Supplementary information

IMPDH1 retinal variants control filament architecture to tune allosteric regulation

In the format provided by the authors and unedited

		IMPDH1	IMPDH2
IMP	Vmax (µM NADH/min/µM IMPDH)	3.5	2.8
	K0.5 (μM)	60	38
	Hill	3.5	3.0
		IMPDH1	IMPDH2
NAD	Vmax (µM NADH/min/µM IMPDH)	3.4	5.3
NAD	K0.5 (μM)	16.3	27
	Hill	2.6	1.4

Supplemental Table 1. IMPDH1 and IMPDH2 have similar kinetics (A-E) Table comparing V_{max}, K0.5, and Hill coefficients for IMP and NAD+ for IMPDH1 and IMPDH2. Reactions performed with 1 μ M protein, 1 mM ATP, 1 mM or varying IMP, and 300 μ M or varying NAD+. All data points reported are an average of 3 measurements from the same protein preparation. Fits for activity assays were calculated using the Hill-Langmuir equation V = Vmax[S]n/((K0.5)n+[S]n) and IC_{50} was calculated using a modified Hill equation V=Vmin*(Vmax-Vmin)/(1+(I/IC50)hill.

			IMPDH2		IMPDH1(514)		IMPDH1(546)		IMPDH	1(595)
			Active large interface	Inhibited large interface	Active large interface	Inhibited small interface	Active large interface	Inhibited small interface	Active large interface	Inhibited large interface
	IMPDH2	Active large interface		0.061	0.878	3.314	2.145	3.246	2.712	0.693
*	IMPDHZ	Inhibited large interface			1.266	1.721	2.371	2.371	2.595	0.816
AB	IMPDH1(514)	Active large interface	_	_	—	3.787	1.705	3.7	2.249	1.065
		Inhibited small interface	_		—	—	5.046	1.368	5.506	2.208
		Active large interface	_	_	—	—	—	4.723	0.554	1.698
	IMPDH1(546)	Inhibited small interface	_		—	—	—	—	5.174	1.924
		Active large interface			_	_				0.560
	IMPDH1(595)	Inhibited large interface		_			_	_	_	

Supplemental Table 2. RMSD between catalytic domains of models

Top-down view of tetramer with catalytic domains (green) and regulatory domains (pink). Models are aligned on catalytic domain with asterisk and alpha carbon RMSD is calculated by catalytic domain outlined in bold. IMPDH2 active is 6u8n, IMPDH2 inactive is 6u8s RMSD to determine how tetramer flexing (bent/flat) compares.

	wт	Y12A
IMPDH2	805	219
IMPDH1(514)	188	196
IMPDH1(546)	903	585
IMPDH1(563)	632	151
IMPDH1(595)	1104	550

Supplemental Table 3. IMPDH1 and IMPDH2 IC $_{50}$ for GTP in μM

		WT	R105W	T116M	N198K	R224P	D226N	R231P	K238E	V268I	H372P
544	Vmax	3.4	3.7	3.4	3.4	3.2	3.4	4.2	5.3	4.6	4.4
514	K0.5	16.3	15.5	9.3	10.8	9.9	8.8	12.9	20.7	16.9	16.2
	Hill	2.6	3.1	1.7	3.2	1.9	1.7	2.1	2.7	2.4	3.2
		WT	R105W	T116M	N198K	R224P	D226N	R231P	K238E	V268I	H372P
546	Vmax	5.5	5.3	4.2	5.1	6.4	5.1	5.8	5.4	6.0	8.8
540	K0.5	32.9	22.8	19.5	31.0	31.5	26.2	31.9	22.5	24.9	46.9
	Hill	1.9	1.1	1.3	1.0	1.0	1.1	0.9	1.0	0.9	1.1
		WT	R105W	T116M	N198K	R224P	D226N	R231P	K238E	V268I	H372P
505	Vmax	5.2	5.3	4.0	4.8	1.5	5.5	6.8	26.9	5.1	7.4
595	Km	30.4	32.6	28.8	36.7	28.1	23.1	39.6	1.6	36.7	66.2
	Hill	1.2	1.0	1.1	0.6	0.7	0.9	1.1	0.9	1.3	1.3

h			WT	R105W	T116M	N198K	R224P	D226N	R231P	K238E	V268I	H372P
D	514	Vmax	3.5	4.2	2.5	3.0	3.1	2.6	3.5	5.0	3.3	3.5
		K0.5	59.5	13.6	28.0	19.9	12.3	10.0	20.2	17.9	25.4	25.0
		Hill	3.5	2.7	2.7	2.1	2.0	1.9	2.2	2.0	2.5	3.0
[
			WT	R105W	T116M	N198K	R224P	D226N	R231P	K238E	V268I	H372P
	546	Vmax	4.8	5.3	4.7	4.7	4.5	4.6	4.5	4.5	4.8	6.1
	540	K0.5	33.0	23.3	34.4	34.4	27.6	22.6	17.9	26.8	39.2	45.1
		Hill	1.3	1.0	0.8	0.8	1.3	1.1	1.2	1.5	1.4	1.3
			WT	R105W	T116M	N198K	R224P	D226N	R231P	K238E	V268I	H372P
	595	Vmax	5.2	4.9	3.6	3.7	5.0	4.6	6.0	6.2	5.0	7.1
	090	K0.5	27.9	20.4	23.4	18.9	22.3	22.6	26.0	35.8	20.3	28.6
		Hill	1.4	1.5	1.6	1.2	1.1	1.1	1.3	1.5	1.3	1.5

С

		WT	R105W	T116M	N198K	R224P	D226N	R231P	K238E	V268I	H372P
514	Vmax	3.6	4.1	2.7	3.0	2.8	2.2	3.2	4.5	3.1	3.3
514	K0.5	187.8	15.9	132.4	N/A	N/A	134.0	N/A	N/A	150.8	151.2
	Hill	4.7	25.2	3.0	N/A	N/A	32.1	N/A	N/A	5.7	2.6
		WT	R105W	T116M	N198K	R224P	D226N	R231P	K238E	V268I	H372P
E4G	Vmax	4.4	4.8	4.4	3.9	5.2	4.5	3.9	4.5	5.3	7.3
546	K0.5	903.4	759.6	888.3	N/A	N/A	N/A	N/A	N/A	870.9	630.8
	Hill	5.3	2.7	3.8	N/A	N/A	N/A	N/A	N/A	3.2	5.4
		WT	R105W	T116M	N198K	R224P	D226N	R231P	K238E	V268I	H372P
595	Vmax	4.5	4.9	4.1	3.6	4.9	4.5	5.0	6.0	5.2	7.4
595	K0.5	1104.0	1274.4	1760.5	N/A	N/A	N/A	N/A	N/A	1313.9	1843.0
	Hill	3.9	2.4	3.5	N/A	N/A	N/A	N/A	N/A	2.4	1.8

Supplemental Table 4. IMPDH1 RP mutations do not change NAD+ or IMP kinetics in any variants a-c, V_{max} (µM NADH/min/µM IMPDH), K0.5 (µM), and Hill coefficient for NAD+ for WT and RP mutants in all variants. a, For NAD+. Reactions performed with 1 µM protein, 1 mM ATP, 1 mM IMP, and varying NAD+. b, For IMP. Reactions performed with 1 µM protein, 1 mM ATP, 300 µM NAD+, and varying IMP. c, For GTP. Reactions performed with 1 µM protein, 1 mM IMP, 300 µM NAD+, and varying GTP. All data points reported are an average of 3 measurements from the same protein preparation. Fits for activity assays were calculated using the Hill-Langmuir equation V = Vmax.[S]n/((K0.5)n+[S]n) and IC₅₀ was calculated using a modified Hill equation V=Vmin*(Vmax-Vmin)/(1+(I/IC50)hills).

а