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Abstract

In this document, we provide additional technical details supplementing the main manuscript of the
paper, including the derivations of mathematical expressions presented in the manuscript and proof
of Theorem 1 of the main manuscript, as well as the details of the estimation procedure referenced in
the main manuscript. We also provide additional simulation examples, including a set of simulation
experiments with a “linear” A-by-(X,Z) interaction effect scenario.

Web Appendix A: Technical details and additional simulations

A.1. Description of the constrained least squares criterion in Section 2.1

In Section 2 of the main manuscript, we introduce the constrained functional additive model (CFAM) for the
(X,Z)-by-A interaction effect:

Y = µ(X,Z) +
p∑
j=1

gj(〈Xj , βj〉, A) +
q∑

k=1
hk(Zk, A) + ε, (S.1)

with βj ∈ Θ, subject to the constraint on the component functions gj ∈ H
(βj)
j (j = 1, . . . , p) and hk ∈ Hk

(k = 1, . . . , q):

E[gj(〈Xj , βj〉, A)|Xj ] = 0 (almost surely) (∀βj ∈ Θ) (j = 1, . . . , p) and
E[hk(Zk, A)|Zk] = 0 (almost surely) (k = 1, . . . , q),

(S.2)

in which the expectation is taken with respect to the distribution of A given Xj (or Zk), and ε ∈ R is a mean
zero noise with finite variance, and the form of the squared integrable functional µ in (S.1) is left unspecified.

Under model (S.1) subject to (S.2), the “true” (i.e., optimal) functional components, which we denote by
{g∗j , j = 1, . . . , p} ∪ {β∗j , j = 1, . . . , p} ∪ {h∗k, k = 1, . . . , q} that constitute the (X,Z)-by-A interaction effect,
can be specified and viewed as the solution to the following constrained least squares problem:

{g∗j , β∗j , h∗k} = argmin
gj∈H

(βj)
j

,βj∈Θ,hk∈Hk

E

[{
Y − µ(X,Z)−

p∑
j=1

gj(〈Xj , βj〉, A)−
q∑

k=1
hk(Zk, A)

}2]
subject to E[gj(〈Xj , βj〉, A)|Xj ] = 0 ∀βj ∈ Θ (j = 1, . . . , p) and

E[hk(Zk, A)|Zk] = 0 (k = 1, . . . , q),

(S.3)
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in which µ(X,Z) is the “main” effect component that is assumed in model (S.1) (and is considered as fixed
in (S.3)). In particular, on the right-hand side of (S.3), the expected squared error criterion term can be
expanded as:

arg min
gj∈H

(βj)
j

,βj∈Θ,hk∈Hk

E

[{
Y −

p∑
j=1

gj(〈Xj , βj〉, A)−
q∑
k=1

hk(Zk, A)
}2

+ 2µ(X,Z)
{ p∑

j=1

gj(〈Xj , βj〉, A) +
q∑
k=1

hk(Zk, A)
}]

= arg min
gj∈H

(βj)
j

,βj∈Θ,hk∈Hk

E

[{
Y −

p∑
j=1

gj(〈Xj , βj〉, A)−
q∑
k=1

hk(Zk, A)
}2

+ 2µ(X,Z)E
[ p∑
j=1

gj(〈Xj , βj〉, A) +
q∑
k=1

hk(Zk, A)|X,Z
]]

= arg min
gj∈H

(βj)
j

,βj∈Θ,hk∈Hk

E

[{
Y −

p∑
j=1

gj(〈Xj , βj〉, A)−
q∑
k=1

hk(Zk, A)
}2]

,

in which the first equality follows from an application of the iterated expectation rule to condition on (X,Z),
and the second equality follows from the constraint imposed in (S.3), that is, E[gj,A(〈Xj , βj〉)|Xj ] = 0, ∀βj ∈
Θ (j = 1, . . . , p) and E[hk,A(Zk)|Zk] = 0 (k = 1, . . . , q), which makes the second term on the second line of
the above expression vanish to zero.

Since the minimization in (S.3) is in terms of the components {gj , βj , hk}, the right-hand side of (S.3) can
then be reduced to:

{g∗j , β∗j , h∗k} = argmin
gj∈H

(βj)
j

,βj∈Θ,hk∈Hk

E

[{
Y −

p∑
j=1

gj(〈Xj , βj〉, A)−
q∑

k=1
hk(Zk, A)

}2]
subject to E [gj(〈Xj , βj〉, A)|Xj ] = 0 ∀βj ∈ Θ (j = 1, . . . , p) and

E [hk(Zk, A)|Zk] = 0 (k = 1, . . . , q),

(S.4)

which is as appeared in the representation (3) of the main manuscript.
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A.2. Proof of Theorem 1

In this subsection, we provide the proof of Theorem 1 in Section 3.1 of the main manuscript. In order to
simplify the exposition, we focus on the derivation of the minimizing functions gj ∈ H

(βj)
j (j = 1, . . . , p)

associated with the functional covariates Xj (j = 1, . . . , p), only. The minimizing functions hk ∈ Hk
(k = 1, . . . , q) associated with the scalar covariates Zk (k = 1, . . . , q) are derived in the similar way. For fixed
βj ∈ Θ (j = 1, . . . , p), let us write Xβj = 〈Xj , βj〉 ∈ R (j = 1, . . . , p), for notational simplicity.

The squared error criterion on the right-hand side of (S.4) is

E

[{
Y −

p∑
j=1

gj(Xβj , A)
}2
]
∝ E

[
Y

p∑
j=1

gj(Xβj , A)−
{ p∑
j=1

gj(Xβj , A)
}2
/2
]

(with respect to {gj})

= E

[{
µ(X) +

p∑
j=1

g∗j (Xβ∗
j
, A)
} p∑
j=1

gj(Xβj , A)−
{ p∑
j=1

gj(Xβj , A)
}2
/2
]

= E

[
µ(X)

p∑
j=1

gj(Xβj , A)
]

+ E

[{ p∑
j=1

g∗j (Xβ∗
j
, A)
}{ p∑

j=1
gj(Xβj , A)

}
−
{ p∑
j=1

gj(Xβj , A)
}2
/2
]

= E

[{ p∑
j=1

g∗j (Xβ∗
j
, A)
}{ p∑

j=1
gj(Xβj , A)

}
−
{ p∑
j=1

gj(Xβj , A)
}2
/2
]
,

(S.5)
where the last equality follows from the constraints E[gj(Xβj , A)|Xj ] = 0 (j = 1, . . . , p) in (S.4) that
we imposed on {gj}, that imply E

[
µ(X)

{∑p
j=1 gj

(
Xβj , A

)}]
= E

[
E
[
µ(X)

{∑p
j=1 gj(Xβj , A)

}
| X

]]
=

E
[
µ(X)

∑p
j=1E

[
gj(Xβj , A) | Xj

]]
= 0. From (S.5), for fixed {βj , j = 1, . . . , p}, we can rewrite the squared

error criterion in (S.4) as:

argmin
{gj∈H

(βj)
j
}

E

[(
Y −

p∑
j=1

gj
(
Xβj , A

))2] = argmin
{gj∈H

(βj)
j
}

E

[( p∑
j=1

g∗j
(
Xβ∗

j
, A
)
−

p∑
j=1

gj
(
Xβj , A

))2]
, (S.6)

where we omitted the components associated with the scalar covariates to simplify the exposition. In the
following, we closely follow the proof of Theorem 1 in Ravikumar et al. (2009). The Lagrangian in (4) of the
main manuscript, for fixed {βj , j = 1, . . . , p} can be rewritten as:

Q({gj};λ) := E

[( p∑
j=1

g∗j (Xβ∗
j
, A)−

p∑
j=1

gj(Xβj , A)
)2]+ λ

p∑
j=1
‖gj‖. (S.7)

Fixing {βj , j = 1, . . . , p}, for each j, let us consider the minimization of (S.7) with respect to the jth
component function gj ∈ H

(βj)
j , holding the other component functions {gj′ , j′ 6= j} fixed. The stationary

condition is obtained by setting its Fréchet derivative to 0. Let ∂jQ({gj};λ; ηj) denote the directional
derivative with respect to gj ∈ H

(βj)
j (j = 1, . . . , p) in some arbitrary direction ηj ∈ H

(βj)
j . Then, for fixed

{βj , j = 1, . . . , p}, the stationary point of the Lagrangian (S.7) can be formulated as:

∂jQ({gj};λ; ηj) = 2E
[
(gj − R̃j + λνj)ηj

]
= 0, (S.8)

where

R̃j :=
p∑
j=1

g∗j (Xβ∗
j
, A)−

∑
j′ 6=j

gj′(Xβj′ , A), (S.9)

which represents the partial residual for the jth component function gj , and the function νj in (S.8) is an
element of the subgradient ∂‖gj‖, which satisfies νj = gj/‖gj‖ if ‖gj‖ 6= 0, and νj ∈ {s ∈ H

(βj)
j | ‖s‖ ≤ 1},

otherwise. Applying the iterated expectations to condition on (Xβj , A), the stationary condition (S.8) can be
rewritten as:

2E
[(
gj − E

[
R̃j |Xβj , A

]
+ λνj

)
ηj

]
= 0. (S.10)
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Since the function gj − E
[
R̃j |Xβj , A

]
+ λνj is in H(βj)

j , we can evaluate (S.8) (i.e., expression (S.10)) in

this particular direction: ηj := gj −E
[
R̃j |Xβj , A

]
+ λνj , which gives E

[(
gj − E

[
R̃j |Xβj , A

]
+ λνj

)2
]

= 0.

This equation implies:
gj + λνj = E

[
R̃j |Xβj , A

]
(almost surely). (S.11)

Now, let Pj denote the right-hand side of (S.11), i.e., Pj(= Pj(Xβj , A)) := E
[
R̃j |Xβj , A

]
. We note that,

if ‖gj‖ 6= 0, then νj = gj/‖gj‖. Therefore, by (S.11), we have ‖Pj‖ = ‖gj + λgj/‖gj‖‖ = ‖gj‖ + λ ≥ λ.
On the other hand, if ‖gj‖ = 0, then gj = 0 (almost surely) and ‖νj‖ ≤ 1. Then, condition (S.11) implies
that ‖Pj‖ ≤ λ. This gives us the equivalence between ‖Pj‖ ≤ λ and the statement gj = 0 (almost surely).
Therefore, condition (S.11) leads to the following expression:

(1 + λ/‖gj‖) gj = Pj (almost surely)

if ‖Pj‖ > λ, and gj = 0 (almost surely), otherwise; this implies the soft thresholding update rule for gj
appeared in (5) of the main manuscript.

Now we will derive the expression (6) of the main manuscript for the function Pj . Note, the underlying model
(S.1) implies that

∑p
j=1 g

∗
j (Xβ∗

j
, A) = E[Y |X, A] − µ(X) (if we omit the components associated with the

scalar covariates). Thus, (S.9) can be equivalently written as: R̃j = E[Y |X, A]− µ(X)−
∑
j′ 6=j gj′(Xβj′ , A).

Therefore, the function Pj(Xβj , A) = E
[
R̃j |Xβj , A

]
can be written as:

Pj(Xβj , A) = E
[
E[Y |X, A]− µ(X)−

∑
j′ 6=j

gj′(Xβj′ , A) | Xβj , A
]

= E
[
E[Y |X, A]−

∑
j′ 6=j

gj′(Xj′ , A) | Xβj , A
]
− E

[
µ(X) | Xβj , A

]
= E

[
Y −

∑
j′ 6=j

gj′(Xβj′ , A) | Xβj , A
]
− E

[
µ(X) | Xβj

]
= E

[
Y −

∑
j′ 6=j

gj′(Xβj′ , A) | Xβj , A
]
− E

[
µ(X) +

p∑
j=1

g∗j
(
Xβ∗

j
, A
)
| Xβj

]
= E

[
Y −

∑
j′ 6=j

gj′(Xβj′ , A) | Xβj , A
]
− E

[
Y | Xβj

]
= E

[
Y −

∑
j′ 6=j

gj′(Xβj′ , A) | Xβj , A
]
− E

[
Y −

∑
j′ 6=j

gj′(Xβj′ , A) | Xβj

]
= E

[
Rj | Xβj , A

]
− E

[
Rj | Xβj

]
,

where the fourth equality follows from the identifiability constraint (S.2) that we imposed on the underlying
model (S.1), and the sixth equality follows from the optimization constraint E[gj′(Xβj′ , A)|Xj ] = 0 (j′ 6= j)
implied by (S.4) that we imposed on {gj′ , j′ 6= j}. This gives the expression (6) of the main manuscript for
Pj .
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A.3. Description of general linear smoothers for the component functions

As referenced in Section 3.2.1 of the main manuscript, in general, estimation of the component functions gj is
not restricted to regression splines and any scatterplot smoother can be utilized. In this paper, the estimate
ĝj corresponds to a soft-thresholded estimate of the function Pj specified in (6) of the main manuscript.
To estimate Pj , we can first estimate the system of treatment a-specific functions E[Rij |〈β̂j , Xij〉, A = a]
(a = 1, . . . , L) (which corresponds to the first term on the right-hand side of (6) if we fix βj = β̂j), by
performing separate nonparametric regressions of R̂ij on regressor 〈β̂j , Xij〉, separately for each treatment
condition A = a (a = 1, . . . , L). We can then estimate the function −E[Rij |〈βj , Xij〉] (which corresponds to
the second term on the right-hand side of (6) if we fix βj = β̂j), by performing a nonparametric regression of
R̂ij on regressor 〈β̂j , Xij〉. Adding these two function estimates evaluated on the observed values provides
an estimate for Pj in (6) evaluated at the n points (〈β̂j , Xij〉, Ai) (i = 1, . . . , n) (analogous to the vector
P̂j ∈ Rn given in (S.17) in Section A.4 below). Given this estimate of Pj evaluated at the n points, we can
compute the corresponding soft-thresholded estimate ĝj ∈ Rn and conduct the coordinate descent procedure
described in Algorithm 1 in Section A.6 of this document.

A.4. Estimation details for Step 1

As indicated in Section A.3 above, although any linear smoothers can be utilized to obtain estimators
{ĝj , j = 1, . . . , p}, we shall focus on regression spline-type estimators, which are simple and computationally
efficient to implement. For each j and βj = β̂j , we will represent the component function gj ∈ H

(β̂j)
j on the

right-hand side of (4) of the main manuscript as:

gj(〈Xj , β̂j〉, a) = Ψj(〈Xj , β̂j〉)>θj,a (a = 1, . . . , L) (S.12)

for some prespecified dj-dimensional basis Ψj(·) (e.g., cubic B-spline basis with dj − 4 interior knots, evenly
placed over the range (scaled to, say, [0, 1]) of the observed values of 〈Xj , β̂j〉) and a set of unknown treatment
a-specific basis coefficients {θj,a ∈ Rdj}a∈{1,...,L}. Based on representation (S.12) of gj ∈ H

(β̂j)
j for fixed

β̂j , the constraint E[gj(〈Xj , βj〉, A)|Xj ] = 0 in (4) of the main manuscript on gj , for fixed βj = β̂j , can be
simplified to: E[θj,A] =

∑L
a=1 πaθj,a = 0 (if πa depends on the covariates, then we can reparametrize model

(1) of the main manuscript and accommodate πa(X,Z) in the estimation; see Section A.17). If we fix βj = β̂j ,
the constraint in (4) of the main manuscript on the function gj can be succinctly written in matrix form:

π(j)θj = 0, (S.13)

where θj := (θ>j,1,θ>j,2, . . . ,θ>j,L)> ∈ RdjL is the vectorized version of the basis coefficients {θj,a}a∈{1,...,L},
and the dj × djL matrix π(j) := (π1Idj ;π2Idj ; . . . ;πLIdj ) where Idj is the dj × dj identity matrix.

Let the n× dj matrices Dj,a (a = 1, . . . , L) denote the evaluation matrices of the basis Ψj(·) on 〈Xij , β̂j〉
(i = 1, . . . , n) specific to the treatment A = a (a = 1, . . . , L), whose ith row is the 1×dj vector Ψj(〈Xij , β̂j〉)>
if Ai = a, and a row of zeros 0> if Ai 6= a. Then the column-wise concatenation of the design matrices
{Dj,a}a∈{1,...,L}, i.e., the n× djL matrix Dj = (Dj,1;Dj,2; . . . ;Dj,L), defines the model matrix associated
with the vectorized basis coefficient θj ∈ RdjL, vectorized across {θj,a}a∈{1,...,L} in representation (S.12). We
can then represent gj(〈Xj , β̂j〉, A) of (S.12), based on the sample data, by the length-n vector:

gj = Djθj ∈ Rn (S.14)

subject to the linear constraint (S.13) on the parameters θj . (Similarly, we can represent hk(Zk, A) by a
length-n vector.)

The linear constraint in (S.13) on θj can be conveniently absorbed into the model matrix Dj in (S.14) by
reparametrization, which we describe next. We can find a djL × dj(L − 1) basis matrix n(j) (that spans
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the null space of the linear constraint (S.13)), such that, if we set θj = n(j)θ̃j for any arbitrary vector
θ̃j ∈ Rdj(L−1), then the vector θj ∈ RdjL automatically satisfies the constraint (S.13): π(j)θj = 0. Such
a basis matrix n(j) can be constructed by a QR decomposition of the matrix π(j)>. Then representation
(S.14) can be reparametrized, in terms of the unconstrained θ̃j ∈ Rdj(L−1) by replacing Dj in (S.14) with a
reparametrized model matrix D̃j = Djn

(j):

gj = D̃j θ̃j . (S.15)

Theorem 1 of the main manuscript, together with the results in Section A.5 below, indicates that (for fixed
βj = β̂j) the coordinate-wise minimizing function gj of the right-hand side of (4) of the main manuscript can
be estimated based on the sample by:

ĝj =

1− λ√
1
n‖P̂j‖2


+

P̂j (S.16)

where
P̂j = D̃j(D̃>j D̃j)−1D̃>j R̂j , (S.17)

in which R̂j = Y −
∑
j′ 6=j ĝj′−

∑q
k=1 ĥk corresponds to the estimated jth partial residual vector. (Similarly, we

can represent the coordinate-wise minimizing function hk in (8) of the main manuscript, based on the observed
data by a length-n vector ĥk.) If we set each βj equal to its corresponding estimate β̂j (j = 1, . . . , p), then
based on the sample counterpart (S.16) of the coordinate-wise solution (5) of the main manuscript, a highly
efficient coordinate descent algorithm can be conducted to optimize {gj , j = 1, . . . , p} ∪ {hk, k = 1, . . . , q}
simultaneously. Let ŝ(λ)

j :=
[
1− λ

√
n/‖P̂j‖

]
+

in (S.16) denote the soft-threshold shrinkage factor associated

with the un-shrunk estimate P̂j in (S.17). At convergence of the coordinate descent, we obtain a basis
coefficient estimate of θ̃j associated with representation (S.15):

̂̃
θj = ŝ

(λ)
j (D̃>j D̃j)−1D̃>j R̂j , (S.18)

which in turn implies an estimate of θj under representation (S.14): θ̂j = (θ̂>j,1, θ̂>j,2, . . . , θ̂>j,L)> = n(j)̂̃θj .
Specifically, this gives an estimate of the treatment a-specific function gj(·, a) (a = 1, . . . , L) in model (1) of
the main manuscript:

ĝj(·, a) = Ψj(·)>θ̂j,a (a = 1, . . . , L) (j = 1, . . . , p) (S.19)

estimated within the class of functions (S.12), for a given tuning parameter λ ≥ 0 that controls the soft-
threshold shrinkage factor ŝ(λ)

j in (S.18), resulting in the functions {ĝj , j = 1, . . . , p} ∪ {ĥk, k = 1, . . . , q};
this completes Step 1 of the alternating optimization procedure. (We note that Step 2 of the optimization
procedure is provided in Section 3.2.2 of the main manuscript.)

A.5. Supplementary information for Section A.4

The restriction of the function gj to the form (12) of the main manuscript (i.e., (S.12)) restricts also the
minimizing function gj in (5) to the form (S.12)

(
note, gj(〈Xj , β̂j〉, A) = s

(λ)
j Pj(〈Xj , β̂j〉, A) in (5) of the

main manuscript, where s(λ)
j = [1− λ/‖Pj‖]+ is a scaling factor

)
. In particular, we can express the function

Pj in (6) of the main manuscript as:

Pj(〈Xj , β̂j〉, A) = E[Rj |〈Xj , β̂j〉, A]−
L∑
a=1

πaE[Rj |〈Xj , β̂j〉, A = a]

= Ψj(〈Xj , β̂j〉)θ∗j,A −Ψj(〈Xj , β̂j〉){
L∑
a=1

πaθ
∗
j,a},

(S.20)
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where {θ∗j,a}a∈{1,...,L} := argmin
{θj,a∈Rdj }a∈{1,...,L}

E
[{
Rj −Ψj(〈Xj , β̂j〉)>θj,A

}2
]
. In (S.20), the first term,

Ψj(〈Xj , β̂j〉)θ∗j,A, corresponds to the L2 projection of the jth partial residual Rj in (7) (of the main
manuscript) onto the class of functions of the form (S.12) (without the imposition of the constraint (S.13),
that is, without the constraint

∑L
a=1 πaθj,a = 0), whereas the second term, −Ψj(〈Xj , β̂j〉){

∑L
a=1 πaθ

∗
j,a},

simply centers the first term to satisfy the linear constraint,
∑L
a=1 πaθj,a = 0. Then it follows that Pj , as

given in (S.20), corresponds to the L2 projection of Rj onto the subspace of measurable functions of the form
(S.12) subject to the linear constraint (S.13).

A.6. Estimation algorithm

Algorithm 1 Estimation of constrained functional additive models, given each λ ≥ 0
1: Input: Data Y ∈ Rn, A ∈ Rn, Xj ∈ Rn × Rrj (j = 1, . . . , p), and λ ≥ 0
2: Output: Estimated functions {β̂j , j = 1, . . . , p} and {ĝj , j = 1, . . . , p}
3: Initialize β̂j(s) = 1 (s ∈ [0, 1]) (j = 1, . . . , p).
4: while until convergence of {β̂j , j = 1, . . . , p}, do iteratate between Step 1 and Step 2:
5: 〈Step 1〉
6: Fix {β̂j , j = 1, . . . , p}, and compute D̃j(D̃>j D̃j)−1D̃>j in (S.17) (j = 1, . . . , p).
7: Initialize ĝj = 0 ∈ Rn (j = 1, . . . , p).
8: while until convergence of {ĝj , j = 1, . . . , p}, do iterate through j = 1, . . . , p :
9: Compute the partial residual R̂j = Y −

∑
j′ 6=j ĝj′ (in (S.17)).

10: Compute P̂j in (S.17); then compute the thresholded estimate ĝj in (S.16).
11: 〈Step 2〉
12: Fix {ĝj , j = 1, . . . , p} in (S.19), and solve (15) (of the main text) based on (19); update β̂j (j = 1, . . . , p).

A.7. Computational note

In Algorithm 1, if the jth soft-threshold shrinkage factor ŝ(λ)
j in (S.18) is 0, then the associated Xj is absent

from the model. Therefore, the corresponding projection function β̂j will not be updated, and this greatly
reduces the computational cost when most of the shrinkage factors ŝ(λ)

j are zeros. Furthermore, in Algorithm 1,
the smoother matrix D̃j(D̃>j D̃j)−1D̃>j (j = 1, . . . , p) (defined in (S.17)) needs to be computed only once at
the beginning of Step 1 given fixed {β̂j , j = 1, . . . , p}, and therefore the coordinate-descent updates in Step 1
can be performed very efficiently (Fan et al., 2014).

Specifically, in Step 1, holding all other components and after computing P̂j in (S.17), the update rule (S.16)
for each (the jth) block-update just amounts to soft-thresholding. For a fixed set of β̂j (j = 1, . . . , p) (given
from the previous iterate for Step 2), in Step 1, we can estimate gj (j = 1, . . . , p) on a grid of λ values, from
λmax to λmin, using warm starts: we can fit a sequence of models from λmax down to λmin, where λmax is the
smallest value of λ for which all coefficients are zero. Solutions do not change much from one λ to the next.
By decreasing λ slowly over a dense grid, construction of a solution path over λ does not require much cycling,
and thus Step 1 can be performed very efficiently for all λ values. In Step 2 of the estimation algorithm, the
projection functions β̂j (j = 1, . . . , p) are updated for only the covariate indices j’s associated with nonzero
component functions, i.e., {j|ĝj 6= 0} for each fixed λ.

To investigate computation time of the above estimation algorithm, we consider different combinations of
number of subjects n ∈ {250, 500, 750, 1000} and number of functional covariates p ∈ {20, 40, 80}. We do not
consider the scalar covariates (i.e., q = 0) to focus on the case of the functional regression. We use the same
data generation model as in the simulation section (Section 4.1) of the main manuscript, with ξ = 0 and
δ = 1.
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Figure S.1 provides the averaged computation time (in seconds), averaged over 200 simulation runs, for the
four ITR estimation methods considered in Section 4.1 of the main manuscript. For each method, we optimize
the associated tuning parameters via 10-fold cross validation given each scenario and for these optimized
tuning parameters, we measure the computation time. All method are implemented in R (R Development
Core Team, 2020). Computation times were measured on a MacBook computer running 64-bit, 2.3 GHz Intel
Core i7, with 32 GB random access memory. Again, CFAM and CFAM-lin are implemented through the R
package famTEMsel (Park et al., 2020b) and the outcome weighted learning (OWL) approaches (OWL-lin
and OWL-Gauss) are implemented through the R-package DTRlearn (Chen et al., 2020).
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Figure S.1: The averaged computation time (in seconds) with varying n ∈ {250, 500, 750, 1000} for the four
estimation methods considered in Section 4.1 of the main manuscript, for each p ∈ {20, 40, 80}.

Under the considered simulation settings, the Algorithm 1 converges often in 5 to 8 iterations for CFAM
(i.e., the maximum difference in the p estimates, β̂j (j = 1, . . . , p), over any two consecutive iterations is less
than a prespecified small convergence tolerance). In Figure S.1, for the methods CFAM and CFAM-lin, the
computation time tends to increase linearly with n, whereas for the support vector machine (SVM)-based
approach (i.e., OWL-lin and OWL-Gauss), the computation time tends to scale exponentially with n, although,
when n was small (n = 250, 500), training was faster for the SVM-based approaches than CFAM. For CFAM,
the computation time depends on the number of iterations alternating between Step 1 and Step 2 in Algorithm
1. We note that Algorithm 1 was also used to fit CFAM-lin by restricting the component function gj to be
linear. In Figure S.1, the computation times for CFAM and CFAM-lin were comparable to each other. This is
because CFMA-lin, which is a misspecified linear model, often takes more iterations to converge to its solution
than CFAM which is a correctly specified model. However, within each iteration, the computation time for
CFAM is typically (slightly) larger than CFAM-lin, since CFAM is required to represent each observation in
terms of a nonlinear spline basis. We also note that the computation time reported in Figure S.1 is the time
required for completing the training. When making predictions given new data, the OWL approaches can
take a substantial amount of additional time to match the new data to the training data in order to make
predictions.

Another observation from Figure S.1 is that the model training time of all the methods considered do not
necessarily increase with the number of functional covariates (p), given sparsity-inducing (or regularization)
tuning parameters, as the computation times are comparable across different p ∈ {20, 40, 80}. However, we
note that the OWL approaches (OWL-lin and OWL-Gauss) do not directly handle the functional covariates,
and prespecified näıve averages of the functional covariates were used as input to the OWL approaches. This
is in contrast to the CFAM and CFAM-lin methods that use a supervised fit for projecting the functional
predictors into the best one-dimensional space.
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A.8. Discussion on the confidence bands associated with the model parameters

In the minimization of (19) in the main text, the discretized coefficient function βj(s) in (18), discretized
at {s1, s2, . . . , srj}, is represented by the length-rj vector Bj γ̂j , where γ̂j ∈ Rmj is the minimizer of (19)
(scaled to unit norm for model identifiability). Given this optimization-based representation of the basis
coefficient γj associated with βj(s), the typical inferential machinery (e.g., Ruppert et al., 2003; Wood, 2017)
can be used to obtain variance–covariance estimate associated with the discretized function estimate β̂j(s).
Specifically, we can use BjV̂ B

>
j , where V̂ represents the variance–covariance estimate of γ̂j , based on which

a 95% normal-approximated point-wise confidence band for the function βj(s) is constructed, in Figure 4
of the main manuscript. At the time of convergence of the algorithm, the minimizer γ̂j of (19) essentially
satisfies the condition ‖γ̂j‖ = 1, thus we do not need to re-scale the associated variance–covariance matrix at
convergence of the algorithm, when we compute V̂ .

Similarly, for the treatment-specific component function gj(s, a) (and hk(s, a)) (a = 1, . . . , L), appearing
in Figure 5 of the main manuscript, we utilize representation (S.12) (estimated by (S.19) given the partial
residual R̂j and the shrinkage scale ŝ(λ)

j ) to construct a 95% normal-approximated, point-wise confidence
band of the function ĝj(s, a) (and ĥk(s, a)) evaluated over the observed values of each function’s argument s.

However, an important limitation of this approach is that, for example, the confidence band associated with
ĝj(s, a) is computed conditional on the estimated projection s = 〈Xj , β̂j〉, as well as the other components that
constitute the jth partial residual. The computed standard error returned for components does not include
the uncertainty about the other conditioning components. However, correctly accounting for the uncertainty
in the other components in a projection-pursuit regression is inherently challenging. Specifically, the fact that
the domain of gj(·, a) varies depending on the projection direction estimate β̂j(s) complicates the confidence
band construction for the component functions gj(·, a) (a = 1, . . . , L). One could potentially consider the
regression surface functional kj(Xj , a) := gj(〈Xj , βj〉, a), however, due to the infinite dimensionality of the
domain of the functional, construction of a confidence band is generally challenging.

One potential alternative approach is to condition on the observed data and perform a posterior inference on
the model parameters using a Bayesian framework. We can consider a posterior distribution of kj(Xj , A)
and make probabilistic statements about the prediction of the component kj(Xj , A) given each (X,Z, A).
Our future work will investigate the development of a Bayesian framework for the model accounting for the
posterior uncertainty in the parameters βj gj , hk and the unmodeled noise variance, to allow a posterior
inference on the (X,Z)-by-A interaction effects and predictions, allowing one to conduct inference for the
components of the model.

A.9. Discussion on convergence of the estimation algorithm

Although our approach uses a supervised fit to project the functional predictors into one-dimensional space,
the proposed estimation approach (described in Algorithm 1) to fitting the model can be generally suboptimal
with respect to the empirical version of (4) of the main manuscript, i.e., the criterion ‖Y −

∑p
j=1 gj −∑q

k=1 hk‖2 +
√
nλ
{∑p

j=1‖gj‖+
∑q
k=1‖hk‖

}
, to be optimized over θ̃j ∈ Rdj(L−1) given in (S.15) and over

γj ∈ Rmj (subject to a unit norm constraint) associated with βj (see (19) of the main manuscript) (and over
the corresponding parameter associated with hk).

The proposed flexible method for modeling high dimensional treatment effect modification of functional
covariates adopts the methodology of single index regression, a particular instance of projection pursuit
regression. In projection pursuit regression, with or without the estimation of the component functions
gj (j = 1, . . . , p), the optimization for the projection directions βj entails non-convex estimation problems.
For example, for general function gj , the estimation problem (11) in the main manuscript is generally a
non-convex estimation task. This means that the proposed iterative estimation approach in Algorithm 1, in
which the iteratively-defined loss function (i.e., (19) of the main manuscript) applied to βj is adapted as a
function of the current estimate of gj and βj (based on a local approximation of the objective function around
the current estimate of βj , as described in (16) of the main text) may not converge to a global optimum.
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The algorithm requires local convexity of the objective function around the initial estimate, which appears to
be the case in our simulation studies as well as in the application example, where the estimation algorithm
converges relatively quickly and stably, typically within 5 to 8 iterates. For a fixed λ ≥ 0, Step 1 of the
Algorithm 1 converges (Tseng, 2001) and under local convexity of the objective function (11) around the
initial estimate, alternating between Step 1 and Step 2 can converge stably.

However, given the high dimensionality of functional covariates and the inherent non-convexity of the least
squares loss function in projection pursuit regression, finding a global optimum is considered to be practically
challenging. For the case of monotonic component functions gj , there were some studies to deal with this
non-convex optimization. For example, Ravikumar et al. (2008) investigated a procedure involving only
tractable convex optimization steps by using appropriate classes of Bregman divergences. However, imposition
of a monotonic gj may not be appropriate, because the treatment effect moderation function can commonly
be, for example, quadratically shaped. Thus, our strategy and motivation in this paper was to instead start off
with the most common practice of taking a näıve scalar summary of each functional covariate and to improve
over these most common but näıve summaries. Alternatively, we can utilize scientifically plausible/informed
estimates of βj or estimates obtained from a functional linear regression as a starting point. In our simulation
experiments, βj optimized to incorporate possibly nonlinear interactions, provides a significant improvement
over the initial näıve flat functions, as well as the estimates of βj obtained based on the linear component
functions gj (i.e., CFAM-lin), as illustrated by the simulations in Section 4.

A.10. Model parameter estimation performance in terms of root squared error

In this subsection, we report the results that supplement the results reported in Section 4.1 of the main
manuscript. Specifically, we provide the performance of the proposed estimation method for the model
parameters {gj , hk, βj} when ξ = 0 (i.e., when CFAM is correctly specified) with varying δ ∈ {1, 2} and
n ∈ {250, 500, 1000}. In particular, we focus on the estimation performance for the model parameters β1,
β2, g1, g2, h1 and h2, that are associated with the “signal” covariates X1, X2, Z1 and Z2 that have nonzero
interactions with the treatment variable A. We note that the treatment effect-modifiers selection performance
is reported in Section 4.2 of the main manuscript.

As a measure of the estimation performance, for βj , we report the root squared error RSE(βj) =√∫ 1
0 (β̂j(s)− βj(s))2ds (j = 1, 2), where the parameters β1 and β2 are specified in model (20) of the main

manuscript, and β̂1 and β̂2 are the corresponding CFAM estimates as described in Section 4.1 of the main
manuscript. Since the domain of βj(s) is [0, 1] (i.e., bounded), the above RSE can be easily evaluated.
However, the domain of the component functions gj and hk are unbounded in our setting. In particular, the
functions gj(s, a) and hk(Zk, a) (a = 1, 2) can be estimated only over the observed range of s = 〈Xj , βj〉
(and Zk). Since we know the observed values of the “true” si = 〈Xij , βj〉 (and Zki) (i = 1, . . . , n) (for each
simulation run) where βj is the true value, we can truncate the domain of the functions gj and hk based on
the observed “true” si, and evaluate them on a truncated range of the “true” index 〈Xij , βj〉 (and Zk) (to be
indicated below), for each simulation run, to compute the RSE.

Under the data generating model (20) of the main manuscript, the true component functions: g1(s, a) =
4(a − 1.5) sin(s) and g2(s, a) = −4(a − 1.5) sin(s). If we set a = 2, then g1(s, 2) = 2 sin(s) and g2(s, 2) =
−2 sin(s). Since the component function gj for a = 1 is completely determined by that for a = 2 due
to the identifiability condition (2) that we impose on gj , it is sufficient to focus only on the function
gj(s, 2) when evaluating the performance of the component function estimate ĝj . Similarly, we can write
h1(s, 2) = 2 cos(s) and h2(s, 2) = −2 cos(s) under the given simulation setting. Then we report the root
squared error RSE(gj) =

√∫ c2
c1

(ĝj(s, 2)− gj(s, 2))2ds (j = 1, 2) and RSE(hk) =
√∫ c2

c1
(ĥk(s, 2)− hk(s, 2))2ds

(k = 1, 2) for gj and hk, respectively, where c1 and c2 correspond to the 5% and 95% quantiles of the “true”
observed values of s (we excluded the tails of each variable because they often have very few observed values).
In addition to RSE, we also report the optimal ITR estimation performance of CFAM, in terms of the
(normalized) value, V ∗(D̂opt) = V (D̂opt)−V (Dopt) (where a larger value of V ∗(D̂opt) is desired). In Table S.1,
we report the mean (and standard deviation) of these performance measures obtained from 200 simulation
replications for each scenario.
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Table S.1: The CFAM parameter estimation performance assessed by the root squared error RSE(βj),
RSE(gj), and RSE(hk) (a smaller value of RSE is desired) and the optimal ITR estimation performance
assessed by V ∗(D̂opt) = V (D̂opt)− V (Dopt) (a larger value of V ∗(D̂opt) is desired), for varying δ ∈ {1, 2} and
n ∈ {250, 500, 1000}. The entries report the mean (and standard deviation) obtained from 200 simulation
replications for each scenario.

δ = 1 (Moderate “main” effect) δ = 2 (Large “main” effect)
n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

RSE(β1) 0.53(0.08) 0.34(0.02) 0.26(0.02) 0.60(0.14) 0.38(0.05) 0.29(0.03)
RSE(β2) 0.53(0.06) 0.34(0.02) 0.27(0.01) 0.59(0.13) 0.39(0.07) 0.29(0.03)
RSE(g1) 0.20(0.07) 0.14(0.05) 0.11(0.05) 0.34(0.33) 0.23(0.11) 0.20(0.09)
RSE(g2) 0.22(0.08) 0.17(0.09) 0.12(0.05) 0.32(0.25) 0.25(0.15) 0.20(0.10)
RSE(h1) 0.31(0.09) 0.15(0.04) 0.12(0.03) 0.36(0.10) 0.21(0.09) 0.16(0.06)
RSE(h2) 0.31(0.10) 0.15(0.05) 0.12(0.04) 0.36(0.10) 0.21(0.09) 0.16(0.06)
V ∗(D̂opt) -0.07(0.04) -0.03(0.01) -0.01(0.01) -0.16(0.07) -0.07(0.02) -0.04(0.01)

In Figure 2 of the main manuscript, an illustration of typical 10 CFAM sample estimates β̂j(s) for the
parameters βj(s) for j = 1 and 2 when ξ = 1 is provided. The results in Table S.1 indicate that the estimation
performance for all the nonzero model parameters {βj , gj , hk}, as measured by the corresponding RSE,
improves with an increasing n, in both cases of δ = 1 (moderate “main” effect) and δ = 2 (large “main”
effect). In particular, when n = 1000 and δ = 1, the ITR estimation performance is very close to the optimal
one (V ∗(D̂opt) = −0.01), indicating that the proposed estimation approach performs very well in this setting.
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A.11. Separate modeling of the (X,Z) “main” effect component

Under model (S.1), constraint (S.2) (i..e, constraint (2) of the main manuscript) ensures that

E

µ(X,Z)


p∑
j=1

gj(〈Xj , βj〉, A) +
q∑

k=1
hk(Zk, A)


 = E

µ(X,Z)E


p∑
j=1

gj(〈Xj , βj〉, A) +
q∑

k=1
hk(Zk, A) |X,Z


 = 0,

where, on the right-hand side, we apply the iterated expectation rule to condition on (X,Z), which implies:

µ(X,Z) ⊥
p∑
j=1

gj(〈Xj , βj〉, A) +
q∑

k=1
hk(Zk, A) (S.21)

in L2. The orthogonality (S.21) implies that, under the squared error minimization criterion, the optimization
for µ and the components {gj , βj , hk} in model (S.1) (subject to (S.2)) can be performed separately, without
iterating between the two optimization procedures. To be specific, we can solve for the (X,Z) “main” effect:

µ∗ = argmin
µ∈H

E
[
{Y − µ(X,Z)}2

]
, (S.22)

and can separately solve for the (X,Z)-by-A interaction effect via optimization (S.4). In optimization (S.22),
H represents a (possibly misspecified) L2 space of functionals over (X,Z). Even if the true µ in (S.1) is not
in the class H, the representation (S.4) that specifies the optimal (X,Z)-by-A interaction effect components
{g∗j , β∗j , h∗k} is not affected by the possible misspecification for µ, due to the orthogonality (S.21). Thus,
the property (S.21) is both conceptually and practically appealing for the estimation of the (X,Z)-by-A
interaction effect components.

For the case of a continuous outcome Y , Tian et al. (2014) (in the linear regression context with scalar-valued
covariates and Lasso regularization) and Park et al. (2020a) (in the single-index regression context with
scalar-valued covariates) proposed to separately model and fit the main effect component µ∗ using the
approach (S.22), by exploiting the orthogonality property analogous to (S.21), and then use the residualized
outcome Y − µ̂∗(X,Z) (instead of using the original outcome Y ) for the estimation of the interaction effect
components. This residualization procedure that uses a separately fitted main effect model was termed
efficiency augmentation by Tian et al. (2014), and can improve the efficiency of the estimator for the interaction
effect component (while maintaining the consistency of the estimator). In what follows, we illustrate an
additional set of simulations supplementing the results of Section 4.1 of the main manuscript, to demonstrate
some performance improvement of the CFAM method by an efficiency augmentation procedure.

Under the simulation model (20) of the main manuscript (with the corresponding estimation performance
results reported in Table S.1 in Section A.10) for generating the data, we report additional simulation results
from the CFAM method with efficiency augmentation, where the (X,Z) “main” effect component of the
data generating model (20) is separately modeled by a functional additive regression, i.e., by the model:
µ(X,Z) =

∑p
j=1 g̃j(〈Xj , β̃j〉) +

∑q
k=1 h̃k(Zk), estimated based on an L1 regularization that is similar to (4)

of the main manuscript, with the associated tuning parameters selected as in the CFAM method, using a
10-fold cross validation) and the corresponding residualized outcome is used to implement the CFAM method.

In Table S.2 below, we report the estimation performance of this approach, assessed by RSE(βj), RSE(gj)
and RSE(hk) associated with the model parameters {βj , gk, hk} and the overall ITR estimation performance
is assessed by V ∗(D̂opt), as in Section A.10.
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Table S.2: The CFAM parameter estimation performance, for the case where the efficiency augmentation is
implemented via the functional additive regression model for the (X,Z) main effect, assessed by the root
squared error RSE(βj), RSE(gj), and RSE(hk) (a smaller value of RSE is desired) and the optimal ITR
estimation performance assessed by V ∗(D̂opt) = V (D̂opt)−V (Dopt) (a larger value of V ∗(D̂opt) is desired), for
varying δ ∈ {1, 2} and n ∈ {250, 500, 1000}. The entries report the mean (and standard deviation) obtained
from 200 simulation replications for each scenario.

δ = 1 (Moderate “main” effect) δ = 2 (Large “main” effect)
n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

RSE(β1) 0.52(0.06) 0.33(0.02) 0.26(0.01) 0.57(0.13) 0.36(0.03) 0.28(0.02)
RSE(β2) 0.52(0.06) 0.33(0.01) 0.26(0.01) 0.56(0.11) 0.36(0.04) 0.28(0.02)
RSE(g1) 0.19(0.07) 0.13(0.05) 0.09(0.04) 0.27(0.20) 0.19(0.09) 0.15(0.07)
RSE(g2) 0.22(0.08) 0.17(0.08) 0.11(0.05) 0.27(0.19) 0.20(0.11) 0.16(0.08)
RSE(h1) 0.30(0.09) 0.14(0.04) 0.11(0.03) 0.35(0.10) 0.19(0.08) 0.14(0.05)
RSE(h2) 0.29(0.09) 0.14(0.04) 0.11(0.03) 0.34(0.10) 0.18(0.08) 0.14(0.05)
V ∗(D̂opt) -0.06(0.04) -0.02(0.01) -0.01(0.00) -0.12(0.05) -0.05(0.01) -0.02(0.01)

By comparing the entries of Table S.2 with those of Table S.1, one can observe that the CFAM estimation
with efficiency augmentation using the functional additive regression model for the term µ(X,Z) (whose
performance is reported in Table S.2 above) improves the estimation without the functional additive regression
model for the term µ(X,Z) (whose performance is reported in Table S.1). The superiority of this efficiency
augmentation appears to be particularly prominent when δ = 2 (i.e, for the large “main” effect cases), in
terms of both the model parameter estimation performance, i.e., RSE(βj), RSE(gj), and RSE(hk), and the
optimal ITR estimation performance, i.e., V ∗(D̂opt).
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A.12. Simulation results under a “linear” A-by-(X,Z) interaction effect scenario

In this subsection, as an extension of the simulation example in Section 4.1 of the main manuscript, we
consider a case where the treatment effect varies linearly in the covariates (X,Z), i.e., a “linear” A-by-(X,Z)
interaction effect scenario and assess the ITR estimation performance of the methods. Specifically, we consider
the data generation model:

Yi = δ

{ 8∑
j=1

sin(〈ηj , Xij〉) +
8∑
k=1

sin(Zik)
}

+

4(Ai − 1.5)
[
〈β1, Xi1〉/1.5− 〈β2, Xi2〉/1.5 + Zi1/1.5− Zi2/1.5 + ξ

{
〈Xi1, Xi2〉/1.5 + Zi1Zi2/1.5

}]
+ εi,

(S.23)
in which, when ξ = 0, a functional linear model specifies the A-by-(X,Z) interaction effect term (i.e., the
second term on the right-hand side of (S.23)). However, when ξ = 1, the underlying model (S.23) deviates
from the exact linear A-by-(X,Z) interaction effect structure, and in such a case, the model CFAM-lin
(as well as CFAM) is misspecified. The contribution to the variance of Y from the (X,Z) main and the
A-by-(X,Z) interaction effect terms in (S.23) was made similar to that of the data generating model (25) of
Section 4.1 of the main manuscript.

Figure S.2 below illustrates the boxplots, obtained from 200 simulation runs, of the normalized values
V (D̂opt)− V (Dopt) (normalized by the optimal values V (Dopt)) of the decision rules D̂opt estimated from the
four ITR estimation approaches described in Section 4.1 of the main manuscript, for each combination of
n ∈ {250, 500}, ξ ∈ {0, 1} (corresponding to correctly-specified or mis-specified CFAM scenarios, respectively)
and δ ∈ {1, 2} (corresponding to moderate or large main effects, respectively).
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Figure S.2: Boxplots obtained from 200 Monte Carlo simulations comparing 4 approaches to estimating
Dopt, given each scenario indexed by ξ ∈ {0, 1}, δ ∈ {1, 2} and n ∈ {250, 500}. The dotted horizontal line
represents the optimal value corresponding to Dopt.

The results in Figure S.2 indicate that, in all scenarios with ξ = 0 (i.e., when the linear interaction model
is correctly specified), CFAM-lin outperforms CFAM, but by a relatively small amount in comparison to
the difference in performance appearing in Figure 1 of the main manuscript, in which CFAM outperforms
CFAM-lin. Moreover, if the underlying model deviates from the exact linear structure (i.e., ξ = 1 in model
(S.23)) and n = 500, the more flexible CFAM tends to outperform CFAM-lin. Given the outstanding
performance of CFAM compared to CFAM-lin in the nonlinear A-by-(X,Z) interaction effect scenarios
considered in the main manuscript, this result suggests that, in the absence of prior knowledge about the
form of the interaction effect, flexible modeling of the interaction effect using the proposed CFAM can lead to
at least comparable or better results in comparison to CFAM-lin.
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A.13. The estimated model parameters of CFAM-lin

Figure S.3: Top: The estimated single-index coefficient functions (β4 and β17) for the selected channels X4
(electrode “C3”) and X17 (electrode “T5”) from CFAM-lin (and the associated 95% confidence bands, given
the jth partial residual and ĝj). Bottom: The scatter plots of the CFAM-lin’s (4th and 17th) partial residual
vs. the estimated single-indices 〈X4, β4〉 and 〈X17, β17〉, respectively (in the left two panels), and those of the
(3rd and 5th) partial residual vs. the scalar covariates Z3 (age) and Z5 (Flanker accuracy test), respectively
(in the right two panels), for the placebo A = 1 (blue circles) and sertraline A = 2 (red triangles) treated
individuals. The estimated treatment A-specific component functions gj(〈Xj , βj〉, A) (A = 1, 2) (j = 4, 17)
and hk(Zk, A) (A = 1, 2) (k = 3, 5) are overlaid (with the associated 95% confidence bands, given the jth
(kth) partial residual and β̂j), for the placebo condition (A = 1) in blue dotted lines and for the sertraline
condition (A = 2) in red solid lines.

As referenced in Section 5 of the main manuscript, Figure S.3 reports the estimated model parameters (βj ,
gj and hk) from CFAM-lin. Both CFAM and CFAM-lin selected the functional covariate X4 (electrode “C3”)
and the scalar covariate Z5 (“Flanker accuracy test score”) as treatment effect-modifiers. The estimated
coefficient function β4 (in the top left panel in Figure S.3) for X4 from CFAM-lin appears to have a similar
shape as that of CFAM (see Figure 4 of the main manuscript for comparison). However, as the component
functions gj are restricted to be linear in CFAM-lin, the shape of the component function g4 from CFAM-lin
(see the bottom left panel in Figure S.3) and that from CFAM (see Figure 5 of the main manuscript) for the
selected variable X4 appears to be quite different. In contrast to CFAM, CFAM-lin unselected the covariate
X5 (electrode “P3”), and instead selected X17 (electrode “T5”) and Z3 (“Word fluency test score”). Although
the ITR performance (displayed in Figure 6 of the main manuscript) is very similar between CFAM-lin and
CFAM, looking at their component functions, the proposed CFAM appears to provides a more natural fit
to the data compared to CFAM-lin, as it allows more flexibility to model the component functions. The
data-driven projection functions βj and component functions gj , that provide better fidelity to the data, while
retaining simplicity and interpretability, can be useful for understanding scientific basis behind treatment
effect moderation.

In Table S.3 below, we report the cross-stratification tables comparing the four ITR approaches (CFAM,
CFAM-lin, OWL-lin, OWL-Gauss) considered in Section 5 of the main manuscript, in terms of recommended
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treatments from the rules, on the depression study data (n = 180).

Table S.3: The cross-tables of the recommended treatments (Placebo or Sertraline) comparing the four ITRs
(CFAM, CFAM-lin, OWL-lin, OWL-Gauss), for the n = 180 subjects considered in Section 5 of the main
manuscript. Each entry reports the number (and proportion in %) of subjects classified into the respective
cross-stratification category.

CFAM-lin
Placebo Sertraline

CFAM Placebo 40 (22%) 7 (4%) 47 (26%)
Sertraline 19 (11%) 114 (63%) 133 (74%)

59 (33%) 121 (67%)

OWL-lin
Placebo Sertraline

CFAM Placebo 30 (17%) 17 (9%) 47 (26%)
Sertraline 37 (21%) 96 (53%) 133 (74%)

67 (38%) 113 (62%)

OWL-Gauss
Placebo Sertraline

CFAM Placebo 32 (18%) 15 (8%) 47 (26%)
Sertraline 42 (23%) 91 (51%) 133 (74%)

74 (41%) 106 (59%)

OWL-lin
Placebo Sertraline

CFAM-lin Placebo 36 (20%) 23 (13%) 59 (33%)
Sertraline 31 (17%) 90 (50%) 121 (67%)

67 (37%) 113 (63%)

OWL-Gauss
Placebo Sertraline

CFAM-lin Placebo 35 (19%) 24 (13%) 59 (32%)
Sertraline 39 (22%) 82 (46%) 121 (68%)

74 (41%) 106 (59%)

OWL-Gauss
Placebo Sertraline

OWL-lin Placebo 48 (27%) 19 (11%) 67 (38%)
Sertraline 26 (14%) 87 (48%) 113 (62%)

74 (41%) 106 (59%)

In Table S.3, the proportion of agreement of the recommended treatments between CFAM and CFAM-lin is
85%(= 22%+63%), between CFAM and OWL-lin is 70%(= 17%+53%), and that of CFAM and CFAM-Gauss
is 69%(= 18% + 51%). Expectedly, CFAM behaved more similarly to CFAM-lin than to the SVM-based
approaches (OWL-lin and OWL-Gauss) in making treatment recommendations. Although the two methods
chose different sets of predictors for optimizing the corresponding ITRs, both CFAM and CFAM-lin assumed
an additivity of the selected covariates’ effects on the heterogeneous treatment responses, with CFAM giving
a more flexible additivity than CFAM-lin, while sharing two common predictors, under a functional regression
model specifically designed for the heterogeneous treatment effects. The Pearson correlation between the
associated treatment benefit indexes (defined as f̂(X,Z) =

∑p
j=1 ĝj(〈Xj , β̂j〉, 2)+

∑q
k=1 ĥk(Zk, 2), see Section

5 of the main manuscript) for CFAM and CFAM-lin was 0.73.
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A.14. Noisy and sparse functional covariates case

Several “preprocessing” steps are typically taken before modeling the data. Aside from smoothing the
functional data, in some cases it is appropriate to apply registration or feature alignment, or if the grid points
differ across observations, to interpolate to a dense common grid (Reiss et al., 2017). Measurement error is
expected to be low in some (e.g., chemometric and EEG power spectral analysis considered in the main text)
applications but when it is not it can have important effects on the regression relation. In particular, some
methods (e.g., James (2002)) account explicitly for such error. In the paper, we assumed the functional data
observed on a common dense grid with negligible error. When it is not the case, an initial step to de-noise
and re-construct the underlying curves is required, which was the general approach taken in Goldsmith et al.
(2011) in their functional linear regression model estimation.

In this subsection, we consider a set of simulations for the case where the functional predictors are not directly
observed but observed with measurement errors. As in Section 4 of the main manuscript, we generate n
independent copies of p functional-valued covariates Xi = (Xi1, Xi2, . . . , Xip) (i = 1, . . . , n), where we use a
4-dimensional Fourier basis, Φ(s) = (

√
2 sin(2πs),

√
2 cos(2πs),

√
2 sin(4πs),

√
2 cos(4πs))> ∈ R4 (s ∈ [0, 1]),

and random coefficients x̃ij ∈ R4, each independently following N (0, I4), to form the functional covariates
Xij(s) = Φ(s)>x̃ij (s ∈ [0, 1]) (i = 1, . . . , n; j = 1, . . . , p). We consider the situation where we measure,
instead of Xij(s) directly, a proxy functional covariate Wij(s),

Wij(s) = Xij(s) + uij(s), (S.24)

where uij(s) ∼ N (0, 1). Specifically, we observe the functions Wij(s) (i = 1, . . . , n; j = 1, . . . , p) at points
sijl ∈ [0, 1] (l = 1, . . . , rijl), for which we consider two cases: 1) the functions are measured on a regular
grid of rijl = 50 equally-spaced points, {sij1, . . . , sij50} (for each i and j); 2) the functions are measured
on a sparse grid of points, where the number of points rijl ∈ {5, 6, 7, 8} randomly takes a value with equal
probabilities and then the points sijl ∼ Unif[0, 1] (l = 1, . . . , rijl), for each i and j.

When the functions Xij(s) are observed on a set of sparse grid points possibly subject to measurement
errors uij(s), we recommend to use the principal component (PC) decomposition in the first step of the
analysis. We estimate Xij(s) using a finite series expansion into the PC basis obtained from its covariance
operator. We use the PC decomposition to represent the functions with a small number of bases. Indeed,
using decompositions of the functional covariates in terms of other bases (e.g., P-splines (Marx and Eilers,
1999), Fourier basis) is straightforward.

We note that the covariance operator for Wij(s) in (S.24) corresponds to cov{Wij(s),Wij(v)} =
cov{Xij(s), Xij(v)}+ δsv, where δsv = 1 if s = v and is 0, otherwise. Employing the work of Yao et al. (2005),
we first use a fine grid of points on [0, 1] to obtain an undersmooth of the observed covariance matrix (using
a very small bandwidth smoother to obtain a rough estimate of the covariance operator for sparsely observed
subject-specific functional regressors, see Di et al. (2009)). We then smooth the off-diagonal elements of this
rough covariance matrix to estimate the covariance operator, cov{Xij(s), Xij(v)}, of the functional regressors
Xij(s) in (S.24), which is then evaluated on our regular grid s1, . . . , srj defined in Section 3.2.2 of the main
text, to estimate the proposed model.

Specifically, the spectral decomposition of the estimated covariance function yields a finite series expansion of
the subject-specific functional regressors Xij(s) in (S.24), using conditional expectation (Yao et al., 2005)
in the basis of eigenfunctions, evaluated on these grid points. We employed the simple criterion of using
percentage (90%) of explained variance to select the finite truncation of the eigenfunction expansion in this
simulation study. For the both cases (of the sparsely and the densely measured functions), we use fpca.sc()
(Di et al., 2009) from the R package refund to carry out the functional principal component analysis.

In this simulation, the scalar-valued covariates and the outcomes are generated in the same way as in the
simulation illustrated in Section 4 of the main manuscript, using the same set of parameters with p = q = 20
and varying n ∈ {250, 500}, ξ ∈ {0, 1} and δ ∈ {1, 2}. The results are reported in Figures S.4 and S.5 below,
for the case where the functions are measured on a regular grid of 50 equally-spaced points (in Figures S.4),
and for the case where the functions are measured on a sparse grid of points (in Figures S.5), respectively.
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Figure S.4: For the case of densely measured functional covariates subject to measurement errors, we
report the boxplots of the normalized values V (D̂opt)− V (Dopt), obtained from 200 Monte Carlo simulations,
comparing the 4 estimation approaches, for each simulation setting indexed by n ∈ {250, 500}, δ ∈ {1, 2} and
ξ ∈ {0, 1}. The dotted horizontal line represents the optimal value corresponding to Dopt.
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Figure S.5: For the case of sparsely and irregularly measured functional covariates subject to measurement
errors, we report the boxplots of the normalized values V (D̂opt)− V (Dopt), obtained from 200 Monte Carlo
simulations, comparing the 4 estimation approaches, for each simulation setting indexed by n ∈ {250, 500},
δ ∈ {1, 2} and ξ ∈ {0, 1}. The dotted horizontal line represents the optimal value corresponding to Dopt.

In Figure S.4 that reports the results for the regularly observed functions with measurement errors, the
proposed approach (CFAM) outperforms the other approaches. In particular, its performance is comparable
to that presented in Figure 1 of the main manuscript, where the functional covariates are measured without
error.

Given sparsely observed functional covariates, the de-noising and re-construction (preprocessing) performance
associated with the initial step of the analysis generally degrades. Due to the sparse sampling nature, an
accurate prediction of the underlying functions observed with errors would require more subjects than what
would be required for the case of densely measured functional covariates subject to measurement errors.
In Figure S.5 that reports the results for the irregularly and sparsely observed (5 to 8 irregularly spaced
points) functions with measurement errors, when n = 250 and a large nuisance effect (δ = 2) is present, the
relative performance of CFAM has degraded. Given a set of inaccurately recovered functional covariates, the
simpler method (CFAM-lin) tends to work relatively well. However, with the increased sample size (n = 500),
especially for the case of a correctly specified CFAM (i.e., when ξ = 0), the relative performance of CFAM
significantly improves compared to the case of n = 250 and is close to the optimal one.
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A.15. Treatment benefit index parametrization

In model (1) of the main manuscript (i.e., model (S.1) of this document), without loss of generality, we
assumed that the treatment’s main effect is centered at 0, i.e., E[Y |A = a] = 0 (a = 1, . . . , L). This is only to
suppress the treatment a-specific intercepts in the regression model in order to simplify the exposition, and
can be achieved by removing the treatment level a-specific means from Y . In model (1), E[Y |A = a] = 0 also
indicates that E[µ(X,Z)] = 0, and since the model is subject to constraint (2) (i.e., constraint (S.2)), all the
additive components {µ, gj , hk} of the model are centered at 0.

In the more general case where the treatment’s main effect is not centered at 0, we introduce treatment-specific
intercepts, τa ∈ R (a = 1, . . . , L), in the model. Then model (S.1) can be written as:

Y = µ(X,Z) + τa +
p∑
j=1

gj(〈Xj , βj〉, a) +
q∑

k=1
hk(Zk, a) + ε, (S.25)

subject to the identifiability conditions (S.2) and E[µ(X,Z)] = 0 (the latter constraint can be also easily
absorbed into the estimation by appropriately constraining the basis elements of µ in the estimation). For
the most common situation of binary treatments (i.e., when L = 2), in model (S.25), τ2 − τ1 represents the
marginal treatment effect (comparing a = 2 with a = 1).

Given the underlying model (S.25) (with L = 2), let us define a 1-dimensional index,

f(X,Z) :=
p∑
j=1

gj(〈Xj , βj〉, a = 2) +
q∑

k=1
hk(Zk, a = 2),

which parameterizes the treatment response contrast (evaluating the efficacy of a = 2 vs. a = 1) as follows:

E[Y |X,Z, A = 2]− E[Y |X,Z, A = 1]

= τ2 − τ1 +
p∑
j=1

gj(〈Xj , βj〉, a = 2) +
q∑

k=1
hk(Zk, a = 2)−

{ p∑
j=1

gj(〈Xj , βj〉, a = 1) +
q∑

k=1
hk(Zk, a = 1)

}
= τ2 − τ1 + f(X,Z) + π2

π1
f(X,Z)

= τ2 − τ1 + f(X,Z) 1
π1
,

(S.26)
as a linear function, with τ2 − τ1 acting as the intercept and 1

π1
acting as the slope. This function f(X,Z)

provides a continuous gradient of the benefit from one treatment (a = 2) to another (a = 1). In (S.26),
the second equality follows from the following condition implied by constraint (S.2) (i.e., constraint (2) of
the main manuscript): E

[∑p
j=1 gj(〈Xj , βj〉, A) +

∑q
k=1 hk(Zk, A)|X,Z

]
=
∑2
a=1 πa

{∑p
j=1 gj(〈Xj , βj〉, a) +∑q

k=1 hk(Zk, a)
}

= π1
{∑p

j=1 gj(〈Xj , βj〉, 1) +
∑q
k=1 hk(Zk, 1)

}
+ π2

{
f(X,Z)

}
= 0. In (S.26), the third

equality follows from the property that probabilities πa = pr(A = a) sum to 1, i.e., π1 + π2 = 1.

Expression (S.26) indicates that the differential treatment effect is conveniently and continuously indexed by
the patient-specific parsimonious index f(X,Z), a one-dimensional summary of the patient’s pretreatment
characteristics (X,Z). This is parsimonious because the (X,Z) “main” effect term µ(X,Z) is separately
specified in (S.25). We can assess each individual’s benefit from one treatment versus the other using the
index f(X,Z) and may consider providing a more refined decision using three or more group (see the bottom
right panel of Figure 5 of the main manuscript) than a simple binary recommendation.
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A.16. Suboptimality of the proposed approach to optimizing ITRs when A
depends on (X,Z)

Let Y (a) ∈ R be the potential outcome under treatment A = a (as defined in Section 2 of the main manuscript).
As referenced in Section 2 of the main manuscript, in this paper we assume the following standard causal
inference assumptions (Rubin, 1974): Assumption 1) consistency, i.e., A = a implies Y = Y (a); Assumption
2) no unmeasured confoundedness, i.e., conditional independence Y (a) ⊥ A given (X,Z); Assumption 3)
positivity, i.e., for every covariate (X,Z), the probability of receiving every level of treatment is positive.

In this subsection, we discuss the potential suboptimality of the proposed approach to optimizing ITRs when
A depends on (X,Z). Under the aforementioned causal inference assumptions, the functions Pj (j = 1, . . . , p)
in (6) in Section 3.1 of the main manuscript:

Pj(〈Xj , βj〉, A = a) = E[Rj |〈Xj , βj〉, A = a] − E[Rj |〈Xj , βj〉] (j = 1, . . . , p), (S.27)

in which

Rj = Y −
∑
j′ 6=j

gj′(〈Xj′ , βj′〉, A = a)−
q∑

k=1
hk(Zk, A = a), (S.28)

can be ideally defined in terms of the potential outcome framework, as:

Pj(〈Xj , βj〉, A = a) := E[R(a)
j |〈Xj , βj〉] − E[Rj |〈Xj , βj〉] (j = 1, . . . , p), (S.29)

in which

R
(a)
j = Y (a) −

∑
j′ 6=j

gj′(〈Xj′ , βj′〉, A = a)−
q∑

k=1
hk(Zk, A = a). (S.30)

If the treatment A is independent of (X,Z) (as can happen in randomized studies), (S.29) reduces to (S.27),
i.e., (6) of the main manuscript. The right hand side of (S.27) can be estimated from observed data, for
example, using the procedure described in Section 3.2, for each fixed set of βj (j = 1, . . . , p). However, if A
depends on (X,Z) (as can happen in observational studies), the expression on the right-hand side of (S.27)
for the function Pj(〈Xj , βj〉, A = a) defined in (S.29) is generally not valid. To elaborate on this, under the
consistency assumption (Assumption 1), the right-hand side of (S.27) can be written as:

E[R(a)
j |〈Xj , βj〉, A = a] − E[Rj |〈Xj , βj〉],

where R(a)
j is defined in (S.30). The no unmeasured confoundedness assumption (Assumption 2) implies

that, given (X,Z), we have R(a)
j ⊥ A (since Y (a) ⊥ A, given (X,Z)). However, given only (〈Xj , βj〉, j =

1, . . . , p,Z) (as in the case of (S.27)), R(a)
j and A need not be independent each other. Therefore, expression

(S.27) is generally not equal to the right-hand side of (S.29), i.e., E[R(a)
j |〈Xj , βj〉, A = a] 6= E[Rj |〈Xj , βj〉, A =

a]. It follows that, in observational studies, even if one could consistently estimate the right-hand side of (S.27),
the estimators would not be generally consistent for the functions (S.29). Thus, the associated individualized
treatment rules are potentially suboptimal in the context of observational studies.

However, if we relax the no unmeasured confoundedness assumption (i.e., Assumption 2) to: conditional
independence Y (a) ⊥ A given additive measurable functions of (〈Xj , βj〉, j = 1, . . . , p,Z), then the proposed
approach that utilizes the right-hand side of (S.27) to update each Pj (given 〈Xj , βj〉 and A) can lead to an
optimal treatment decision rule in the context of observational studies.

Although this relaxed no unmeasured confoundedness condition may not strictly hold in practical applications,
if the distribution of A given additive measurable functions of (〈Xj , βj〉, j = 1, . . . , p,Z) can reasonably
approximate the distribution of A given (X,Z), the proposed approach can provide a reasonable approximation
to the optimal treatment decision regime, even when A depends on (X,Z).
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A.17. For more general case when A depends on (X,Z) and treatment propensity
information is available

Suppose that the treatment assignment propensities, π1(X,Z), . . . , πL(X,Z), associated with the L treatment
conditions, satisfying

∑L
a=1 πa(X,Z) = 1 and πa(X,Z) > 0, are available. For notational convenience, let

us write the (X,Z)-by-A interaction effect term in model (1) of the main text, as

Qa(X,Z) :=
p∑
j=1

gj(〈Xj , βj〉, A = a) +
q∑

k=1
hk(Zk, A = a) (a = 1, . . . , L). (S.31)

The identifiability condition (2) for CFAM in the main text implies:

E[QA(X,Z)|X,Z] =
L∑
a=1

Qa(X,Z)πa(X,Z) = 0,

or equivalently,

Q1(X,Z) = − 1
π1(X,Z)

L∑
a=2

Qa(X,Z)πa(X,Z). (S.32)

Thus, the proposed CFAM (1), subject to (2), of the main manuscript can be reparametrized to:

E[Y |X,Z, A] = µ(X,Z) +
L∑
a=1

I(A = a)Qa(X,Z)

= µ(X,Z)− I(A = 1)
L∑
a=2

Qa(X,Z)πa(X,Z)
π1(X,Z) +

L∑
a=2

I(A = a)Qa(X,Z)

= µ(X,Z) +
L∑
a=2

Qa(X,Z)
{
I(A = a)− πa(X,Z)

π1(X,Z) I(A = 1)
}
,

(S.33)

which is an unconstrained formulation of CFAM without constraint (2) of the main manuscript.

In (S.33) (as in the CFAM formulation), the second term, i.e., the (X,Z)-by-A interaction effect term,
satisfies:

E

[
L∑
a=2

Qa(X,Z)
{
I(A = a)− πa(X,Z)

π1(X,Z) I(A = 1)
}
|X,Z

]

=
L∑
a=2

Qa(X,Z)E
[{
I(A = a)− πa(X,Z)

π1(X,Z) I(A = 1)
}
|X,Z

]
= 0,

(S.34)

which implies the orthogonality (in L2) between the “main” and the interaction effect components, i.e.,

µ(X,Z) ⊥
L∑
a=2

Qa(X,Z)
{
I(A = a)− πa(X,Z)

π1(X,Z) I(A = 1)
}
. (S.35)

When we estimate the “signal” component (S.31) (a = 2, . . . , L) (and the a = 1 case is determined by
the condition (S.32)) of the proposed model (1), the orthogonality (S.35) makes the estimation robust to
misspecification of the (X,Z) “main” effect term µ(X,Z) and allows us to use the procedure described
in Section 3.2 of the main manuscript (which is detailed in Section A.4 of this document), with some
modifications which we describe next.

In the estimation, we define the design matrix D̃j , that is used for the block-wise coordinate descent update
expression in (S.16) and (S.17), to be the n× dj(L− 1) matrix D̃j = (D̃j,2; . . . ; D̃j,L), where each element
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(the n× dj matrix) D̃j,a (a = 2, . . . , L) specific to each treatment condition A = a (a = 2, . . . , L), denotes
the evaluation matrix of the basis Ψj(·) on 〈Xij , β̂j〉 (i = 1, . . . , n), multiplied by subject-specific constants
ci = I(Ai = a) − πa(Xi,Zi)

π1(Xi,Zi) I(Ai = 1) (i = 1, . . . , n), whose ith row is the 1 × dj vector ciΨj(〈Xij , β̂j〉)>.

Upon construction of these design matrices D̃j (j = 1, . . . , p), we can obtain the vector ̂̃θj = (θ̂>j,2, . . . , θ̂>j,L)>,
corresponding to the vector in (S.18), at convergence of the coordinate descent in Step 1. From this, we can
obtain:

ĝj(·, a) = Ψj(·)>θ̂j,a (a = 2, . . . , L) (j = 1, . . . , p).

Since the functions ĥk(·, a) (a = 2, . . . , L) (k = 1, . . . , q) associated with the scalar covariates can be also
obtained similarly, for fixed β̂j (j = 1, . . . , p) (available from the previous iterate for Step 2), we have all the
components needed to specify the (X,Z)-by-A interaction effect term in (S.34), i.e.,

L∑
a=2

( p∑
j=1

ĝj(〈Xj , β̂j〉, A = a) +
q∑

k=1
ĥk(Zk, A = a)

){
I(A = a)− πa(X,Z)

π1(X,Z) I(A = 1)
}
,

completing Step 1 of the estimation algorithm. For Step 2 of the estimation algorithm, to update βj around the
current estimate β̂(c)

j , as in (16) of the main text we can utilize the partial residual R̂j in (S.17) (available from
Step 1) and the first-order Taylor series approximation around the current estimate β̂(c)

j . However, in (16) of
the main text, one needs to multiply the subject-specific components ĝj(〈Xij , β̂

(c)
j 〉, Ai) and ˙̂gj(〈Xij , β̂

(c)
j 〉, Ai)

by I(Ai = a)− πa(Xi,Zi)
π1(Xi,Zi) I(Ai = 1), to account for the treatment propensities in the estimation.
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A.18. Discussion on possible theoretical development

Fan et al. (2015), in their functional additive regression model estimation, use the empirical process approach
to the asymptotics of nonlinear least-squares estimation and obtain the stochastic bound for the regression
function estimate. However, direct extension of the theoretical results of Fan et al. (2015) using their method
of proof to our setting is not feasible, since their method of proof treats all the predictors (i.e., baseline
covariates and treatment indicators in our context) as deterministic (which is not the case in our setting, where
the treatment indicators are considered as random, under model specification (2) of the main manuscript)
and their model is assumed to be correctly specified.

The main challenge to the theoretical development of the proposed estimation approach is in that the working
model associated with the proposed estimation criterion is misspecified. Specifically, the working model,
Y ≈

∑p
j=1 gj(〈Xj , βj〉, A) +

∑q
k=1 hk(Zk, A) + ε, implied by the population characterization of the model

parameters in (3) of the main text (see also, Section A.1 of Supporting Information), is an approximation
model, due to the omission of the unspecified term µ(X,Z) that is present in model (1), and thus it is
generally misspecified. In such a case, one would need to conduct the asymptotic analysis using the ideas
from semiparametric M-estimation, following, for example, the approaches in Ichimura and Lee (2010); Wang
and Yang (2009), that deal with semiparametric least squares estimation under model misspecification.

To be more specific, to establish the consistency of the estimators of the model components, one would need
to establish the estimation consistency for the function (see, (6) of the main manuscript)

Pj(〈Xj , βj〉, A) := E[Rj |〈Xj , βj〉, A] − E[Rj |〈Xj , βj〉], (S.36)

in which

Rj = Y −
∑
j′ 6=j

gj′(〈Xj′ , βj′〉, A)−
q∑

k=1
hk(Zk, A) (S.37)

represents the jth functional covariate’s partial residual, given βj ’s, hk’s, and gj′ ’s (j′ 6= j). Here, the partial
residual Rj , that is used to define the function Pj in (S.36), is not a function only of (〈Xj , βj〉, A), because of
the unspecified term µ(X,Z) that is assumed to be present in the variable Y in (S.37), under the true model
(1). In particular, in (S.36), the function E[Rj |〈Xj , βj〉, A] is defined as the best L2 approximation based on
a measurable function of (〈Xj , βj〉, A) to the response Rj , rather than as an exact model given (〈Xj , βj〉, A).

Semiparametric least squares estimation under general model misspecification is a challenging theoretical
problem and typically requires a two-step semiparametric M-estimation formulation (Ichimura and Lee, 2010)
for theoretical development. The investigation could entail uniformly consistent (spline) estimators of the
conditional expectations E[Rj |〈Xj , βj〉, A] and E[Rj |〈Xj , βj〉] (uniformly over βj ∈ Θ), using spline basis
expansion as employed in the proposed method, based on the ideas from Wang and Yang (2009). Based on
these uniformly consistent estimators of the functions in (S.36) (uniformly over βj ∈ Θ), one could establish
the consistency of the estimators of the projection directions βj , given all the other model components. Then
the investigation could entail the large number of estimated components in the additive regression model for
the response, for which we could use ideas from high dimensional additive model (e.g., Bühlmann and van de
Geer (2011); Meier et al. (2009)). We note that the functional aspect of the data (i.e., infinite dimensional
predictors Xj) and of the coefficients βj adds further complexity to the already challenging problem of
developing a semiparametric estimation theory under model misspecification. This will entail a significant
amount of additional work and we leave this theoretical investigation on the estimation consistency for the
model components as future work.
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