Supplementary Information for

Mechanistic Insights into Passive Membrane Permeability of Drug-Like Molecules from a Weighted Ensemble of Trajectories

She Zhang¹, Jeff P. Thompson¹, Junchao Xia¹, Anthony T. Bogetti², Forrest York¹, A. Geoffrey Skillman¹, Lillian T. Chong^{*,2}, David N. LeBard^{*,1}

* To whom correspondence should be addressed

¹OpenEye Scientific, Santa Fe, NM 87508 ²Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260

Input reading and system preparation

Figure S1. Structural layout of the OpenEye Permeability Floe, which can be broken into 5 logical phases: (1) Preparation of input the permeate system (purple); (2) Equilibration using a standard MD protocol of the aqueous ligand/membrane system (blue); 3) Initialization of the WESTPA toolkit (green); (4) Loop of segment trajectory splitting/recycling events using the WE algorithm, and output trajectory storage (orange); (5) Inline analysis of the permeability simulation for kinetics and convergence criteria (gray).

Figure S2. The estimated permeability as a function of the compartment width. The upper limit, 25 Å, is the full length of the water compartment in our simulation $((L_z - 40\text{\AA})/2)$. The lower limit, 7.5 Å, roughly corresponds to the thickness of the water layer near the membrane surface.

Job	Properties			
Name	9	Permeability - Run Permeability Simulation (GPU)		
Email	me when this job completes	Yes		
Outp The f	ut path iolder where this job's output will be saved	Permeability / My Data 🕥		
Ø	Job Cost Limits Email: not set Terminate: not set			
Pro	moted Parameters			
R	Inputs Required input parameters			
lı 7	nput Dataset: 'he dataset(s) to read records from	Choose input • Value is required		
0	Outputs			
R	Required output parameters			
Ċ	Dutput Dataset: Dutput dataset to write to	* Value is required		
0	System Preparation Parameters			
0	Weighted Ensemble Parameters			
	Number Of Basis States: A set of Omega conformers used as input to permeability	20		
	MAB: Whether enable the Minimal, Adaptive Binning (MAB) scheme	On		
	Iteration Interval (Tau): Length of each WESTPA iteration in picoseconds	100		
	Iterations: Number of iterations for the WESTPA simulation	500		
	Restart Simulation: Restart (instead of continue) the simulation if it is unfinished	Off		
	Reweighting: Whether or not reweigting of the walkers should occur to reduce the relaxation time in steady-state simulations.	On		
	Convergence Detection: Whether or not automatically detect convergence of the simulation.	Off		
0	Advanced Weighted Ensemble Parameters			
0	Miscellaneous Parameters			
	2hh			

Figure S3. The Floe setup GUI of the OpenEye Permeability Floe. All the parameters have a brief description of their function and are grouped with other parameters of the same component (e.g., system preparation, WE simulation, etc.) for easier navigation on the user's end.

Figure S4. Simulation report figures generated by OpenEye Permeability Floe. A) The time (iteration=molecular time/ τ) evolution of the permeability estimate (*blue*) and that estimated using RED (*orange*). The curves represent the mean estimates, and the shaded areas represent 95% CI. **B**) The time evolution of the probability distribution (in units of k_BT). **C**) All the recycled trajectories in the regular WE with fixed binning scheme run represented by the progress coordinate, *z* (y-axis), versus the molecular time in terms of the number of iterations (x-axis).

Figure S5. The original, unsymmetrized (inverted) probability distribution along the lipid normal (\hat{z}) for tacrine using the reweighting WE protocol (WESS). Note that, due to the recycling condition imposed by the WE steady-state protocol, this is not a free energy profile. See Figure 3 legend for details.

Figure S6. Chemical structures of tacrine, sotalol, and zacopride. Atoms that were chosen to calculate the end-to-end distances were marked by orange circles, and the hydrophobic carbons were marked by purple circles.

Figure S7. Free energy profiles along the lipid normal (\hat{z}) and auxiliary coordinates for tacrine using the MAB scheme and reweighting WE protocol (MAB + WESS). See Figure 3 legend for details.

Compound	MAB Adaptive binning	WESS Reweight- ing	Platform	Predicted Log P _m (cm/s)	Expt. Log P _m (cm/s)	
			GPU	-5.54 ± 0.13		
		×	GPU	-3.23 ± 0.09		
Tacrine	×		GPU	-6.96 ± 0.16	-4.64, -5.03 + 0.2	
	×	×	GPU	-4.27 ± 0.24	5.05 - 0.2,	
	×	×	CPU	-5.20 ± 0.28		
Sotalol	×	×	GPU	-5.32 ± 0.22	-6.02, -5.58 (TtoB), -6.74 (BtoT)	
Zacopride	×	×	GPU	-6.35 ± 0.22	-5.23	

Table S1. Predicted and experimentally determined permeabilities.