Primer	Sequence	Purpose
GAPDH_Fw	GGTGAAGGTCGGAGTCAACGGA	RT-qPCR
GAPDH_Rv	GAGGGATCTCGCTCCTGGAAGA	RT-qPCR
PRKCZ_Fw	ACATGTGTCGTCTGCACCAG	RT-qPCR
PRKCZ_Rv	GTGCTCGGGAAAACATGAAT	RT-qPCR
ATM_Fw	CCGAGTGCAGTGACAGTG	RT-qPCR
ATM_Rv	TTGACGGCAGCAGATAAGC	RT-qPCR
COL2A1_Fw	CAACACTGCCAACGTCCAGAT	RT-qPCR
COL2A1_Rv	CTGCTTCGTCCAGATAGGCAAT	RT-qPCR
ACAN_Fw	AGGCAGCGTGATCCTTACC	RT-qPCR
ACAN_Rv	GGCCTCTCCAGTCTCATTCTC	RT-qPCR
PRKCZ_Fw	AATTGGATCCAGGATTGGTTTAGGTG	Targeted bisulfite sequencing
PRKCZ_Rv	GGGGGAATTCAAAACTCCAAATAAAACC	Targeted bisulfite sequencing
PRKCZ_cDNA1_Fw	TAGCTCTAGATGCCCAGCAGGACC	Vector Construction
PRKCZ_cDNA1_Rv	GTACGAATTCACACCGACTCCTCGGT	Vector Construction
PRKCZ_cDNA2_Fw	GCTTCGAATTCTGCAGATGCCCAGCAGGACCGGC	Vector Construction
PRKCZ_cDNA2_Rv	CGGGCCCGCGGTACCGCACACCGACTCCTCGGTGG	Vector Construction

Supplementary Table S1. Primers for RT-qPCR and bisulfite sequencing.

Fw, Forward. Rv, Reverse. PRKCZ_cDNA1 primers were inserted to pCDH-EF1-MCS-IRES-Puro. PRKCZ_cDNA2 primers were inserted to pEGFP-N1-FLAG.

Supplementary Table S2. Antibodies for western blotting.

Antibody	Dilution rate	Manufacturer	Catalog number
Actin	1:5000	Millipore	MAB1501
PRKCZ	1:500	Sigma Aldrich	HPA021851
ATM	1:1000	Cell Signaling Technology	2873
phospho-ATM (S1981)	1:1000	Cell Signaling Technology	5883
CHK2	1:1000	Cell Signaling Technology	6334
phospho-CHK2(T68)	1:1000	Cell Signaling Technology	2197
MRE11	1:1000	Cell Signaling Technology	4874
RAD50	1:1000	Cell Signaling Technology	3427
NBS1	1:1000	Cell Signaling Technology	14956
cleaved caspase-3	1:500	Cell Signaling Technology	9661
cleaved PARP	1:500	Promega	G7341
GFP	1:1000	Cell Signaling Technology	2956
mouse IgG	1:5000	Santa Cruz Biotechnology	2005
rabbit IgG	1:5000	Santa Cruz Biotechnology	2004

Case	Diagnosis	Age	Gender	Location	Experiment
1	DDCS	59	Male	Pelvis	IHC
2	DDCS	38	Male	Pelvis	IHC
3	DDCS	53	Female	Femur	IHC
4	DDCS	71	Male	Pelvis	IHC
5	DDCS	71	Female	Mesentery of descending colon	IHC
6	DDCS	59	Male	Humerus	IHC
7	DDCS	54	Female	Pelvis	IHC
8	DDCS	71	Male	Femur	IHC
9	DDCS	44	Male	Femur	IHC, RT-qPCR
10	DDCS	73	Male	Femur	IHC
11	DDCS	38	Female	Humerus	IHC
12	DDCS	79	Male	Rib	IHC
13	DDCS	56	Male	Femur	IHC
14	DDCS	62	Female	Femur	IHC
15	DDCS	67	Male	Femur	IHC, RT-qPCR
16	DDCS	68	Female	Femur	IHC
17	DDCS	81	Male	Spine	IHC, RT-qPCR
18	CCS	42	Female	Pelvis	RT-qPCR
19	CCS	27	Female	Scapula	RT–qPCR
20	CCS	49	Female	Pelvis	RT–qPCR
21	CCS	22	Male	Scapula	RT–qPCR
22	CCS	66	Female	Femur	RT-qPCR
23	CCS	89	Female	Rib	RT–qPCR
24	CCS	88	Male	Femur	RT-qPCR
25	CCS	57	Female	Spine	RT-qPCR
26	CCS	33	Male	Pelvis	RT–qPCR

Supplementary Table S3. Clinical demographics of chondrosarcoma samples.

DDCS, dedifferentiated chondrosarcoma. CCS, conventional chondrosarcoma. IHC, immunohistochemistry. RT-qPCR, quantitative reverse transcription polymerase chain reaction.

Cell line	Total sequence pairs	Mapping efficiency	Total number of C's analysed	C methylated in CpG context
NDCS-1	590,950,972	47.5 %	15,249,768,806	57.2 %
OUMS-27	581,096,690	49.9 %	15,674,058,312	63.6 %

Supplementary Table S4. Detail data of whole-genome bisulfite sequence.

COL11A2

MIA

MIA	/NM_00	1202553	.2	\rightarrow) })	$\rightarrow \rightarrow$	>>>>) 	}}}
							MIA/	NM	006533
						MIA	-RAB4	B/N	R 0377
CpG	Islands	(Islands	< 300	Bases	are	Light	Green		

SERPINA3

SERPINA3/NM 001085.5	÷	÷	\rightarrow	>	\rightarrow	>	⇒	\rightarrow	$\left.\right\rangle$	\rightarrow	$\left.\right\rangle$	\rightarrow	\rightarrow	\rightarrow	\rightarrow	>
SERPINA3/NM_001384674.1	÷	5	↦	5	\rightarrow	<u>-</u>	╞	4	Ļ.,	4	Ļ.,	4	,	┝	╞→	╘
SERPINA3/NM_001384673.1			<u> </u>	5		5	5	4		5	5	6	5	5	5	4
SEDDINA2/NM_001284673.1		Ĺ		<i>′</i>	Ĺ	Ĺ	Ľ	ĺ.		Ľ		Ľ	[[ĺ.	ĺ (Ľ
3ERFINA3/INIVI_001384072.1							C	Γ	Ľ	ľ	77	1	ſ	7	Ľ	Γ
CpG Islands (Islands < 300 b	Bases	s a	re	L	igl	nt	G	re	er	1)						

Supplementary Figure S1. CpG island near the transcription start sites. Data were obtained from the UCSC Genome Browser (<u>https://genome.ucsc.edu/index.html</u>). Green bands indicate CpG islands.

Supplementary Figure S2. Phenotype of each cell line; OUMS–27, NDCS–1, and SW1353. a. Proliferation assay. NDCS–1 and SW1353 showed relatively rapid growth compared to OUMS–27. b. Expression of chondrogenic differentiation–related genes determined by RT-qPCR. OUMS–27 expressed significantly higher level of chondrogenic differentiation-related genes than the others. c. Representative images of HE stains in xenografts of NDCS–1 and SW1353. The xenograft of SW1353 was close to dedifferentiated component rather than cartilaginous component of NDCS–1. Scale bars, 100 μ m. In **a** and **b**, the data are means ± SD; n = 3. Two-tailed t tests. *, p < 0.05. NS, not significant.

Supplementary Figure S3. Comparison of PRKCZ expression levels in clinical samples. Nine samples of CCS and three samples of DDCS were analyzed by RT-qPCR. The relative fold expression was calculated based on the lowest expression level among all samples. Two-tailed t tests. *, p < 0.05.

Supplementary Figure S4. Additional data for Figure 4. a. Cell cycle profiles in PRKCZ–overexpressing NDCS–1 vs. mock–transfected NDCS–1. b. Colony counts in PRKCZ–overexpressing NDCS–1 vs. mock–transfected NDCS–1, as determined by colony formation assay. Representative images are shown. Two-tailed t tests. *, p < 0.05. c. Cell cycle profiles in siPRKCZ–transfected OUMS–27 vs. scrambled siRNA–transfected OUMS–27.

Supplementary Figure S5. PRKCZ overexpression decreases proliferation and induces apoptosis in SW1353. In ag, PRKCZ–overexpressing SW1353 vs. mock–transfected SW1353. a. PRKCZ expression determined by RT–qPCR. b. PRKCZ and apoptosis–related proteins expression determined by western blotting. c. Proliferation assay. d and e. Cell cycle profiles, and sub G1 fraction rate determined by cell cycle assay. f. Colony counts determined by colony formation assay. Representative images are shown. g. Time course of tumor volume of xenograft transplantation. Images were obtained at the time of sacrifice; representative images are shown. In a, c, e, f, and g, data are means \pm SD; n = 3. Two– tailed t tests. *, p < 0.05.

Supplementary Figure S6. Validation for relationship between PRKCZ expression and ATM/CHK2 activation. a. The original images of western blotting shown in Figure 5b. **b.** Expression of ATM/CHK2–related proteins in PRKCZ– overexpressing SW1353 vs. mock–transfected SW1353. Band intensities were quantified and normalized using actin levels. The relative intensities compared to mock are shown under each band. **c.** Expression of ATM/CHK2–related proteins and apoptosis–related protein in chloroquine–treated each cell line.

b

ATM

Position	Code	Kinase	Peptide	Score	Cutoff
21	Т	AGC/PKC/PKCi/PRKCZ	QLEHDRATERKKEVE	51.196	41.793
47	S	AGC/PKC/PKCi/PRKCZ	IKHLDRH <mark>S</mark> DSKQGKY	45.588	41.793
474	S	AGC/PKC/PKCi/PRKCZ	DKRSNLE <mark>S</mark> SQKSDLL	43.131	41.793
571	S	AGC/PKC/PKCi/PRKCZ	CEVNRSF <mark>S</mark> LKESIMK	44.304	41.793
1306	S	AGC/PKC/PKCi/PRKCZ	AYEGTRD <mark>S</mark> GMAQQRE	50.485	41.793
1635	S	AGC/PKC/PKCi/PRKCZ	MVDIMRA <mark>S</mark> QDNPQDG	47.287	41.793
1695	S	AGC/PKC/PKCi/PRKCZ	IQHSKDA <mark>S</mark> YTKALKL	45.944	41.793
2114	S	AGC/PKC/PKCi/PRKCZ	MQWDHCT <mark>S</mark> VSKEVEG	44.723	41.793
2549	S	AGC/PKC/PKCi/PRKCZ	NNLISRI <mark>S</mark> MDHPHHT	47.727	41.793

CHK2

Code	Kinase	Peptide	Score	Cutoff
was pre	edicted			
•				
Code	Kinase	Peptide	Score	Cutoff
	Code was pre	Code Kinase was predicted Kinase	Code Kinase Peptide was predicted Kinase Peptide	Code Kinase Peptide Score was predicted Kinase Peptide Score

No site was predicted

Supplementary Figure S7. Group-based phosphorylation site prediction system (http://gps.biocuckoo.cn) identified predicted phosphorylation sites of PRKCZ. a. Sequence logo of PRKCZ. b. Predicted phosphorylation sites of ATM, CHK2, and RAD50. CHK2 and RAD50 have no predicted phosphorylation sites.

Supplementary Figure S8. Additional data for Figure 6. a. Cell cycle profiles in 10μ M of decitabine–treated NDCS–1 vs. PBS–treated NDCS–1. b. Colony counts in 10μ M of decitabine–treated NDCS–1 vs. PBS–treated NDCS–1, as determined by colony formation assay. Representative images are shown. c. Representative images of PRKCZ IHC staining in xenograft. Scale bars, 10μ m. d. PRKCZ expression determined by RT–qPCR. e. Proliferation assay. In b, d, and e, data are means \pm SD; n = 3. Two–tailed t tests. *, p < 0.05. NS, not significant. DAC, decitabine.

Supplementary Figure S9. Decitabine increases PRKCZ expression and induces apoptosis in SW1353. a. DNA methylation levels on the *PRKCZ* promoter in decitabine–treated vs. PBS–treated SW1353, as determined by bisulfite sequencing. Methylation rates of each C in CpG islands are indicated by dots (left). Curved lines indicate smooth local regression of methylation rates in each group (left). Average methylation rates (right). n = 5. Decitabine above 10 μ M was not administered because of cytotoxicity. In b–g, 10 μ M of decitabine–treated SW1353 vs. PBS–treated SW1353. b. PRKCZ expression determined by RT–qPCR. c. Expression of ATM/CHK2–related proteins and apoptosis–related proteins determined by western blotting. d. Proliferation assay. e and f. Cell cycle profiles, and sub G1 fraction rate

determined by cell cycle assay. **g.** Colony counts determined by colony formation assay. Representative images are shown. **h.** Time course of tumor volume of xenografts in decitabine-treated SW1353 vs. PBS-treated SW1353. Images were obtained at the time of sacrifice; representative images are shown. n = 5. In **i**-**k**, 10µM of decitabine-treated SW1353 with or without siPRKCZ. **i.** PRKCZ expression determined by RT-qPCR. **j.** PRKCZ expression determined by western blotting. **j.** Proliferation assay. In **b**, **d**, **f**, **g**, **i**, and **k**, n = 3. In **a**, **b**, **d**, **f**-**i**, and **k**, data are means ± SD. Two-tailed t tests. *, p < 0.05. NS, not significant. DAC, decitabine.

Supplementary Figure S10. Decitabine does not inhibit proliferation of OUMS-27. In a-e, decitabine-treated OUMS-27 vs. PBS-treated OUMS-27. a. PRKCZ expression determined by RT-qPCR. b. PRKCZ expression determined by western blotting. c. Proliferation assay. d. Cell cycle profiles. e. Colony formation assays showed no colonies in decitabine-treated or PBS-treated OUMS-27. Representative images are shown. In a and c, the data are means \pm SD; n = 3. Two-tailed t tests. NS, not significant. DAC, decitabine.

Supplementary Figure S11. ATM knockdown increases proliferation in NDCS-1 but not in OUMS-27. In a-c, 10μ M of decitabine-treated NDCS-1 with or without siATM. a. ATM expression determined by RT-qPCR. b. ATM expression determined by western blotting. c. Proliferation assay. In d-f, siATM-transfected OUMS-27 vs. scrambled siRNA-transfected OUMS-27. d. ATM expression determined by RT-qPCR. e. ATM expression determined by western blotting. f. Proliferation assay. In a, c, d, and f, the data are means \pm SD; n = 3. Two-tailed t tests. NS, not significant. DAC, decitabine.