL-

Gen40 (n = 31,684 individuals) and expression of seven genes

was found to be associated (SMR p value <0.05; HEIDI p value

>0.05) with both risk of endometriosis and EOC histotypes in

the regions where there was evidence of a shared signal be-

tween the two diseases (PPA_3 > 0.5, Table S9). The expression

of NBPF3, GDAP, and SKAP1 was associated with risk of endo-

metriosis and CCOC, while the expression of AC018521.5,

AC018521.5, and SP2-AS1was associated with risk of endome-

triosis and ENOC in blood.
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Significant associations (SMR p value

<0.05; HEIDI p value >0.05) between

variants, methylation in the endome-

trium, and risk of endometriosis and at

least one EOC histotype were identified

at six CpG sites, including those near

the GREB1 and KDR signals for endo-
metriosis and CCOC (Table S9). Using a large blood methyl-

ation quantitative trait locus (mQTL) dataset41 for SMR anal-

ysis, we identified variants affecting methylation at 78 CpG

sites where variants associated with methylation were also

associated with endometriosis and at least one EOC histotype,

including sites near WNT4/LINC00339 for CCOC and HGSOC;

GREB1, FGD6, ESR1 for CCOC; SKAP1 for ENOC and

LMPSOC; and MLLT10 for HGSOC. Each of these methylation

analyses was restricted to regions with evidence of a shared

underlying association between endometriosis and an EOC

histotype based on GWAS-PW (PPA_3 > 0.5) and the SMR

HEIDI test (p > 0.05) filter further ensured colocalization be-

tween SNP-disease and SNP-methylation associations. Table

6 summarizes the various levels of evidence gained from the

aforementioned analyses for loci associated with both endo-

metriosis and EOC histotypes.

Finally, we evaluated the expression of putative target genes

annotated in the cross-trait meta-analysis and identified by fast-

BAT and SMRanalyses in eight endometrial cell types profiled by

single-cell RNA-sequencing42 (Figures S5A and S5B). Of these,

SYNE1, NFE2L1, GREB1, ID4, and KDR were reported to be

differentially expressed between eutopic and ectopic lesions

from women with endometriosis and normal endometrium.43,44



Table 6. Summary of evidence from the bivariate meta-analyses, GWAS-PW, overlap of biofeatures, fastBAT, and SMR for loci

associated with both endometriosis and EOC histotypes

Risk SNP (cytoband)

Significant in

meta-analysis

Colocalized

signal

Feature

overlap fastBAT SMR

rs495590 (1q24.3) ENOC DNM3

rs61768001/rs12037376

(1p36.12)

CCOC, HGSOC CCOC, HGSOC 5 WNT4 CpG site near WNT4

rs10167914 (2q13) CCOC, MOC CCOC 3 IL1A

rs4849174 (2q13) MOC MOC 7 PSD4

rs13000026 (2q24.3) HGSOC HGSOC

rs11674184 (2p25.1) CCOC, MOC CCOC 2 GREB1/MIR4429

rs7570979 (2p25.1) HGSOC HGSOC 2 MIR4429

rs1250244 (2q35) HGSOC 2

rs4516787 (4q12) CCOC CCOC 1

rs1311245 (5q12.3) CCOC CCOC 1

rs6908034 (6p22.3) HGSOC

rs1971256 (6q25.1) CCOC, ENOC CCOC, ENOC 5 CCDC170

rs17803970 (6q25.2) CCOC CCOC

rs71575922 (6q25.2) CCOC CCOC

rs111610638 (6q25.2) HGSOC HGSOC 1

rs12700667 (7p15.2) CCOC CCOC 2

rs78103255 (8q21.11) CCOC CCOC GDAP1 GDAP1 expression

CpG Site near GDAP1

rs566679 (9p21.3) CCOC CCOC

rs6475610 (9p21.3) ENOC CDKN2B-AS1/CDKN2A

rs1981046 (9p21.3) HGSOC CDKN2B-AS1

rs635634 (9q34.2) HGSOC HGSOC 4 CpG site near ABO

rs7084454 (10p12.31) HGSOC HGSOC 11 MLLT10/CASC10/

SKIDA1/DNAJC1

CpG site near MLLT10

rs10748858 (10q24.33) LMPSOC LMPSOC OBFC1

rs11031005 (11p14.1) ENOC, LMPSOC 11

rs7309252 (12q22) CCOC CCOC 10 VEZT

rs11651755 (17q12) CCOC CCOC 3 CpG site near HNF1B

rs11658063 (17q12) HGSOC HGSOC 3

rs62065444 (17q21.31) HGSOC HGSOC

rs8069263/rs10445377

(17q21.32)

CCOC, ENOC,

LGSOC, LMPSOC

CCOC, ENOC,

LMPSOC

2 SKAP1/SNX11/CBX1/

NFE2L1/LOC101927166

CpG site near HOXB8

CpG site near SKAP1

rs7217120 (17q21.32) HGSOC HGSOC 10 SKAP1/SNX11/CBX1/NFE2L1/

LOC101927166/HOXB2

rs35713035 (17q21.32) LMPSOC LMPSOC 3 SKAP1/SNX11/CBX1/NFE2L1/

LOC101927166

SKAP1 expression

rs10048393 (18p11.31) HGSOC HGSOC 1 LOC100505592

Article
ll

OPEN ACCESS
Specifically, ID4, FN1, and GREB1 were more highly expressed

in stromal fibroblasts from ectopic lesions compared with eu-

topic endometrium, whileWNT4 andCBX1 had lower expression

in ectopic lesions.43

DISCUSSION

Analysis of germline genetic risk association data from endome-

triosis and EOC GWAS meta-analyses provides evidence of a

genetic correlation and causal relationship between endometri-
osis and CCOC, ENOC, and, to a lesser extent, HGSOC. Our re-

sults support epidemiological observations of an association be-

tween endometriosis and EOC as shown by estimates that

women with endometriosis have two to three times higher risk

of developing EOC13,45 and that a high proportion of CCOC

and ENOC cases also have endometriosis (20%–50%).14–16 His-

torically, epidemiological studies have not found statistically sig-

nificant evidence for an association between endometriosis and

HGSOC. However, a 2015 analysis that involved evaluating ge-

netic loci known at the time to be associated with endometriosis
Cell Reports Medicine 3, 100542, March 15, 2022 9
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risk in a smaller subset of the Ovarian Cancer Association Con-

sortium case-control set used here found significant evidence,

using a gene-based statistical test, of an association with both

endometriosis and HGSOC risk at the 1p36 (WNT4) locus.46

Our MR results are consistent with findings from Yarmolinsky

et al.47 However, potentially due to our use of a larger number

of SNPs to instrument endometriosis (25 SNPs based on the lat-

est endometriosis GWAS versus 10 SNPs in the previously pub-

lished analysis), we find that point estimates of the effect size for

all associations in our analysis are larger than those reported in

Yarmolinsky et al. This is most notable in the OR for CCOC

(2.6 versus 1.5). The associations presented here reinforce the

well-established links between endometriosis and ENOCs and

CCOCs, and we also observe an association between endome-

triosis and HGSOC that was maintained across more than one

analytic approach, suggesting some shared pathways underlie

the development of these two phenotypes.

Using cross-trait meta-analyses, we identified 28 distinct

genomic loci that shared a lead variant contributing to the risk

of both endometriosis and EOC histotypes. Colocalization ana-

lyses provided evidence (PPA_3 > 0.5) for a single causal asso-

ciation signal underlying risk for both endometriosis and EOC in

19 of these regions. Functional annotation revealed that 14 of

these 19 loci also contained risk SNPs that overlapped active

and/or open chromatin. The high posterior probability of colocal-

ization at a large number of distinct loci is a remarkable feature of

the genetic relationship between endometriosis and EOC histo-

types and suggests that identifying target genes in these loci

may be valuable to understand the link between endometriosis

and EOC and to intervene in neoplastic transformation.

The associations and their directionality uncovered by our MR

analyses when taken together with the shared genetics between

endometriosis and EOC uncovered by the multiple other ap-

proaches suggests that vertical pleiotropy is likely the defining

pleiotropic mechanism for these conditions. That is, genetic lia-

bility to endometriosis confers risk of specific EOC histotypes,

endometriosis and EOC are biologically related, and a genetic

variant’s effect on endometriosis is likely to cause its effect on

EOC for the variants highlighted in this study. This stands in

contrast to horizontal pleiotropy, wherein the same genetic var-

iants affect two traits independently, and may regulate common

molecular processes implicated in both traits, but there is little

direct biological relationship between the traits, which would

have been the case had we not identified any association be-

tween endometriosis and EOC in MR analyses.

Combining GWAS data for conditions known to predispose to

cancers and for the corresponding cancers themselves has pre-

viously helped identify novel susceptibility loci for nevus density

and melanoma48 and for gastroesophageal reflux disease and

esophageal cancer.49 Our analysis identified two risk loci not pre-

viously reported both in the context of endometriosis and EOC

histotypes (i.e., >1Mb away from any previously identified locus).

At the first locus, located at chromosome2q24.3, the index SNP

(rs13000026) lies intronic toCordon-bleu protein-like 1 (COBLL1),

and at the second locus at 18p11.31, index SNP rs10048393 lies

intronic to a long noncoding RNA, GAPLINC. Whether these

genes prove to be the target genes of these associations has

yet to be determined; neither gene has been implicated in endo-
10 Cell Reports Medicine 3, 100542, March 15, 2022
metriosis or ovarian cancer to date. The lead SNPs in these

regions displayed strong associations (p % 3.2 3 10�4) with

endometriosis risk andHGSOC risk in the single trait GWASdata-

sets and the combined signal achieved genome-wide signifi-

cance (p < 5 3 10�8). Moreover, GWAS-PW colocalization anal-

ysis of each these loci indicated a high probability (R 0.76) of a

single causal signal underlying the association with both traits.

Different regions shared between endometriosis and different

histotypes may suggest possible biological mechanisms driving

these causal relationships and the pathways contributing to risk

of specific subtypes. Three regions identified as associated with

both CCOC and endometriosis using bivariate meta-analysis

and GWAS-PW, chromosome 4 near KDR, chromosome 8

near GDAP1, and chromosome 12 near VEZT, were not identi-

fied for ENOC and HGSOC. Similarly, genomic regions on chro-

mosome 1 near DNM3 and chromosome 11 near FSHB were

associated with ENOC not CCOC or HGSOC, loci on chromo-

some 9 near ABO, and chromosome 10 near MLLT10 were

associated with HGSOC, not CCOC or ENOC. Alternatively,

risk variants in the SKAP1 locus on chromosome 17 were

common between endometriosis and most histotypes. Shared

variants in regions of known hormone-responsive genes, estro-

gen-responsive growth regulation by estrogen in breast cancer

1 (GREB1)50 and kinase insert domain receptor (KDR),51 may

suggest a role of hormone regulation in the causal pathway be-

tween endometriosis and CCOC. Cell adhesion pathways were

also significantly enriched for genes annotated to SNPs associ-

ated with risk of endometriosis and CCOC, suggesting that the

ability of cells to adhere may contribute to the pathogenesis of

endometriosis and subsequently CCOC. Association between

variants in the risk loci shared between endometriosis and

EOC histotypes and other reproductive traits and diseases,

including PCOS, uterine fibroids, and sex hormone levels, sug-

gests that perturbation of underlying pathways important for

the development and regulation of the reproductive and endo-

crine systems may predispose women to a variety of diseases,

the development of a particular disease dependent on the pres-

ence of additional genetic and environmental risk factors.

Interestingly, the direction of effect at some shared risk loci

differed between EOC histotypes. The hepatocyte nuclear factor

1 beta (HNF1B) locus showed the same direction of effect be-

tween endometriosis andCCOCbut was different between endo-

metriosis and HGSOC, consistent with published observations

between CCOC and HGSOC.52 HNF1B is consistently highly ex-

pressed in CCOCbut the promoter ismethylated in HGSOC, sug-

gesting absence of HNF1B is critical for development of the

HGSOChistotype,52,53 potentially against a commonbackground

of genetic liability to endometriosis. HNF1B is a transcription fac-

tor that plays a vital role in tissue development, and regulation of

genes involved in cell cycle modulation, apoptosis, oxidative

stress response, and epithelial mesenchymal transition, and dys-

regulation of these pathways may suggest a role for the microen-

vironment in tumor development.54,55 Similarly, SNPs in the

SYNE1 locus on chromosome 6 have the same direction of effect

between endometriosis and CCOC but the opposite direction of

effect between endometriosis and LGSOC.

We provide evidence of functional mechanisms by which ge-

netic variants associated with these diseases may be affecting
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noncoding regulatory elements that control the expression of

genes that, when perturbed, increase risk of endometriosis

and/or EOC. Overall, many target genes shared between endo-

metriosis and EOC differed between histotypes, supporting evi-

dence from other analyses in this study that different genes and

gene pathways may contribute to the causal relationship be-

tween endometriosis and the different histotypes. The 1p36.12

risk region was associated with risk of endometriosis, CCOC,

ENOC, and HGSOC. WNT4 lies in this region and is a member

of the Wnt/b-catenin signaling pathway, which has been

associated with endometriosis previously.56,57 LINC00339 was

also associated with risk of endometriosis and HGSOC at this

locus based on the SMR endometrial eQTL analysis. The

expression of LINC00339 and nearby CDC42 has been

associated with endometriosis previously and LINC00339 has

been reported as the likely target gene.58,59 Masuda et al.60

also report that this same locus on chromosome 1 is associated

with risk of both endometriosis and EOC in Japanese women.

Methylation at a CpG site near GREB1 in endometrium and

blood is associated with increased risk for endometriosis and

CCOC. This association has been identified for endometriosis

previously, with functional studies yet to determine themolecular

mechanisms contributing to disease risk.61,62 Transcription of

GREB1 splice variants has been associated with variants in

this region in ovarian tissue.63 This gene is expressed in EOC tu-

mors, with studies suggesting a reliance on ESR1/GREB1

signaling.64,65

Overlap with chromatin biofeatures in ovarian and endometri-

osis tissues also highlighted potential target genes. Risk SNPs

in the VEZT region overlapped the putative bidirectional pro-

moter for VEZT and FGD6. The lead SNP from the bivariate

meta-analysis in the VEZT locus (rs7309252) was in LD (r2 =

0.99) with an SNP (rs6538618) overlapping 10 regulatory bio-

features. Expression of both VEZT and FGD6 has been associ-

ated with endometriosis risk previously.35,58 Similarly, the lead

SNPs in the FSHB and MLLT10 loci were in LD (r2 > 0.8) with

SNPs overlapping 11 biofeatures in the promoter region of

ADP Ribosylation Factor Like GTPase 14 Effector Protein (AR-

L14EP) and MLLT10 respectively and were associated with

methylation at nearby CpG sites. Risk SNPs associated with

endometriosis, HGSOC, and LMPSOC span follicle-stimulating

hormone (FSH) subunit B (FSHB) and nearby ARL14EP. AR-

L14EP is expressed by many tissue types and plays a role in

the movement of major histocompatibility class II molecules

along the actin cytoskeleton. FSHB is expressed in the pituitary

gland and plays an important role regulating reproductive

function. Variants in the 11p14.1 locus near FSHB have been

significantly associated with multiple reproductive traits and

diseases, including PCOS, uterine fibroids, circulating sex hor-

mone levels, and menstrual cycle characteristics.17,66–72 The

lead SNP from the bivariate meta-analysis, rs11031005, is in

LD with a FSHB promoter polymorphism (rs10835638) and

enhancer polymorphism (rs11031006) involved in regulating

FSHB transcription.73–75 The locus containing the histone lysine

methyltransferase DOT1L cofactor (MLLT10) was associated

with endometriosis risk in a recent endometriosis GWAS.25

Studies have also linked EOC susceptibility and endometriosis

risk to subtle variations in regulation at the MLLT10 promoter
region.35,76 SNPs in LD (r2 > 0.8) with the lead variant from

the bivariate meta-analysis have been annotated to the pro-

moter of MLLT10 and have been associated with changes of

expression of nearby genes C10orf140, C10orf114, and NEBL

in primary EOC tissues and changes in expression of NEBL in

endometrium, suggesting this promoter may also have cis-reg-

ulatory activity across the locus.35,76 The emergence of single-

cell transcriptomic data in cell types relevant to endometriosis

and EOC offer further opportunities to explore potential cell-

type-specific effects on candidate genes.42–44,77

ENOC and CCOC are believed to arise from ectopic (endome-

triosis-derived) or eutopic endometrial epithelium, while HGSOC

is presumed to originate from fallopian tube secretory epithelial

cells.78 Despite the distinct cells of origin, we have previously

shown that inherited genetic susceptibility to ENOC/CCOC and

HGSOC is, to some extent, shared.79 In the current study we

find that some risk variants and susceptibility genes for endome-

triosis, ENOC/CCOC, and HGSOC are also shared and the

extent of germline genetic overlap between endometriosis and

ENOC/CCOC is much greater than that between endometriosis

and HGSOC. Taken together, this supports previous epidemio-

logical associations between endometriosis and ENOC/CCOC,

and less stronger epidemiological evidence for an association

with HGSOC,13 and suggests a model where the shared and

non-shared components of genetic predisposition and an under-

lying background of endometriosis likely interact with cellular

context-specific somatic mutational profiles and stromal/hor-

monal microenvironments to give rise to the distinct histological

subtypes of EOC.

In conclusion we found evidence of a strong genetic correla-

tion and causal relationship between endometriosis and two

EOC histotypes, CCOC and ENOC, and to a lesser extent with

HGSOC. Further investigation into shared genomic regions re-

vealed different genetic variants, genes, and pathways that likely

contribute to the causal relationship with the different histotypes.

These results add to our understanding of disease pathogenesis

and yield genomic targets that may facilitate preventive pharma-

cological intervention by disrupting the link between endometri-

osis and EOC and promote targeted EOC screening in women

with endometriosis.

Limitations of the study
This study used a comprehensive range of statistical genetic ap-

proaches to build on existing evidence of an association be-

tween endometriosis and EOC using genetic data from the

largest GWAS meta-analyses of endometriosis and EOC risk

currently available. The power of this study to identify shared

risk loci and target genes is, however, limited by the sample

size of some of the less common EOC histotype cohorts, such

as LMPSOC. The identification of genetic relationships may

also be limited by phenotypic annotation and heterogeneity be-

tween endometriosis cases affecting the endometriosis GWAS.

Several studies have reported an association between endome-

triosis sub-phenotypes and risk of EOC, in particular endome-

triomas.5,80–82 More comprehensive phenotyping and molecular

characterization of endometriosis lesions could be used to test

genetic associations between potential endometriosis subtypes

and risk of certain EOC histotypes; for example, testing if the
Cell Reports Medicine 3, 100542, March 15, 2022 11



Article
ll

OPEN ACCESS
association between endometriosis and CCOC is driven by en-

dometriomas specifically.

Data from a range of disease-relevant tissues were included in

the analyses to provide functional evidence of molecular mech-

anisms and target genes at risk loci. Further functional evidence

and cell-type-specific effects associated with disease risk and

subtypes could be explored using additional disease-relevant

cell types and single-cell technologies. Target genes identified

in this study will require functional validation in appropriate

model systems.

Genetic datasets used in this study were restricted to Euro-

pean cohorts and results may not be directly transferable across

ancestries.
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H. Olson, Håkan Olsson, Sue K. Park, Celeste L. Pearce, Tanja

Pejovic, Malcolm C. Pike, Susan J. Ramus, Elio Riboli, Marjorie

J. Riggan, Harvey A. Risch, Cristina Rodriguez-Antona, Isabelle

Romieu, Dale P. Sandler, Joellen M. Schildkraut, V. Wendy Se-

tiawan, Kang Shan, Nadeem Siddiqui, Weiva Sieh, Meir Stamp-

fer, Karin Sundfeldt, Rebecca Sutphen, Anthony J. Swerdlow,

Soo Hwang Teo, Kathryn L. Terry, Shelley S. Tworoger, Digna

Velez Edwards, Roel C.H. Vermeulen, Penelope M. Webb, Nico-

las Wentzensen, Emily White, Walter Willett, Alicja Wolk, Yin-
12 Cell Reports Medicine 3, 100542, March 15, 2022
Ling Woo, Anna H. Wu, Li Yan, Drakoulis Yannoukakos, Wei

Zheng.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Primary tissues

d METHOD DETAILS

B Epithelial ovarian cancer dataset

B Endometriosis dataset

B H3K27ac ChIP-seq and ATAC-seq

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Genetic correlation and Mendelian randomization

B Cross-trait meta-analysis

B Colocalization analyses

B Gene-based association analysis

B Functional annotation

B H3K27ac ChIP-seq and ATAC-seq peak calling

B Summary-data-based Mendelian randomization

(SMR)

B Expression of target genes
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xcrm.2022.100542.
ACKNOWLEDGMENTS

We would like to thank the research participants and employees of 23andMe

for making this work possible. We would like to acknowledge the International

Endometriosis Genetics Consortium and Ovarian Cancer Association Con-

sortium for their contributions generating theGWASdatasets and data access.

We are grateful to the thousands of patients who donated the specimens that

enable this research to happen. For specific acknowledgments for the endo-

metriosis meta-analysis, please see Sapkota et al.17 For specific acknowledg-

ments for the ovarian cancer meta-analysis, please see Phelan et al.18 The

GTEx Project was supported by the Common Fund of the Office of the Director

of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH,

and NINDS. The data used for the analyses described in this manuscript were

obtained from the GTEx Portal on 06/26/20.

This work was supported by the National Health and Medical Research

Council of Australia (GNT1026033, GNT1105321, GNT1147846, Investigator

Grant 1177194 to G.W.M. and Medical Research Future Fund Research grant

MRF1199785 to S.M.) and National Institutes of Health (R01CA193910,

R01CA204954, R01CA211707, R01CA251555). S.P.K. is supported by a

United Kingdom Research and Innovation Future Leaders Fellowship (MR/

T043202/1). K.L. is supported by a Liz Tilberis Early Career Award (599175)

and a Program Project Development (373356) from the Ovarian Cancer

Research Alliance, plus a Research Scholar’s Grant from the American Cancer

Society (134005). For funding details of the endometriosis meta-analysis,

please see Sapkota et al.17 For funding details of the ovarian cancer meta-

analysis, please see Phelan et al.18

https://doi.org/10.1016/j.xcrm.2022.100542
https://doi.org/10.1016/j.xcrm.2022.100542


Article
ll

OPEN ACCESS
AUTHOR CONTRIBUTIONS

S.M., S.P.K., K.L., G.W.M., and P.P. designed the study with input from the

other authors. Data analyzed in this study were generated by the Ovarian Can-

cer Association Consortium and International Endometriosis Genetics Con-

sortium. S.M. and S.P.K. ran additional quality control and filtering of GWAS

datasets. J.-H.S., M.L.F., S.A.G., M.T.S., R.L., C.W., I.C., B.Y.K., P.A.W.R.,

and B.J.R. contributed to specimen collection and data generation. Data anal-

ysis was performed by S.M., S.P.K., R.I.C., and P.F.K., which was interpreted

by all authors. S.M., S.P.K., and K.L. drafted the report with input from all other

authors. The final manuscript has been critically revised and approved by all

authors.

DECLARATION OF INTERESTS

M.L.F. reports other support fromNuscan Diagnostics outside the scope of the

submitted work. C.W. reports research funding support fromMerck, is amem-

ber of the Immunogen advisory board (1/2022), and has been a member of the

Genentech advisory board (8/2020). The remaining authors declare no

competing interests.

Received: July 11, 2021

Revised: December 13, 2021

Accepted: January 29, 2022

Published: March 15, 2022

REFERENCES

1. Treloar, S., Hadfield, R., Montgomery, G., Lambert, A., Wicks, J., Barlow,

D.H., O’Connor, D.T., and Kennedy, S. (2002). The international endogene

study: a collection of families for genetic research in endometriosis. Fertil.

Sterility 78, 679–685. https://doi.org/10.1016/S0015-0282(02)03341-1.

2. Giudice, L.C. (2010). Clinical practice: endometriosis. New Engl. J. Med.

362, 2389–2398. https://doi.org/10.1056/NEJMcp1000274.

3. Rowlands, I.J., Abbott, J.A., Montgomery, G.W., Hockey, R., Rogers, P.,

and Mishra, G.D. (2021). Prevalence and incidence of endometriosis in

Australian women: a data linkage cohort study. BJOG: Int. J. Obstet. Gy-

naecol. 128, 657–665. https://doi.org/10.1111/1471-0528.16447.

4. American Society for Reproductive, M. (1997). Revised American society

for reproductive medicine classification of endometriosis: 1996. Fertil.

Steril. 67, 817–821. https://doi.org/10.1016/S0015-0282(97)81391-X.

5. Kok, V.C., Tsai, H.-J., Su, C.-F., and Lee, C.-K. (2015). The risks for

ovarian, endometrial, breast, colorectal, and other cancers in women

with newly diagnosed endometriosis or adenomyosis: a population-based

study. Int. J. Gynecol. Cancer 25, 968. https://doi.org/10.1097/IGC.

0000000000000454.

6. Brilhante, A.V.M., Augusto, K.L., Portela, M.C., Sucupira, L.C.G., Oliveira,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

EOC GWA Meta-analysis Summary

Statistics

Ovarian Cancer Association

Consortium Phelan et al.18
http://ocac.ccge.medschl.cam.ac.uk/

Endometrial eQTL summary statistics Fung et al.39 http://reproductivegenomics.com.au/

shiny/endo_eqtl_rna/

Mortlock et al.35 http://reproductivegenomics.com.au/

shiny/eeqtl2/

eQTLGen Blood eQTLs summary statistics Võsa et al.40 https://www.eqtlgen.org/

GTEx eQTL summary statistics Consortium et al.36 https://www.gtexportal.org/home/

H3K27ac ChIP-seq data Corona et al.33 GEO:GSE68104

Coetzee et al.34 GEO:GSE121103

This study GEO:GSE197928

ATAC-seq data This study GEO:GSE197928

Single-cell RNA-seq Wang et al.42 GEO:GSE111976

Software and algorithms

LDSC Bulik-Sullivan et al.20 https://github.com/bulik/ldsc

HDL Ning et al.21 https://github.com/zhenin/HDL

Mendelian Randomization (MR) R package MendelianRandomization

version 0.5.0

https://cran.r-project.org/web/packages/

MendelianRandomization/index.html

MR-PRESSO Verbanck et al.26 https://github.com/rondolab/MR-PRESSO

MetABF Trochet et al.27 https://github.com/trochet/metabf

RE2C Lee et al.29 https://github.com/cuelee/RE2C

GWAS-pw Pickrell et al.30 https://github.com/joepickrell/gwas-pw

fastBAT GCTA https://cnsgenomics.com/software/gcta/

#OverviewBakshi et al.31

Over-representation analysis WebGestalt http://www.webgestalt.org/

Liao et al.32

GENE2FUNC FUMA https://fuma.ctglab.nl/

Watanabe et al.37

Peak Calling ENCODE pipeline (v1.2.2) https://www.encodeproject.org/pipelines/

Summary-data-based Mendelian

Randomization (SMR)

Zhu et al.38 https://cnsgenomics.com/software/smr/

#Overview

ComplexHeatmap Gu et al.83 https://bioconductor.org/packages/

release/bioc/html/ComplexHeatmap.html

Other

Endometriosis GWA Meta-analysis

Summary Statistics

International Endometriosis

Genetics Consortium

N/A

Sapkota et al.17
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr Sally Mortlock (s.

mortlock@imb.uq.edu.au).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
EndometriomaH3K27acChIP-seq data and ATAC-seqdata have been deposited at GeneExpressionOmnibus (GEO) and are publicly

available as of the date of publication. Accession numbers are listed in the key resources table. This paper also analyses existing, pub-

licly available data. These accession numbers for the datasets are listed in the key resources table. This paper does not report original

code. Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary tissues
ChIP-seq and ATAC-seq data were generated for primary tissues (ChiP-seq - endometriosis (endometrioma) and adjacent endome-

triosis-associated stroma; ATAC-seq - fallopian tube and clear cell and high-grade serous ovarian cancer tissues) collected, with

informed consent, as part of the Gynecologic Tissue Bank at Cedars-Sinai Medical Center or at the University of Southern California.

Tissues were OCT embedded and H&Es reviewed to confirm the diagnosis.

METHOD DETAILS

Epithelial ovarian cancer dataset
Genetic data in the form of GWAS summary statistics were available from a 2017 GWASmeta-analysis for EOC and EOC histotypes

conducted by Phelan et al.18 Summary statistics included the SNP RSID, effect allele, other allele, effect allele frequency, beta co-

efficient (be), standard error (SE) and p-value. The meta-analysis included 25,509 EOC cases and 40,941 controls of European

ancestry with association statistics reported for 10,197,379 SNPs for overall EOC, high-grade serous ovarian cancer (HGSOC)

(n = 13,037), low-grade serous ovarian cancer (LGSOC) (n = 1,012), low malignant potential serous ovarian cancer (LMPSOC) (n =

1,954), mucinous ovarian cancer (MOC) (n = 1,417), endometrioid ovarian cancer (ENOC) (n = 2,810) and clear cell ovarian cancer

(CCOC) (n = 1,366). Summary statistics were filtered to remove SNPs with an imputation quality r2 (OncoArray) score <0.3 and

SNPs with a minor allele frequency (MAF) < 0.01 leaving 10,197,379 SNPs for subsequent analysis.

Endometriosis dataset
Endometriosis GWAS summary statistics were available from the 2017 GWAS meta-analysis for endometriosis conducted by Sap-

kota et al.17 Summary statistics include the SNP RSID, effect allele, other allele, beta coefficient (be), standard error (SE), effect allele

frequency, and p-value. Only statistics generated from European cohorts was used in subsequent analyses including 14,949 cases

and 190,715 controls. Summary statistics for 7,899,415 SNPs remained following removal of imputed genotypes with low imputation

quality (<0.3 for minimac and <0.4 for IMPUTE2) and SNPs with a MAF <0.01.

H3K27ac ChIP-seq and ATAC-seq
ChIP-seq - H3K27ac ChIP-seq data have been previously described33,34,84 with the exception of the primary endometrioma and endo-

metrioma stroma specimens,whichwere profiled in parallel with the tumors reported inCorona et al.33 5mmpunch biopsieswere taken

from frozen tissue blocks, and were pulverized using the Covaris CryoPrep system (Covaris, Woburn, MA), then fixed using 1% form-

aldehyde (Thermo fisher,Waltham,MA) diluted in Phosphate-buffered saline solution (10 min at room temperature) and quenchedwith

125mMglycine (10min at room temperature). Cells were lysed in ice cold lysis buffer (50mMTris, 10mMEDTA, 1%SDSwith protease

inhibitor; 10min) and rinsedwith ice-cold phosphate-buffered saline solution. TheCovaris E210 sonicator was used to shear chromatin

to 300–500 base pairs (AFA: 5%duty cycle, 5 intensity, 200 cycles/burst; 10min). Chromatin sampleswere dilutedwith 5 vol of dilution

buffer (1%TritonX-100,2mMEDTA,150mMNaCl, 20mMTris–HClpH8.1) and incubatedovernightat4�Cwith1 mgH3K27acantibody

(DiAGenode,C15410196,Denville,NJ; asa ratioof 1:600) coupledwithproteinAandproteinGbeads (Life Technologies,Carlsbad,CA).

Chromatin sampleswere washed five times with RIPAwashing buffer (0.05MHEPES pH 7.6, 1mMEDTA, 0.7%Na deoxycholate, 1%

NP-40, 0.5 M LiCl), once with TE buffer (pH 8.0) and were resuspended in elution buffer (50 mMTris, 10mMEDTA, 1%SDS). Samples

were treated with RNase (30 min at 37 �C) and incubated overnight with proteinase K (65�C). DNA was isolated using the Qiagen Qia-

quick kit, and libraries preparedusing the ThruPLEX-FDPrepKit (RubiconGenomics, AnnArbor,MI). Sequencingwasperformed using

75-base pair single reads on the Illumina platform (Illumina, San Diego, CA) at the Dana-Farber Cancer Institute.

ATAC-seq - Epithelial-rich regions of flash frozen tumors were biopsied using a 5mm biopsy punch. Primary fallopian tube tissues

were subjected to enzymatic digest using Pronase and DNase1 for 48-72 hours85,86 and the epithelial-enriched cells viably frozen

down in 10%DMSO/90% fetal bovine serum. In one instance, fallopian epithelial cells were cultured on collagen-coated plates prior

to profiling. ATAC-seq was performed by Active Motif, using paired end 42bp reads, and sequenced to a depth of �40M reads.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genetic correlation and Mendelian randomization
Linkage disequilibrium score regression (LDSC)20 and high-definition likelihood inference (HDL)21 was used to estimate the genetic

correlation between endometriosis and ovarian cancer histotypes using the GWAS summary statistics. LD scores were computed
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using1000GenomesEuropeanancestry data as the independent variable in theLDScore regression and for the regressionweights. In

the absence of sample overlap between the datasets we also constrained the LD score regression intercept to reduce the standard

error substantially. Mendelian randomization (MR) analyses were performed using the R package MendelianRandomization version

0.5.0.87 Inverse-variance weighted (IVW)22 regression was used for primary analysis and weighted median23 and MR-Egger regres-

sion24 for sensitivity analyses with models that aremore robust to horizontal pleiotropy. Associations were declared significant if both

IVWandweightedmedian analyses yielded P-values < 0.05 and the direction of the effect size estimates (odds ratios) were consistent

across IVW,weightedmedian,MR-Egger regression approaches. Of the 27 independent, genome-wide significant (P-value < 5x10�8)

endometriosis lead risk SNPs,25 twomultiallelic SNPs (rs484686 and rs4762173) were removed, leaving 25 SNPs in the instrument for

genetic liability to endometriosis. Further, we also used the MR-PRESSO ‘‘global test’’26 and the MR-Egger intercept test24 to detect

statistical evidence of horizontal pleiotropy and if the MR-PRESSO global test found such evidence it was followed by outlier (pleio-

tropic) SNP removal and theMR-PRESSO ‘‘distortion test’’ to identify potential distortion of theMRestimate after outlier SNP removal.

Finally, we also tested for reverse-directional causal effects using MR by evaluating the association between genetic liability to EOC

histotypes and endometriosis risk.Where fewer than three genome-wide significant (P-value < 5x10�8) SNPswere available to instru-

ment a EOC histotype (for CCOC, ENOC and LGSOC) we used SNPs associated with that histotype at P-value < 10�5 to enable

application of the primary IVW MR method in the EOC to endometriosis direction.

Cross-trait meta-analysis
To identify risk loci associatedwith both traits we conducted a bivariatemeta-analysis using two different approaches,MetABF27 and

Han and Eskin random-effects model (RE2C).28,29 MetABF is a method to meta-analyse genome-wide association studies using

approximate Bayes Factors. Beta coefficients (effect sizes) and SEs from the endometriosis dataset were used as input for MetABF

alongside beta coefficients and SEs from ovarian cancer histotypes. Each of the six ovarian cancer histotypes were meta-analysed

with endometriosis separately. Correlation in effect sizes was modeled using both an independent and fixed effect model and the

prior parameter for the variance in effect sizes, sigma, was set to 0.1 allowing effect sizes to be small, characteristic of complex dis-

eases. Significantly associated SNPs were defined by log10 ABF >4 in either the fixed or independent model and at least nominal

significance in the single trait GWAS (P-value<0.05).

To validate results, we also performed a routine fixed effects meta-analysis and a modified random effects meta-analysis on the

same data using RE2C. RE2C is designed to integrate the effects while accounting for the heterogeneity between studies. A SNPwas

deemed significantly associated with both traits in the bivariate meta-analysis if it met a fixed (Cochran’s Q statistic P-value >0.05) or

random (Cochran’s Q statistics’s P-value <0.05) effect threshold of P-value < 5x10-8 and was at least nominally significant in the sin-

gle trait GWAS meta-analysis (P-value<0.05) and had no significant heterogeneity. SNPs found to be significantly associated with

both traits and passing thresholds for both MetABF and RE2C were fine mapped using FUMA37 to identify independent signals to

identify independent signals at r2 < 0.6.

Colocalization analyses
GWAS-pw30 was used to estimate the probability that in a given genomic region the same variant underlies the association with both

traits. The genome is split into 1703 non-overlapping regions using linkage disequilibrium blocks88 and following Giambartolomei

et al.89 the software estimates the probability, using an empirical Bayes approach, that a given genomic region either 1) contains

a genetic variant that influences the first trait, 2) contains a genetic variant that influences the second trait, 3) contains a genetic

variant that influences both traits (posterior probability of association, PPA3), or 4) contains both a genetic variant that influences

the first trait and a separate genetic variant that influences the second trait (PPA4). This was performed using the endometriosis data-

set and each ovarian cancer histotype. Regions with a PPA3/4 > 0.5 were considered to have evidence of a shared causal variant and

independent causal variants respectively.

Gene-based association analysis
The fastBAT function in GCTA31 was used to perform a gene-based association analysis for endometriosis and each ovarian cancer

histotype using GWAS summary statistics from each trait. A total of 20,439 genes (hg19) were tested for each disease using an LD

cutoff of 0.9 and no SNPs outside defined gene boundaries. Genes in the top 1% and 5% associated with each EOC histotype that

overlapped with the top 1% and 5% of genes associated with endometriosis were tested for enrichment in pathways using over-rep-

resentation analysis in WebGestalt.32

Functional annotation
The GENE2FUNC option in FUMA37 was also used to investigate the expression of nearby (within 10kb) genes across tissues and

enrichment of functional and biological pathways.

H3K27ac ChIP-seq and ATAC-seq peak calling
Peak calling of H3K27ac ChIP-seq profiles was performed using the ENCODE pipeline (v1.2.2) with p-val_thresh = 1e-09, reference

genome hg38 and other default parameters. If two technical replicates were used, we selected the overlap peak set of the true

replicates (rep1_rep2.overlap.bfilt.narrowPeak.gz) as the ‘sample peak set’, otherwise, we used the overlap peak set of the pseudo
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replicates (rep1-pr.overlap.bfilt.narrowPeak.gz). Quality control metrics (number of uniquemapped reads, cross-correlation metrics,

IDR) were checked for each technical replicate (Table S5).

Donor peak set

Two or more sample peak sets are combined if they belong to the same donor, resulting in a set of non-overlapping peaks. First,

individual peak scores (-log10(p-value)) are normalized to a ‘score per million’ (SPM) dividing the peak score, by the sum of all

peak scores within the sample, divided by a factor of a million. Then, all peaks from the same donor are merged and sorted by

SPM. Iteratively, a peak is removed if it overlaps another peak with a higher SPM, resulting in a set of non-overlapping peaks that

represent a donor.

Consensus peak set

A set of sample/donor peak sets will be combined when they are part of the same experiment, tissue type and sample type triage.

Similarly to the donor peak set procedure, peaks aremerged, sorted and iteratively removed, based on the SPM. Then, the remaining

non-overlapping peaks are tagged as reproducible if they overlap peaks with an SPM > 5 in two or more samples. Non-reproducible

peaks, peaks that are within repeat mask regions and peaks in the ‘‘Y’’ chromosome are removed, leaving a set of reproducible non-

overlapping peaks as the ‘consensus peak set’. Consensus peak sets are then transformed from hg38 to hg19 using liftOver with

parameteres -bedPlus=6, the hg38toHg19.over.chain.gz from UCSC chain files and other default parameters. On average, each

consensus peak set has 125.2 (0.28%) genomic locations that could not be mapped (range = [8,350]).

Summary-data-based Mendelian randomization (SMR)
Summary-data-based Mendelian randomization (SMR) is used to assess the association between genetic variants, gene expression/

methylation level and risk of disease.38 SMR has been conducted using summary statistics fromSapkota et al.17 and endometrial and

blood eQTLs andmQTLs.35,39,41,61 Using these published results, we searched for any significant SMR associations in loci associated

(log10ABF>4 in thecross-traitMetABFanalysis, P-value<5x10�8 in thecross-traitRE2Canalysis andP-value<0.05 in eachsingle trait

meta-analysis) with both endometriosis andovarian cancer from the bivariatemeta-analysis.We also conductedSMRon each ovarian

cancer histotype by integrating the GWAS meta-analysis summary data from Phelan et al.18 and summary eQTL data from endome-

trium,35,39 eQTLGen40 and GTEx ovary and uterus.36 Associations were considered significant if they had a PSMR<0.05/(number of

genes tested) and a PHEIDI > 0.05/(number of genes passing the SMR test). Of note, associations with PSMR<0.05 and a PHEIDI >

0.05werealsoconsidereddue topower limitations inexistingdatasets. In theabsenceofmultiple testingcorrection thesewould require

futurevalidation in largerdatasetsor functional studies. Theheterogeneity independent instruments (HEIDI) test38 considers thepattern

of risk associations using all the SNPs that are significantly associated with gene expression in a region and evaluates the null hypoth-

esis that there is a single association signal affecting gene expression/methylation and disease risk and the alternative hypothesis that

there aredistinct variants associatedwith expression/methylationanddisease. Resultswere filtered to only report those in regionswith

evidence of a variant associatedwith both endometriosis and a EOChistotype (PPA>0.5) as determined by the colocalization analysis.

Expression of target genes
The expression of target genes annotated in the cross-trait meta-analysis, and those identified using fastBAT and SMR, was inves-

tigated in eight endometrial cell types using single-cell expression data from Wang et al.42 Counts were downloaded from Gene

Expression Omnibus (GEO) under accession number GSE111976. Heatmaps for the single-cell expression data were generated us-

ing the ComplexHeatmap package83 in R. Counts from both the 10x dataset, generated using the 10x Chromium system, and C1

dataset, generated using Fluidigm C1 medium chips, were plotted.
e4 Cell Reports Medicine 3, 100542, March 15, 2022
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Supplementary Figures 

 

 

 
Figure S1. ATAC-seq and H3K27ac ChIP-seq coverage and peaks. (a) Number of peaks and (b) genome 

coverage in Mbp and (c) genome coverage in percentage for sample peak sets (black dots) and consensus peak 

sets (red dots). (d) Number of peaks (e) and genome coverage in Mbp and (g) genome coverage in percentage 

for consensus peak sets as a function of the number of donors. Endo, endometriosis; FT, fallopian tube; Str, 

endometriosis-associated stroma; CCOC, clear cell ovarian cancer; EnOC, endometrioid ovarian cancer; 

HGSOC, high-grade serous ovarian cancer; MOC, mucinous ovarian cancer. Data for both primary tissues (PT) 

and cell lines (CL) is shown. Related to STAR Methods and Table S5. 

 



 
Figure S2. Associated SNPs overlap biofeatures. Histogram of number of SNPs associated with 

endometriosis and (a) clear cell ovarian cancer (CCOC), (b) endometrioid ovarian cancer (ENOC), (c) high-

grade serous ovarian cancer (HGSOC), (d) Low-grade serous ovarian cancer (LGSOC), (e) low malignant 

potential serous ovarian cancer (LMPSOC) and (f) mucinous ovarian cancer (MOC), that overlap n biofeatures. 

Inset histograms show the number of overlaps ≥ 1. Related to Figure 1 and Table S7. 

 



 
Figure S3. Correlation between biofeature overlap. Pearson’s correlation coefficient between ATAC-seq and 

H3K27ac ChiP-seq biofeatures based on the overlap with SNPs associated with both endometriosis and ovarian 

cancer risk. Endo, endometriosis; FT, fallopian tube; Str, endometriosis-associated stroma; CCOC, clear cell 

ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC, high-grade serous ovarian cancer; MOC, 

mucinous ovarian cancer. Data for both primary tissues (PT) and cell lines (CL) is shown. Related to Figure 1 

and Table S5. 

 

 



 
Figure S4. Expression of genes annotated to associated regions. Heatmap, generated in FUMA, of genes 

annotated to SNPs significantly associated with endometriosis plus (a) clear cell ovarian cancer, (b) high-grade 

serous ovarian cancer and (c) all three, expressed across 58 tissues from GTEx. Related to Tables 3 and 4 and 

Table S8. 

 

 

 

 

 

 

 



 
Figure S5. Endometrial single-cell expression of target genes. Heatmaps showing the expression of target 

genes in eight cell types identified from single-cell sequencing of endometrial samples by Wang et al. 2020 

[GSE111976]. Counts from both the 10x dataset (a), generated using the 10x Chromium system, and C1 dataset 

(b), generated using Fluidigm C1 medium chips, were plotted. Related to Tables 4 and 6. 

 

 

 



Supplementary Tables 

 

Table S1. Mendelian Randomization results for the association between genetic liability to each epithelial 

ovarian cancer (EOC) histotype and endometriosis risk. Related to Table 2. The primary IVW analysis 

results are in bold font. 

Exposure Method nsnp pval OR OR_lci95 OR_uci95 

Using genetic variants associated with each EOC histotype at P< 5e-8 

High-grade Serous 
Inverse variance 

weighted 
14 0.59 1.03 0.93 1.14 

High-grade Serous MR Egger 14 0.64 0.95 0.75 1.19 

High-grade Serous Weighted median 14 0.95 1.00 0.92 1.08 

Low Malignant Potential 

Serous 

Inverse variance 

weighted 
3 0.31 1.04 0.97 1.11 

Low Malignant Potential Serous MR Egger 3 0.95 1.01 0.78 1.31 

Low Malignant Potential Serous Weighted median 3 0.52 1.03 0.95 1.11 

Mucinous 
Inverse variance 

weighted 
4 0.06 1.09 1.00 1.20 

Mucinous MR Egger 4 0.14 7.35 1.37 39.31 

Mucinous Weighted median 4 0.01 1.12 1.03 1.21 

Using genetic variants associated with each EOC histotype at P < 1e-5 (because no variants were 

associated with endometrioid and Low-grade serous EOC risks at P < 5e-8 and only one variant was 

associated with clear cell EOC risk at P < 5e-8 in our data set, precluding the use of IVW, weighted 

median and MR-Egger methods, all of which require at least three variants in the genetic 

instrument for MR) 

Clear Cell 
Inverse variance 

weighted 
21 0.41 1.01 0.98 1.05 

Clear Cell MR Egger 21 0.16 1.06 0.98 1.14 

Clear Cell Weighted median 21 0.14 1.03 0.99 1.08 

Endometrioid  
Inverse variance 

weighted 
11 0.17 0.95 0.88 1.02 

Endometrioid  MR Egger 11 0.75 1.04 0.82 1.32 

Endometrioid  Weighted median 11 0.75 0.98 0.89 1.08 

Low-grade Serous 
Inverse variance 

weighted 
26 0.68 0.99 0.97 1.02 

Low-grade Serous MR Egger 26 0.39 0.98 0.92 1.03 

Low-grade Serous Weighted median 26 0.72 0.99 0.96 1.03 

nsnp: number of SNPs included as instruments 

pval: Mendelian Randomisation P-value 

OR: odds ratio 

OR_lci95: lower 95% confidence interval odds ratio 

OR_uci95: upper 95% confidence interval odds ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S7. Index SNPs for independent loci from the cross-trait meta-analysis containing SNPs 

intersecting with biofeatures. Related to Figure 1 and Figure S2. 

Comparison rsID Chr 
Position 

(bp) 

Nearest gene or 

gene with 

functional 

evidence 

nOverlap 

= 0 

nOverlap 

> 0 

nOverlap 

> 0 (%) 

Total 

SNPs 

High-grade Serous + 

Endometriosis 
rs7217120 chr17 46484755 SKAP1 220 26 10.57 246 

Mucinous + 

Endometriosis 
rs4849174 chr2 113973467 PAX8 42 26 38.24 68 

Clear Cell + 

Endometriosis 
rs10167914 chr2 113563361 IL1A 18 12 40.00 30 

Clear Cell + 

Endometriosis 
rs11674184 chr2 11721535 GREB1 50 12 19.35 62 

High-grade Serous + 

Endometriosis 
rs12037376 chr1 22462111 LINC00339 36 9 20.00 45 

High-grade Serous + 

Endometriosis 
rs7084454 chr10 21821274 MLLT10 85 7 7.61 92 

High-grade Serous + 

Endometriosis 
rs11658063 chr17 36103872 HNF1B 6 6 50.00 12 

Mucinous + 

Endometriosis 
rs11674184 chr2 11721535 GREB1 23 5 17.86 28 

Clear Cell + 

Endometriosis 
rs11651755 chr17 36099840 HNF1B 2 4 66.67 6 

Clear Cell + 

Endometriosis 
rs12700667 chr7 25901639 AK057379 9 4 30.77 13 

Endometrioid + 

Endometriosis 
rs10445377 chr17 46214168 SKAP1 60 4 6.25 64 

High-grade Serous + 

Endometriosis 
rs7570979 chr2 11717429 GREB1 17 4 19.05 21 

LMP Serous + 

Endometriosis 
rs10445377 chr17 46214168 SKAP1 61 4 6.15 65 

Clear Cell + 

Endometriosis 
rs61768001 chr1 22465820 LINC00339 20 3 13.04 23 

LMP Serous + 

Endometriosis 
rs35713035 chr17 46501710 SKAP1 119 3 2.46 122 

Clear Cell + 

Endometriosis 
rs4516787 chr4 56010165 KDR 74 2 2.63 76 

Endometrioid + 

Endometriosis 
rs11031005 chr11 30226356 FSHB 27 2 6.90 29 

Mucinous + 

Endometriosis 
rs10167914 chr2 113563361 IL1A 4 2 33.33 6 

Clear Cell + 

Endometriosis 
rs1971256 chr6 151816011 CCDC170 0 1 100.00 1 

Clear Cell + 

Endometriosis 
rs1311245 chr5 64272107 CWC27 1 1 50.00 2 

Clear Cell + 

Endometriosis 
rs7309252 chr12 95687497 VEZT 6 1 14.29 7 

Clear Cell + 

Endometriosis 
rs8069263 chr17 46286778 SKAP1 8 1 11.11 9 

Endometrioid + 

Endometriosis 
rs1971256 chr6 151816011 CCDC170 5 1 16.67 6 

High-grade Serous + 

Endometriosis 
rs1250244 chr2 216297796 FN1 0 1 100.00 1 

High-grade Serous + 

Endometriosis 
rs10048393 chr18 3476253 AX721193 2 1 33.33 3 



High-grade Serous + 

Endometriosis 
rs111610638 chr6 152449994 SYNE1 4 1 20.00 5 

High-grade Serous + 

Endometriosis 
rs635634 chr9 136155000 ABO 9 1 10.00 10 

Low-grade Serous + 

Endometriosis 
rs10445377 chr17 46214168 SKAP1 27 1 3.57 28 

Clear Cell + 

Endometriosis 
rs17803970 chr6 152553718 SYNE1 9 0 0.00 9 

Clear Cell + 

Endometriosis 
rs71575922 chr6 152554014 SYNE1 6 0 0.00 6 

Clear Cell + 

Endometriosis 
rs566679 chr9 22634893 LINC01239 3 0 0.00 3 

Clear Cell + 

Endometriosis 
rs78103255 chr8 75311331 GDAP1 2 0 0.00 2 

Endometrioid + 

Endometriosis 
rs56318008 chr1 22470407 LINC00339 10 0 0.00 10 

Endometrioid + 

Endometriosis 
rs6475610 chr9 22141894 CDKN2B-AS1 5 0 0.00 5 

Endometrioid + 

Endometriosis 
rs495590 chr1 172122809 DNM3 2 0 0.00 2 

High-grade Serous + 

Endometriosis 
rs6908034 chr6 19773930 ID4 3 0 0.00 3 

High-grade Serous + 

Endometriosis 
rs62065444 chr17 43565599 PLEKHM1 3 0 0.00 3 

High-grade Serous + 

Endometriosis 
rs1981046 chr9 22173407 CDKN2B-AS1 2 0 0.00 2 

High-grade Serous + 

Endometriosis 
rs13000026 chr2 165558884 COBLL1 1 0 0.00 1 

LMP Serous + 

Endometriosis 
rs4654785 chr1 22491843 LOC105376850 5 0 0.00 5 

LMP Serous + 

Endometriosis 
rs10748858 chr10 105639514 OBFC1 4 0 0.00 4 

LMP Serous + 

Endometriosis 
rs11031005 chr11 30226356 FSHB 2 0 0.00 2 

Low-grade Serous + 

Endometriosis 
rs77294520 chr2 11660955 GREB1 1 0 0.00 1 

Low-grade Serous + 

Endometriosis 
rs584336 chr6 152616173 SYNE1 1 0 0.00 1 

Mucinous + 

Endometriosis 
rs6546324 chr2 67856490 LINC01812 3 0 0.00 3 

Mucinous + 

Endometriosis 
rs67808862 chr3 138849543 BPESC1 2 0 0.00 2 

nOverlap: number of SNPs in locus intersecting biofeature. 
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