Cell Reports, Volume 39

Supplemental information

A dual-function phage regulator controls

the response of cohabiting phage elements

via regulation of the bacterial SOS response

Gil Azulay, Anna Pasechnek, Olga Stadnyuk, Shai Ran-Sapir, Ana Mejia Fleisacher, Ilya Borovok, Nadejda Sigal, and Anat A. Herskovits

Figure S1

Α		В	
Ari5_10403S Gp42_A118 Lin2418	10 20 30 40 50 60 I I I I I I MSNLQVIANDMLPWENEKGEKFVNARELHQSLQVGKKFATWITDKFNNYGFSKDEDYFP MSNLQVIANEMLPVLENEKGEKFVNARELHQSLQVGKKFATWITDKFNYGFSKDEDFFS MTNLKLFNFEGSKVRTVILDEEPFFVGIDVASILGYSNPQKAMRDHCKKPAESLVNDSLG *:**:::::::::::::::::::::::::::::::::	Aris_104035 Gp42_A118	10 20 30 40 50 60 MSNLQVIANDMLPVMENEKGEKFVNARELHQSLQVGKKFATWITDKFNNYGFSKDEDYFP MSNLQVIANEMLPVLENEKGEKFVNARTLHEKLMTTTKFADWIKRRIRQYGFVENEDFFS *******
Ari5_104035 Gp42_A118 Lin2418	70 80 90 100 110 120 ILGESTFGRPRTEYLLITLDTAKELAMVQNNEMGRSIRKYFIEVEKQARKLATEYPTF LLKNEKRAGGTTSIDVIFTLDSGKELAMVENTEQGRAIRKYFIEVEKQARKLATEYPAF RPRRTLVLSESDVYRLVLRSDLPSAEKFEN-WLMDEVLPSIRKHGAYMTDDTIEK .: *:.*: ::.: * :::::::::::::::::::::::	AriS_10403S Gp42_A118	70 80 90 100 110 120 1 I IGESTFGRPREYLLTLDTAKELAMVQNNEMGRSISKYFIEVEKQARKLATEYPTF ILKNEKRAIGGTTSIDYIFTLDSGKELAMVENTEQGRAIRKYFIEVEKQARKLATEYPAF :*:::::::::::::::::::::::::::::::::::
AriS_10403S Gp42_A118 Lin2418	130 140 150 160 170 180 SYMIEDPVARAKKWIEEQQEKQ-EALKQLEEQKPKVVFAEAVQTSENTILVKDLATILKQ SYMIDDPVARAKKWIEEQQEKQ-EALNQIEEQKPKVVFADAVQTSENTVLVKDLATILKQ AITDPDFLIRLATNLKEEKSKRLEAEQKIEAQRPKVLFADAVSDTEGTILIRDLAKLIQQ : * : * . ::*:::*	AriS_10403S Gp42_A118	Image: Symiedpvarakkwieeqqekqealkqleeqkpkvvfaeavqtsentilvkdlatilkqk Symiedpvarakkwieeqqekqealkqleeqkpkvvfabavqtsentvlvkdlatilkqk Symiddpvarakkwieeqqekqealkqleeqkpkvvfabavqtsentvlvkdlatilkqk 190 200 210 220 230 240
AriS_10403S Gp42_A118 Lin2418	190 200 210 220 230 240 KGLDIGQNRLFEWLRCSGYLLN-KGAYYNKPSQKAMNLGLFEQKTHIHTDRNGLMITTYT NGLDIGQNRLFEWLRGSGYLLN-KGTYYNKPSQKAMNLGLFEQKTHIHTDRNGLMVTTYT NGVDIGEKRLFEWLRQNGYLISRGTDYNRPTQKSMELGLFKIKETAIMRSSGA-HTAIT ***************	AriS_10403S Gp42_A118	250 260
AriS_10403S Gp42_A118 Lin2418	250 260 I I PRVTGKGQIYLLNKLLEEHNQVII 259 aa PRVTGKGQVYLLNKLLEEHGLVLS 262 aa AKVTGKGQLYFVNKFLE-QSLVAN 256 aa .:******:*::*:*** :. *	Ari5_10403S Gp42_A118	VTGKGQIYLLNKLLEEHNQVII 259 aa VTGKGQVYLLNKLLEEHGLVLS 262 aa ****** *********** *
С		D	
AriS_10403S Lin2418	10 20 30 40 50 60 I </td <td>AriS_10403S Lmo2324</td> <td>10 20 30 40 50 60 I<!--</td--></td>	AriS_10403S Lmo2324	10 20 30 40 50 60 I </td
AriS_10403S Lin2418	70 80 90 100 110 120 ILGESTFGRPRTEYLLTLDTAKELAMVQNNEMGRSIRKYFIEVEKQARKLATEYPTF SLVNDSLGRPRRTLVLSESDVYRLVLRSDLPSAEKFENNLMDEVLPSIRKHGAYNTDDTI ****	AriS_10403S Lmo2324	70 80 90 100 110 120 I
AriS_10403S Lin2418	130 140 150 160 170 180 SYMIEDPVARAKKWIEEQQEKQEALKQLEEQKPKVVFAEAVQTSENTILVKDLATLL EKAITDPDFLIRLATNLKEEKSKRLEAEQKIEAQRPKVLFADAVSDTEGTILIRDLAKLI * ** : *: **:::**:::*	AriS_10403S Lmo2324	130 140 150 160 170 180 1 <
AriS_10403S Lin2418	190 200 210 220 230 240 KQKGLDIGQNRLFEWLRCSGYLLN-KGAYYNKPSQKAMNLGLFEQKTHIHTDRNGLMITT QQNGVDIGEKRLFEWLRQNGYLISRRGTDYNRPTQKSMELGLFKIKETAIMRSSG-AHTA :*:*:***::***************************	AriS_10403S Lmo2324	190 200 210 220 230 240 <
AriS_10403S Lin2418	250 260 YTPRVTGKGQIYLLNKLLEEHNQVII 259 aa ITAKVTGKGQLYFVNKFLE-QSLVAN 256 aa *:*******	AriS_10403S Lmo2324	250 KGQIYLLNKLLEEHNQVII 259 aa KGQVYLLNKLLEEHNQVII 258 aa ***:*******

Figure S1. Sequence alignments of AriS homologs of different comK-associated phages. A. Clustal W alignment of deduced amino acid sequences of AriS (LMRG_02920; comK-prophage, L. monocytogenes strain 10403S), Gp42 (Listeria phage A118), and Lin2418 (comK-prophage, L. innocua strain CLIP 11262). Alignment length: 264 residues. Identical amino acids (28.03%) are shown in red and marked with asterisks, highly similar residues (25.00%) in green and marked with colons, and weakly similar residues (9.09%) in blue and marked with dots; different residues (37.88%) in black and unmarked. Tyrosine residues of AriS and Gp42 (Y99 and Y102, respectively) that were predicted to be phosphorylated are shown in bold and underlined. The glutamine Q144 of AriS (in bold and yellow highlighted) was the last residue of the recombinant amino-terminal domain expressed by pPL2-antA/B. The sequence alignment was performed using the public server of the PRABI Rhone-Alpes Bioinformatics Center (France) running the Clustal W program (https://npsaprabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_clustalw.html), and then manually curated. B. Clustal W alignment of deduced amino acid sequences of AriS (LMRG_02920; comK-prophage, L. monocytogenes strain 10403S) and Gp42 (Listeria comK phage A118). Alignment length: 262 residues. Identical amino acids (77.48%) are shown in red and marked with asterisks, highly similar residues (11.45%) in green and marked with colons, and weakly similar residues (3.82%) in blue and marked with dots; different residues (7.25%) in black and unmarked. Tyrosine residues of AriS and Gp42 (Y99 and Y102, respectively) that were predicted to be phosphorylated are shown in bold and underlined. The glutamine Q144 of AriS (in bold and yellow highlighted) is the last residue of the recombinant aminoterminal domain expressed in pPL2-antA/B. The basic sequence alignment was performed using the public server of the PRABI Rhone-Alpes Bioinformatics Center (France) running the Clustal W program (https://npsa-prabi.ibcp.fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_clustalw.html), and then manually curated.

C. Clustal W alignment of deduced amino acid sequences of AriS (LMRG_02920; *comK*-prophage, *L. monocytogenes* strain 10403S) and Lin2418 (*comK*-prophage, *L. innocua* strain CLIP 11262). Alignment length: 266 residues. Identical amino acids (30.45%) are shown in red and marked with asterisks, highly similar residues (24.81%) in green and marked with colons, and weakly similar residues (12.03%) in blue and marked with dots; different residues (32.71%) in black and unmarked. A tyrosine residue (Y99) of AriS that was predicted to be phosphorylated is shown in bold and underlined. The glutamine Q144 of AriS (in bold and yellow highlighted) is the last residue of the recombinant amino-terminal domain expressed by pPL2-*antA/B*. The basic sequence alignment was performed using the public server of the PRABI Rhone-Alpes Bioinformatics Center (France) running the Clustal W program (https://npsa-prabi.ibcp.fr/cgi-

bin/npsa_automat.pl?page=/NPSA/npsa_clustalw.html), and then manually curated. **D.** Clustal W alignment of deduced amino acid sequences of AriS (LMRG_02920; *comK*-prophage, *L. monocytogenes* strain 10403S) and Lmo2324 (*comK*-prophage, *L. monocytogenes* strain EGD-e). Alignment length: 259 residues. Identical amino acids (83.40%) are shown in red and marked with asterisks, highly similar residues (7.34%) in green and marked with colons, and weakly similar residues (3.86%) in blue and marked with dots; different residues (5.41%) in black and unmarked. Tyrosine residues of AriS and Lmo2324 (Y99 and Y98, respectively) that were predicted to be phosphorylated are shown in bold and underlined. The glutamine Q144 of AriS (in bold and yellow highlighted) is the last residue of the recombinant amino-terminal domain expressed by pPL2-*antA/B*. The basic sequence alignment was performed using the public server of the PRABI Rhone-Alpes Bioinformatics Center (France) running the Clustal W program (https://npsa-prabi.ibcp.fr/cgi-

bin/npsa_automat.pl?page=/NPSA/npsa_clustalw.html), and then manually curated. Related to Figure 4.

Figure S2. Substitution of AriS tyrosine 99 with alanine abolishes its function.

A. RT-qPCR analysis of representative SOS genes (*recA, lexA* and *uvrX*) in $\Delta\phi/\Delta mon$ and $\Delta\phi/\Delta mon$ bacteria expressing AriS-Y99A (using pPL2-*ariS-Y99A*). Indicated strains were grown in BHI medium with MC treatment, at 30 °C, for 45 min. mRNA levels are presented as relative quantity (RQ), relative to their levels in WT bacteria. The error bars represent the standard deviation of three independent experiments. **B**. Growth analysis of WT *Lm* with and without overexpression of AriS-Y99A (*Lm* pPL2-*ariS-Y99A*) in the presence (+) or absence (-) of MC, at 30 °C. Overexpression of *ariS* (*Lm* pPL2-*ariS*) was used as a control. The experiment was performed three times and the figure shows a representative result. The error bars represent the standard deviation of three independent experiments, and are sometimes hidden by the symbols. **C.** Virions obtained from MC-treated cultures (6 h after MC treatment) of WT *Lm*, a deletion mutant of the *ariS* gene ($\Delta ariS$) or *Lm* bacteria possessing the *ariS-Y99A* mutation in the prophage genome (i.e., in the *Lm* genome) were tested on an indicator strain for plaque formation (numerated as plaque-forming units, PFUs). The error bars represent the standard deviation of three independent experiments. **D**. Western blot analysis comparing the protein levels of His-tagged AriS and AriS-Y99A proteins expressed using the pPL2 plasmid. Bacteria were grown in BHI medium for 6 h. Equal amounts of total proteins were separated on 15% SDS-PAGE, blotted and probed with anti-His tag antibody. Related to Figure 7.