Environ Health Perspect

DOI: 10.1289/EHP10092

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Exposure to per- and Polyfluoroalkyl Substances and Markers of Liver Injury: A Systematic Review and Meta-Analysis

Elizabeth Costello, Sarah Rock, Nikos Stratakis, Sandrah P. Eckel, Douglas I. Walker, Damaskini Valvi, Dora Cserbik, Todd Jenkins, Stavra A. Xanthakos, Rohit Kohli, Stephanie Sisley, Vasilis Vasiliou, Michele A. La Merrill, Hugo Rosen, David V. Conti, Rob McConnell, and Leda Chatzi

Table of Contents

Description of domains in Office of Health Assessment and Translation (OHAT) Risk of Bias tool

Review articles screened for additional eligible articles

Table S1. Assessment of study quality by the OHAT approach (human studies).

Table S2. Assessment of study quality by the OHAT approach (animal studies).

Table S3. Weighted Z-scores for the cross-sectional associations of PFAS with ALT and GGT in humans with selected exclusions.

Table S4. Weighted Z-scores for the cross-sectional associations of PFAS with GGT and AST in humans ≥ 12 years old.

Figure S1. Strip plots for PFOA and AST in animal studies. Blue triangles indicate a significant increase in AST and red diamonds indicate a significant decrease in AST relative to control. Circles indicate no significant change in AST relative to control.

Figure S2. Strip plots for PFOA and relative liver weight in animal studies. Blue triangles indicate a significant increase in relative liver weight relative to control. Circles indicate no significant change in relative liver weight relative to control. Plots are ordered by species and strain.

Figure S3. Strip plots for PFOS and AST in animal studies. Blue triangles indicate a significant increase in AST and red diamonds indicate a significant decrease in AST relative to control. Circles indicate no significant change in AST relative to control. Plots are ordered by species and strain.

Figure S4. Strip plots for PFOS and relative liver weight in animal studies. Blue triangles indicate a significant increase in relative liver weight relative to control. Black dots indicate no significant change in relative liver weight relative to control. Plots are ordered by species and strain.

Table S5. Results for PFOA and ALT in animal studies.

Table S6. Results for PFOS and ALT in rodent studies.

Table S7. Results for PFOA and AST in animal studies.

Table S8. Results for PFOA and relative liver weight in animal studies.

Table S9. Results for PFOS and AST in animal studies.

Table S10. Results for PFOS and relative liver weight in animal studies.

References

Additional File- Excel Document

Description of domains in Office of Health Assessment and Translation (OHAT) Risk of Bias tool

	Definitely low (++)	Probably Low (+)	Probably High (NR, -)	Definitely High ()		
Was administered dose or exposure level adequately randomized? (EA)	Authors explicitly describe the randomization procedures and there is a concurrent control group.	Authors state that randomization occurred, but do not describe the randomization procedure. Inequalities in treatment group sizes are not explained.	There is no description of the procedures used to allocated animals to treatment groups (NR), or there is indirect evidence that the procedures were not random.	Animals were allocated to treatment groups using a non-random method, or there was no appropriate control group.		
Was allocation to study groups adequately concealed? (EA)	Authors state that allocation to study groups was concealed from study personnel at the time of randomization or treatment assignment, and that blinding was unlikely to be broken.	Though not stated explicitly it is implied that allocation to study groups was concealed from study personnel, or lack of concealment was unlikely to introduce bias.	There is no description of concealment procedures (NR), or lack of concealment may introduce bias.	Allocation to study groups was not concealed from study personnel, and this is likely to introduce bias.		
Did selection of study participants result in appropriate comparison groups? (Co, CrSe)	Exposed and non- exposed participants were similar (recruited from the same base population, similar demographics, similar response/missing rates, etc).	Exposed and non- exposed participants are likely to be similar, but no direct evidence is provided.	Exposed and non- exposed participants are not likely to be similar, or there is insufficient information (NR).	Exposed and non- exposed participants were not similar (did not arise from the same base population, different response rates, different health status and risks, etc).		
Did the study design or analysis account for important confounding and modifying variables? (Co, CrSe)	Authors provided comprehensive evidence-based justification for all confounding and modifying variables, and accounted for all risk factors (obesity, alcohol and smoking, type 2 diabetes, etc)	The analyses adjusted for, at minimum, BMI and alcohol use, or provided evidence- based justification for lack of adjustment.	The analyses failed to adjust for either BMI or alcohol use, without scientific justification (ie. 'variable was not available in the dataset').	The analysis did not control for any confounding or modifying variables.		

Were experimental conditions identical across study groups? (EA)	Experimental conditions for treatment and control groups are described, and are identical.	Animal care conditions are not described in detail, but are stated to be identical across groups.	Animal care conditions are not described (NR) and are likely to differ between study groups.	Animal care conditions were not identical across study groups (ie., different vehicles).
Were the research personnel blinded to the study group during the study? (EA)	Authors state that study personnel were blinded to the study group for the entire study, and that blinding was unlikely to be broken.	Though not stated explicitly, it is implied that study personnel were blinded to study groups, or lack of blinding was unlikely to introduce bias.	There is no description of blinding (NR), or it is implied that study personnel were not blinded.	Study personnel were not blinded, and this is likely to introduce bias.
Were outcome data complete without attrition or exclusion from analysis? (Co, CrSe, EA)	There was no or insignificant loss of subjects and outcome data were complete. Any loss of animals was not related to the study conditions, or was treated as an outcome related to PFAS exposure.	There was attrition, but it was unlikely to introduce bias. Authors may state that there was no attrition/mortality without providing the initial sample size.	Sample sizes for outcomes vary without justification or explanation. No sample sizes/survival data are provided (NR).	There was significant loss of subjects from loss to follow up (humans) or death (animals), or large numbers of subjects were excluded from analysis.
Can we be confident in the exposure characterization? (Co, CrSe, EA)	EA: Purity of the experimental compound is described and is at or above 95%, confirmed by independent testing. The experimental compound was consistently administered throughout the study. Co, CrSe: Exposure was evaluated using the same method for all subjects. Exposure assessment method is the 'gold-standard' or directly measures exposure (in body fluids, environment).	EA: Purity is at or above 95%, with no independent testing, or is below 95% with independent testing. The experimental compound was consistently administered throughout the study. Co, CrSe: Exposure was assessed using well-established methods with high validity.	EA: Purity is not described (NR), or is below 95%. Co, CrSe: Exposure assessment method is not described (NR), or exposure was assessed using indirect measures (ie. questionnaires) that are not validated or well-established.	EA: the experimental compound was highly contaminated and/or administered inconsistently. Co, CrSe: Exposure was assessed using methods known to have poor validity.
Can we be confident in the outcome assessment? (Co, CrSe, EA)	Outcomes were assessed using the 'gold-standard' method, at the same time for all study groups, and	Outcomes were assessed using an acceptable but not 'gold-standard' method. Outcomes were	Outcome assessment and/or blinding not adequately described (NR).	Outcomes were assessed using an insensitive instrument, after different lengths of time, and were not

	outcome assessors	assessed at the same	Methods used in	blinded, and these were		
	were blinded to study	time for all study groups	outcome assessment	expected to introduce		
	group.	and assessors were	were insensitive, or	significant bias.		
		blinded, or deviations	outcomes were not			
		from these criteria were	assessed at the same			
		not expected to	time for all study			
		introduce bias.	groups.			
Were all measured outcomes reported? (Co, CrSe, EA)	All outcomes described in the methods are completely reported in the results.	All outcomes described in the methods are reported in the results. EA: Histopathological results are lacking some detail, but this is unlikely to be due to selective reporting.	Not enough information is provided to evaluate the potential for selective reporting (NR). Outcomes described in the methods are not presented in the results. EA: Specific outcomes (ie., histopathological findings) not described in methods but are reported in the results. Outcomes were reported for some study groups but not others.	Outcomes were selectively reported for different study groups.		
Were there other potential threats to internal validity?	Note concerns about the choice of statistical methods, adherence to study protocol, study design, or undue influence of study sponsors.					

NR: not reported; EA: experimental animal study; Co: cohort study; CrSe: cross sectional study

Review articles screened for additional eligible articles

Deierlein AL, Rock S, Park S. 2017. Persistent endocrine-disrupting chemicals and fatty liver disease. Current environmental health reports 4:439-449.

Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, et al. 2021. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ Toxicol Chem 40:606-630.

Klaunig JE, Li X, Wang Z. 2018. Role of xenobiotics in the induction and progression of fatty liver disease. Toxicology Research 7:664-680.

Steenland K, Fletcher T, Savitz DA. 2010. Epidemiologic evidence on the health effects of perfluorooctanoic acid (pfoa). Environ Health Perspect 118:1100-1108.

Steenland K, Fletcher T, Stein CR, Bartell SM, Darrow L, Lopez-Espinosa MJ, et al. 2020. Review: Evolution of evidence on pfoa and health following the assessments of the c8 science panel. Environment International 145.

Treviño LS, Katz TA. 2018. Endocrine disruptors and developmental origins of nonalcoholic fatty liver disease. Endocrinology 159:20-31.

VoPham T. 2019. Environmental risk factors for liver cancer and nonalcoholic fatty liver disease. Curr Epidemiol Rep 6:50-66.

Author, Year	Selection of study participants resulted in appropriate comparison groups	Study design/analysis accounted for important confounding and modifying variables	Outcome data complete without attrition or exclusion from analysis	Confidence in the exposure characterization	Confidence in the outcome assessment	All measured outcomes reported	Other potential threats to internal validity
Attanasio (2019) ² & Attanasio (2019b) ³	++	+	++	++	++	++	None
Bassler et al. (2019) ⁴	++	+	++	++	++	++	None
Darrow et al. (2016) ⁵	++	+	++	+	++	++	None
Emmett et al. (2006) ⁶	++		++	++	++	++	None
Gallo et al. (2012) ⁷	+	+	+	++	++	++	None
Gilliland and Mandel (1996) ⁸	+	+	++	+	++	++	None
Gleason et al. (2015)9	++	+	++	++	++	++	None
Jain and Ducatman (2019) ¹⁰	++	+	+	++	++	++	None
Jain (2019) ¹¹	++	+	+	++	++	++	None
Jin et al. (2020) ¹²	++	+	++	++	++	++	None
Khalil et al. (2019) ¹³	++	+	++	++	++	++	None
Lin et al. (2010) ¹⁴	++	+	++	++	++	++	None
Mora et al. (2018) ¹⁵	++	+	+	++	++	++	None
Mundt et al. (2007) ¹⁶	++	-	+	-	+	++	Few references provided. No standard errors reported.
Nian et al. (2019)17	++	+	++	++	+	++	None
Olsen et al. (1999) ¹⁸	++	+	++	++	++	+	None
Olsen et al. (2003) ¹⁹	++	+	++	+	++	+	None
Olsen and Zobel (2007) ²⁰	++	+	++	+	++	++	None
Rantakokko et al. (2015) ²¹	++	+	++	++	++	++	None
Sakr et al. (2007) ²²	++	-	+	++	++	++	None
Sakr et al. (2007b) ²³	++	+	+	++	++	++	None
Salihovic et al. (2018) ²⁴	++	+	+	++	++	++	None
Sen et al. (2021) ²⁵	++	+	++	++	++	++	None
Stratakis et al. (2020) ²⁶	++	+	+	++	++	++	None
Yamaguchi et al. (2013)27	++	+	++	++	++	++	None

Table S1. Assessment of study quality by the OHAT approach¹ (human studies).

 Yamaguchi et al. (2013)²⁷
 ++
 ++
 ++
 ++
 ++
 None

 Legend: definitely low risk of bias (++); probably low risk of bias (+); probably high risk of bias (-); definitely high risk of bias (-); not reported (NR)
 None

 Four elements did not apply to cross-sectional and cohort studies and were excluded from the table.
 ++
 ++
 ++
 None

Author/Year	Administered dose/exposure level adequately randomized	Allocation to study groups adequately concealed	Experimental conditions identical across study groups	Research personnel blinded to the study group during the study	Outcome data complete without attrition or exclusion from analysis	Confidence in the exposure characterization	Confidence in the outcome assessment	All measured outcomes reported	Other potential threats to internal validity
Bagley et al. (2017) ²⁸	++	- (NR)	++	- (NR)	++	-	+	+	None
Bijland, et al. (2011) ²⁹	+	- (NR)	++	- (NR)	-	+	+	++	None
Blake et al. (2020)30	++	++	++	++	++	- (NR)	+	++	None
Botelho et al. (2015) ³¹	- (NR)	- (NR)	++	- (NR)	++	+	+	++	None
Butenhoff et al. (2009)32	+	- (NR)	++	- (NR)	++	++	+	++	None
Butenhoff et al. (2012)33	+	- (NR)	++	- (NR)	++	++	+	++	None
Butenhoff et al. (2012b) ³⁴	++	- (NR)	++	- (NR)	+	+	-	-	Histopathology data was collected at different time points (weeks 14, 53, 104, and unscheduled termination) but is summarized all together.
Butenhoff et al. (2012c) ³⁵	++	- (NR)	++	- (NR)	++	++	+	++	None
Butenhoff et al. (2017) ³⁶	+	- (NR)	++	- (NR)	++	+	+	-	None
Chang et al. (2018)37	++	-	++	-	++	+	+	++	None
Chappel et al. (2020) ³⁸	- (NR)	- (NR)	++	- (NR)	- (NR)	-	+	++	None
Chengelis et al. (2009) ³⁹	+	- (NR)	++	- (NR)	++	++	+	++	None
Crebelli et al. (2019)40	+	- (NR)	++	- (NR)	++	- (NR)	+	++	None
Cui et al. (2019) ⁴¹	+	- (NR)	++	- (NR)	++	++	+	++	None
Curran et al. (2008)42	- (NR)	- (NR)	++	- (NR)	++	+	+	++	None
Das et al. (2017) ⁴³	- (NR)	- (NR)	++	- (NR)	++	+	+	++	None
Deng et al. (2020)44	+	- (NR)	++	- (NR)	++	+	+	++	None
Ding et al. (2009) ⁴⁵	+	- (NR)	++	- (NR)	- (NR)	- (NR)	+	++	None
Elcombe et al. (2012a) ⁴⁶	+	- (NR)	++	- (NR)	++	-	+	++	None
Elcombe et al. (2012b)47	+	- (NR)	++	- (NR)	++	-	+	++	None
Fang et al. (2012) ⁴⁸	- (NR)	- (NR)	++	- (NR)	-	+	+	++	None
Fang et al. (2015)49	+	- (NR)	+	- (NR)	++	+	+	++	None
Foreman et al. (2009)50	+	- (NR)	++	- (NR)	- (NR)	- (NR)	+	++	None
Guo et al. (2019) ⁵¹	+	- (NR)	++	- (NR)	-	+	+	++	None
Guo et al. (2021a) ⁵² & Guo et al. (2021b) ⁵³	+	- (NR)	++	- (NR)	+	+	+	++	None
Hamilton et al. (2021) ⁵⁴	- (NR)	- (NR)	++	- (NR)	++	- (NR)	+	+	None
Han et al. (2018a)55	+	- (NR)	++	- (NR)	++	+	+	++	None
Han et al. (2018b)56	+	- (NR)	++	- (NR)	++	+	+	++	None
Huang et al. (2020)57	+	- (NR)	++	- (NR)	++	+	+	++	None
Huck et al. (2018) ⁵⁸	- (NR)	- (NR)	++	- (NR)	- (NR)	- (NR)	+	++	None

- (NR)

++

- (NR)

+

+

++

None

Table S2. Assessment of study quality by the OHAT approach¹ (animal studies).

- (NR)

+

Hui et al. (2017)59

Kato et al. (2015) ⁶⁰	++	- (NR)	++	- (NR)	++	++	+	++	None
Kim et al. (1998) ⁶¹	- (NR)	+	++	None					
Kim et al. (2011) ⁶²	+	- (NR)	++	- (NR)	++	+	+	++	None
Lai et al. (2017) ⁶³	- (NR)	- (NR)	++	- (NR)	- (NR)	- (NR)	+	++	None
Li D et al. (2019) ⁶⁴	+	- (NR)	++	- (NR)	+	+	+	++	None
Li X et al. (2019)65	+	- (NR)	++	- (NR)	++	+	+	++	None
Liang et al. (2019)66	+	- (NR)	++	- (NR)	- (NR)	- (NR)	+	++	None
Lieder et al. (2009)67	- (NR)	- (NR)	++	- (NR)	++	+	+	++	None
Liu et al. (2016) ⁶⁸	- (NR)	- (NR)	++	- (NR)	+	+	+	++	None
Luo et al. (2017) ⁶⁹	- (NR)	- (NR)	++	- (NR)	+	+	+	++	None
Lv et al. (2013) ⁷⁰	+	- (NR)	++	- (NR)	++	+	+	++	None
Lv et al. (2018) ⁷¹	+	- (NR)	++	- (NR)	++	+	+	++	None
Marques et al. (2020)72	- (NR)	- (NR)	++	- (NR)	-	- (NR)	+	++	None
Marques et al. (2021) ⁷³	+	- (NR)	++	- (NR)	++	+	+	++	None
Martin et al. (2007) ⁷⁴	++	++	++	++	-	+	++	++	None
Minata et al. (2010)75	+	- (NR)	++	- (NR)	++	+	+	++	None
Nakagawa et al. (2012) ⁷⁶	- (NR)	- (NR)	++	- (NR)	++	- (NR)	+	++	None
Owumi et al. (2021)77	+	- (NR)	++	- (NR)	++	+	+	++	None
Pfohl et al. (2021)78	- (NR)	- (NR)	++	- (NR)	+	- (NR)	+	++	None
Pouwer et al. (2019)79	+	- (NR)	++	- (NR)	++	+	+	++	None
Qazi et al. (2010) ⁸⁰	- (NR)	- (NR)	++	- (NR)	++	+	+	++	None
Qazi et al. (2013a) ⁸¹	+	- (NR)	++	- (NR)	+	+	+	+	None
Qazi et al. (2013b) ⁸²	+	- (NR)	++	- (NR)	+	+	+	++	None
Quist et al. (2015)83	- (NR)	- (NR)	++	- (NR)	++	+	+	++	None
Rigden et al. (2015) ⁸⁴	+	- (NR)	++	- (NR)	++	- (NR)	+	++	None
Roth et al. (2021) ⁸⁵	+	- (NR)	++	- (NR)	- (NR)	- (NR)	+	++	None
Schlezinger et al. (2020) ⁸⁶	- (NR)	- (NR)	+	- (NR)	+	++	+	++	None
Seacat et al. (2003)87	++	- (NR)	++	- (NR)	++	+	+	-	None
Shao et al. (2021) ⁸⁸	+	- (NR)	++	- (NR)	- (NR)	+	+	++	None
Shi et al. (2021) ⁸⁹	+	- (NR)	++	- (NR)	- (NR)	+	+	++	None
Son et al. (2008) ⁹⁰	+	- (NR)	++	- (NR)	++	+	+	++	None
Su et al. (2019) ⁹¹	+	- (NR)	++	- (NR)	++	+	+	+	None
Takahashi et al. (2014)92	++	- (NR)	++	- (NR)	++	++	+	++	None
Tan et al. (2013) ⁹³	- (NR)	- (NR)	+	- (NR)	- (NR)	- (NR)	+	++	None
Van Esterik et al. (2016)94	- (NR)	- (NR)	++	- (NR)	++	+	+	++	None
Wan et al. (2012) ⁹⁵	+	- (NR)	++	- (NR)	+	+	+	++	None
Wan et al. (2016) ⁹⁶	+	- (NR)	++	- (NR)	++	+	+	++	None
Wang et al. (2015) ⁹⁷	+	- (NR)	++	- (NR)	-	+	+	++	None
Wang et al. (2017) ⁹⁸	+	- (NR)	++	- (NR)	-	+	+	++	None

Wang et al. (2021)99	+	- (NR)	++	- (NR)	+	- (NR)	+	++	None
Wang G et al. (2020) ¹⁰⁰	+	- (NR)	++	- (NR)	++	+	+	++	None
Wang D et al. (2020) ¹⁰¹	+	- (NR)	++	- (NR)	++	+	+	++	None
Weatherly et al. (2021) ¹⁰²	+	-	++	-	++	+	+	++	None
Wu et al. (2017) ¹⁰³	+	- (NR)	++	- (NR)	- (NR)	+	+	++	None
Wu et al. (2018)	+	- (NR)	++	- (NR)	- (NR)	+	+	++	None
Xing et al. (2016) ¹⁰⁴	+	- (NR)	++	- (NR)	++	+	+	+	None
Yahia et al. (2010)105	- (NR)	- (NR)	++	- (NR)	-	-	+	++	None
Yan et al. (2014) ¹⁰⁶	+	- (NR)	++	- (NR)	++	+	+	++	None
Yan et al. (2015) ¹⁰⁷	+	- (NR)	+	- (NR)	-	+	+	++	None
Yang et al. (2014) ¹⁰⁸	- (NR)	- (NR)	++	- (NR)	- (NR)	+	+	++	None
Zhang et al. (2016) ¹⁰⁹	+	- (NR)	++	- (NR)	+	+	+	+	None
Zhang et al. (2018) ¹¹⁰	- (NR)	- (NR)	+	- (NR)	+	+	+	++	None
Zou et al. (2015) ¹¹¹	+	- (NR)	++	- (NR)	-	+	+	++	None

Legend: definitely low risk of bias (++); probably low risk of bias (+); probably high risk of bias (-); definitely high risk of bias (--); not reported (NR) Two elements did not apply to animal studies and were excluded from the table.

No. of Studies P-Value **Z-Score** PFOA + ALT ≥ 12 Years Old 8 6.20 1.30E-09 Men 4 2.80 0.0051 Women 3 3.33 0.00090 7 0.038 Removing Largest Study (Gallo et al. 2012) 2.07 NHANES Only 4 2.03 0.042 Adults + Children 11 5.68 2.53E-08 PFOA + GGT 7 Removing Largest Study (Gallo et al. 2012) 2.50 0.012 NHANES Only 4 2.09 0.037 PFOS + ALT ≥ 12 Years Old 6 3.55 0.00042 Removing Largest Study (Gallo et al. 2012) 5 1.11 0.27 4 NHANES Only 0.90 0.37 Adults + Children 8 3.27 0.0011 PFOS + GGT 5 0.47 Removing Largest Study (Gallo et al. 2012) 0.65 NHANES Only 4 0.79 0.28

Table S3. Weighted Z-scores for the cross-sectional associations of PFAS with ALT and GGT in humans with selected exclusions.

Note: perfluoroalkyl substance (PFAS); alanine aminotransferase (ALT); gamma-glutamyl transferase (GGT); perfluorooctanoic acid (PFOA); perfluorooctane sulfonic acid (PFOS); National Health and Nutrition Examination Survey (NHANES)

	No. of Studies	Z-Score	P-Value
GGT			
PFOA	8	4.13	4.32E-5
PFOS	6	1.13	0.26
PFNA	5	1.45	0.15
PFHxS	5	0.66	0.52
AST			
PFOA	6	1.95	0.050
PFOS	4	0.37	0.72
PFNA	4	0.95	0.35
PFHxS	4	1.50	0.13

Table S4. Weighted Z-scores for the cross-sectional associations of PFAS with GGT and AST in humans ≥ 12 years old.

Note: perfluoroalkyl substance (PFAS); gamma-glutamyl transferase (GGT); aspartate aminotransferase (AST); perfluorooctanoic acid (PFOA); perfluorooctane sulfonic acid (PFOS); perfluorononanoic acid (PFNA); perfluorohexane sulfonate (PFHxS)

			Exposure			Sample							
Reference	Species	Strain (Sex)	Route	Exposure	Duration	Collection				Dose (mg/kg)			
Rigden et al. (2015) ⁸⁴	Rats	SD (M)	Gavage	PFOA	3D	EOT	0		0		0)	
Owumi et al. (2021)77	Rats	Wistar (M)	Gavage	PFOA	28D	EOT							
Owumi et al. (2021)77	Rats	Wistar (M)	Gavage	PFOA + NAC 25	28D	EOT	0						
Owumi et al. (2021)77	Rats	Wistar (M)	Gavage	PFOA + NAC 50	28D	EOT	0						
Minata et al. (2010) ⁷⁵	Mice	129S4/SvImJ (M)	Gavage	PFOA	4W	EOT	0 🔺	A					
Minata et al. (2010)75	Mice	PPARα-null (M)	Gavage	PFOA	4W	EOT -	00						
Yahia et al. (2010) ¹⁰⁵	Mice	ICR (Dams)	Gavage	PFOA	GD0-GD17	EOT	00 🔺						
Yang et al. (2014) ¹⁰⁸	Mice	Kunming (M)	Gavage	PFOA	14D	EOT	○▲ ▲						
Wu et al. (2017) ¹⁰³	Mice	Kunming (M)	Gavage	PFOA	1D	EOT	0						
Wu et al. (2018) ¹¹²	Mice	Kunming (M)	Gavage	PFOA	21D	EOT	0 🔺						
Zou et al. (2015) ¹¹¹	Mice	Kunming (M)	Gavage	PFOA	15D	EOT	▲ I						
Zou et al. (2015) ¹¹¹	Mice	Kunming (M)	Gavage	PFOA + Que	15D	EOT	0						
Liu et al. (2016) ⁶⁸	Mice	Kunming (M)	Gavage	PFOA	14D	EOT							
Liu et al. (2016) ⁶⁸	Mice	Kunming (M)	Gavage	PFOA + GSPE	14D	EOT							
Yan et al. (2014) ¹⁰⁶	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	തര						
Guo et al. (2019) ⁵¹	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT -	🔺 🔺						
Guo et al. (2021) ⁵²	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	00 🔺						
Yan et al. (2015) ¹⁰⁷	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	▲						
Yan et al. (2015)107	Mice	BALB/c (M)	Gavage	PFOA+4-PBA 125	28D	EOT	0						
Yan et al. (2015) ¹⁰⁷	Mice	BALB/c (M)	Gavage	PFOA+4-PBA 250	28D	EOT	ŏ						
Blake et al. (2020) ³⁰	Mice	CD-1 (F)	Gavage	PFOA	E1.5-E11.5	E17.5	00						
Blake et al. (2020) ³⁰	Mice	CD-1 (F)	Gavage	PFOA	E1 5-E11 5	F11.5	00						
Wang et al. (2021) ⁹⁹	Mice	C57BL/6J (M)	Gavage	PFOA	15D	FOT	0		0				
Wang et al. (2021) ⁹⁹	Mice	C57BL/6J (M)	Gavage	PFOA	30D	FOT	000		Ŭ				
Tan et al. $(2013)^{93}$	Mice	C57BI/6N (M)	Diet	PFOA	3W	FOT	~~~~						
Tan et al. (2013) ⁹³	Mice	C57BI/6N (M)	Diet	PEOA + HED	3W	FOT -	l Ă						
Crebelli et al. $(2019)^{40}$	Mice	C57BI/6 (M)	Water	PEOA	5W	FOT							
Shi et al. (2021) ⁸⁹	Mice	C57BL/61 (M)	Gavage	PEOA	1D	FOT	<u> </u>						0
Shi et al. (2021) ⁸⁹	Mice	C57BL/61 (M)	Gavage		10	FOT							Ă
Shi et al. (2021) ⁸⁹	Mice	C57BL/61 (M)	Gavage	PEOA + HaoHad1	10	FOT							
Shi et al. (2021) ⁸⁹	Mice	C57BL/61 (M)	Gavage	PEOA + HaoHad2	10	FOT							ŏ
Shi et al. (2021) ⁸⁹	Mice	C57BL/61 (M)	Gavage	PEOA + Haol ad1	10	FOT							ŏ
Shi et al. (2021) ⁸⁹	Mice	C57BL/61 (M)	Gavage	PEOA + Haol ad2	10	FOT							Ň
Shi et al. $(2021)^{89}$	Mico	C57BL/6J (M)	Gavage		10	EOT							Ň
Shi et al. $(2021)^{89}$	Mice	C57BL/6J (M)	Gavage	PEOA + LaoHad2	10	FOT							
Shi et al. $(2021)^{89}$	Mice	C57BL/6J (M)	Gavage		10	EOT -							
Shi et al. $(2021)^{89}$	Mico	C57BL/6J (M)	Gavage		10	EOT -	1						
Cui et al. (2021)	Mico	C57BL/03 (M)	Gavage		280	EOT							0
Cui et al. (2019)	Mice	$miP_{240}(1) CE7PL(CL(M))$	Gavage	PT CA	200	EOT							
Shap at al. (2019)	Mice	1000 (M)	Bronotol	PFOA DEOA		EUT DNI Wook 12							
1 = 0.0000000000000000000000000000000000	Mice	Kupming (E)	Propotol	DEOA	CD1 17		.						
$\Box D \ et al. (2019)^{-1}$	Mice		Propotol		GD1-17								
Quist et al. $(2015)^{83}$	Mice		Prenatal		GD1-17		9						
Quist et al. $(2015)^{83}$	Mice		Prenatal		GD1-17		0						
Quist et al. $(2015)^{83}$	Mice		Prenatal		GD1-17		l o						
Quist et al. (2015)	WICe	GD-1 (F)	Prenatal	PFUA + HFD	GD1-17	PND91 (NF)					r		ليهرز
							0			50	10(D	300

(Figure S1 continued on next page)

							_		Dose	(ppm)	
Butenhoff et al. (2012c) ³⁵	Rats	SD (M)	Diet	PFOA	2Y	Month 3		0			0
Butenhoff et al. (2012c) ³⁵	Rats	SD (M)	Diet	PFOA	2Y	Month 6	-	•			•
Butenhoff et al. (2012c) ³⁵	Rats	SD (M)	Diet	PFOA	2Y	Month 12		•			•
Butenhoff et al. (2012c) ³⁵	Rats	SD (M)	Diet	PFOA	2Y	Month 18		0			0
Butenhoff et al. (2012c) ³⁵	Rats	SD (M)	Diet	PFOA	2Y	EOT		0			▲
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	Month 3		0			0
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	Month 6	-	0			0
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	Month 12		0			0
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	Month 18		0			0
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	EOT		0			0
Qazi et al. (2010)80	Mice	C57BL/6 (M)	Diet	PFOA	10D	EOT	0				
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA	10D	EOT	- 0				
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA + Con A	10D	EOT	▲ (
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA	28D	EOT	0				
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA + Con A	28D	EOT	A				
Son et al. (2008) ⁹⁰	Mice	ICR (M)	Water	PFOA	21D	EOT	0 0				
									50	1	300

Figure S1. Strip plots for PFOA and AST in animal studies. Blue triangles indicate a significant increase in AST and red diamonds indicate a significant decrease in AST relative to control. Circles indicate no significant change in AST relative to control. *Abbreviations:* End of treatment (EOT); low fat diet (LFD); high fat diet (HFD); postnatal day (PND); gestational day (GD); embryonic day (E); Sprague Dawley (SD); 4-phenylbutyric acid (4-PBA); fasted (F); non-fasted (NF); concanavalin A (Con A); quecertin (Que); *N*-acetylcysteine (NAC); grape seed proanthocyanidin extract (GSPE). Additional exposures in Shi et al (2021) refer to lactic acid bacterial strains. An accessible version of this figure is available in Table S7.

Reference	Species	Strain (Sev)	Exposure	Exposure	Duration	Sample Collection			Dose (ma/ka)			
Martin et al. (2007) ⁷⁴	Rats	SD (M)	Gavage			FOT	0		Dose (ilig/kg)			
Martin et al. $(2007)^{74}$	Rats	SD (M)	Gavage	PFOA	2D	EOT	I 🎽					
Martin et al. $(2007)^{74}$	Rats	SD (M)	Gavage	PFOA	5D	EOT	I 🔺					
Rigden et al. (2015) ⁸⁴	Rats	SD (M)	Gavage	PFOA	3D	4D Post		A				
Butenhoff et al. (2012a) ³⁵	Rats	SD (M)	Gavage	PFOA	28D	EOT		A				
Butenhoff et al. (2012a) ³⁵	Rats	SD (F)	Gavage	PFOA	28D	EOT		.				
Butenhoff et al. $(2012a)^{35}$	Rats	SD (M)	Gavage	PFOA	28D	3W Post		_				
Owumi et al. $(2012a)^{77}$	Rais	SD (F) Wistar (M)	Gavage		280			0				
Owumi et al. $(2021)^{77}$	Rats	Wistar (M)	Gavage	PFOA + NAC 25	28D	EOT	lŏ					
Owumi et al. (2021)77	Rats	Wistar (M)	Gavage	PFOA + NAC 50	28D	EOT	ŏ					
Minata et al. (2010)75	Mice	129S4/Svlmj (M)	Gavage	PFOA	4W	EOT						
Nakagawa et al. (2012) ⁷⁶	Mice	mPPARα (M)	Gavage	PFOA	6W	EOT						
Nakagawa et al. (2012) ⁷⁰	Mice	hPPARα (M)	Gavage	PFOA	6W	EOT						
Nakagawa et al. $(2012)^{75}$	Mico	PPARa-null (M)	Gavage	PFUA	6VV 4\M	EOT						
Das et a $(2017)^{43}$	Mice	PPARa-null (M)	Gavage	PFOA	7D	FOT						
Das et a. (2017) ⁴³	Mice	SV129 (M)	Gavage	PFOA	7D	EOT	L 🔺					
Yahia et al. (2010) ¹⁰⁵	Mice	ICR (Dams)	Gavage	PFOA	GD0-GD17	EOT -						
Yang et al. (2014) ¹⁰⁸	Mice	Kunming (M)	Gavage	PFOA	14D	EOT						
Wu et al. (2018) ¹¹²	Mice	Kunming (M)	Gavage	PFOA	21D	EOT						
Yan et al. $(2014)^{106}$	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT						
Guo et al. $(2019)^{57}$	Mice	BALB/C (M)	Gavage	PFOA	28D	EOT						
Yan et al. $(2021)^{107}$	Mice	BALB/C (M)	Gavage	PFOA	28D	FOT						
Yan et al. $(2015)^{107}$	Mice	BALB/c (M)	Gavage	PFOA+4-PBA 125	28D	EOT						
Yan et al. $(2015)^{107}$	Mice	BALB/c (M)	Gavage	PFOA+4-PBA 250	28D	EOT						
Marques et al. (2021)73	Mice	CD-1 (Dams)	Gavage	PFOA	GD1-PND21	EOT	A					
Marques et al. (2021) ⁷³	Mice	CD-1 (Dams)	Gavage	PFOA + HFD	GD1-PND21	EOT -	↓ ▲.					
Blake et al. (2020) ³⁰	Mice	CD-1 (Dams)	Gavage	PFOA	E1.5-11.5	E17.5						
Blake et al. $(2020)^{30}$	Mice	CD-1 (Dams) C57RL/6NL(M)	Gavage	PFOA	E1.5-11.5	EOT						
Tan et al. $(2013)^{33}$	Mice	C57BL/6N (M)	Diet		3W	EOT						
Li X et al. (2019) ⁶⁵	Mice	C57BL/6 (M)	Gavage	PFOA+LFD	16W	EOT						
Li X et al. (2019) ⁶⁵	Mice	C57BL/6 (M)	Gavage	PFOA+LFD	8W	EOT						
Li X et al. (2019) ⁶⁵	Mice	C57BL/6 (M)	Gavage	PFOA+LFD	2W	EOT	A					
Li X et al. (2019) ⁶⁵	Mice	C57BL/6 (M)	Gavage	PFOA+HFD	16W	EOT	1 🔶					
Li X et al. (2019) ⁶⁵	Mice	C57BL/6 (M)	Gavage	PFOA+HFD	800	EOT						
LI X et al. $(2019)^{89}$ Shi et al. $(2021)^{89}$	Mice	C57BL/6 (IVI)	Gavage		2VV 1D	EOT =	1 -					
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + Que	1D 1D	FOT						—
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoHad1	1D	EOT						
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoHad2	1D	EOT						
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoLad1	1D	EOT						
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoLad2	1D	EOT						•
Shi et al. (2021) ⁸⁹	Mico		Gavage	PFOA + LaoHad1	1D 1D	EOT						
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoLao1	1D 1D	FOT						
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoLao2	1D	EOT -	-					
Wang et al. (2021) ⁹⁹	Mice	C57BL/6J (M)	Gavage	PFOA	15D	EOT	A					
Wang et al. (2021)99	Mice	C57BL/6J (M)	Gavage	PFOA	30D	EOT						
Cui et al. (2019) ⁴¹	Mice	C57BL/6J (M)	Gavage	PFOA	28D	EOT						
Cui et al. $(2019)^{47}$	Mice	MIR-34a-/- C57BL/6J (M)	Gavage	PFOA	28D	EOT						
Pouver et al. $(2019)^{79}$	Mice	APOE 3-Leiden CETP (M)	Diet		4W	EOT	l ă	—				
Schlezinger et al. (2020) ⁸⁶	Mice	hPPARa (M)	Water	PFOA	6W	EOT	l 🎽	_				
Schlezinger et al. (2020) ⁸⁶	Mice	PPARa-null (M)	Water	PFOA	6W	EOT	A					
Schlezinger et al. (2020) ⁸⁶	Mice	hPPARa (F)	Water	PFOA	6W	EOT	A					
Schlezinger et al. (2020) ⁸⁶	Mice	PPARa-null (F)	Water	PFOA	6W	EOT -	1 📥					
LI D et al. (2019) ⁶⁴	Mice		Prenatal	PEOA	GD1-17	PND21						
Quist et al. $(2015)^{55}$ Quist et al. $(2015)^{83}$	Mice	CD-1 (F) CD-1 (F)	Prenatal	PFOA	GD1-17	PND21 PND91	5					
Margues et al. $(2013)^{73}$	Mice	CD-1 (MF)	Prenatal	PFOA	GD1-PND21	EOT	1 🎽					
Marques et al. $(2021)^{73}$	Mice	CD-1 (MF)	Prenatal	PFOA + HFD	GD1-PND21	EOT						
Marques et al. (2021) ⁷³	Mice	CD-1 (F)	Prenatal	PFOA	GD1-PND21	PND90	0					
Marques et al. (2021) ⁷³	Mice	CD-1 (F)	Prenatal	PFOA + HFD	GD1-PND21	PND90	2					
Marques et al. $(2021)^{73}$	Mice	CD-1 (M)	Prenatal	PFOA	GD1-PND21	PND90						
(Figure S2 continued on parts			Prenatal	PFUA + HFD	GD1-PND21	PND90	ч т — — — — — — — — — — — — — — — — — — —				1/	—
(Figure 52 continued on next p	lage)						- 0		= 50	100	.,	300

			Exposure			Sample		
Reference	Species	Strain (Sex)	Route	Exposure	Duration	Collection	Dose (ppm)	
Butenhoff et al. (2012c)35	Rats	SD (M)	Diet	PFOA	2Y	EOT	0 0	
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	EOT	0 0	L
Butenhoff et al. (2012c)35	Rats	SD (M)	Diet	PFOA	1Y	EOT		L
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	1Y	EOT	0	L
Botelho et al. (2015) ³¹	Mice	C57BL/6 (M)	Diet	PFOA	10D	EOT		L
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA	10D	EOT		L
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA + Con A	10D	EOT		L
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA	28D	EOT		L
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA + Con A	28D	EOT	0	L
Son et al. (2008) ⁹⁰	Mice	ICR (M)	Water	PFOA	21D	EOT		

Figure S2. Strip plots for PFOA and relative liver weight in animal studies. Blue triangles indicate a significant increase in relative liver weight relative to control. Circles indicate no significant change in relative liver weight relative to control. Plots are ordered by species and strain. *Abbreviations:* End of treatment (EOT); low fat diet (LFD); high fat diet (HFD); postnatal day (PND); gestational day (GD); embryonic day (E); Sprague Dawley (SD); *N*-acetylcysteine (NAC); 4-phenylbutyric acid (4-PBA). Additional exposures in Shi et al (2021) refer to lactic acid bacterial strains. An accessible version of this figure is available in Table S8.

			Exposure			Sample						
Reference	Species	Strain (Sex)	Route	Exposure	Duration	Collection			Dose (mg/kg)			
Curran et al. (2008) ⁴²	Rats	SD (M)	Diet	PFOS	28D	EOT	0 0		0		0	
Curran et al. (2008)42	Rats	SD (F)	Diet	PFOS	28D	EOT	0 0		0		•	
Han et al. (2018a) ⁵⁵	Rats	SD (M)	Gavage	PFOS	28D	EOT	○ ▲					
Han et al. (2018b) ⁵⁶	Rats	SD (M)	Gavage	PFOS	28D	EOT	○ ▲					
Kim et al. (2011) ⁶²	Rats	SD (M)	Gavage	PFOS	28D	EOT	00 🔺					
Kim et al. (2011) ⁶²	Rats	SD (F)	Gavage	PFOS	28D	EOT	0 • 0					
Wan et al. (2016) ⁹⁶	Rats	SD (M)	Gavage	PFOS	28D	EOT	○ ▲					
Yan et al. (2014) ¹⁰⁶	Mice	BALB/c (M)	Gavade	PFOS	28D	EOT	0 🔺					
Ly et al. (2018) ⁷¹	Mice	- (M)	Gavage	PFOS	21D	EOT	▲					
Ly et al. (2018) ⁷¹	Mice	- (M)	Gavage	PFOS + Nar	21D	EOT	▲					
Sulet al. $(2019)^{91}$	Mice	ICR (M)	Gavage	PFOS	21D	FOT	▲					
Su et al. $(2019)^{91}$	Mice	ICR (M)	Gavage	PFOS + VC100	21D	FOT	0					
Sulet al. (2019) ⁹¹	Mice	ICR (M)	Gavage	PEOS + VC200	21D	FOT	0					
Deng et al. $(2020)^{44}$	Mice	C57BL/6 (M)	Gavage	PEOS	1D	2D Post	_					0
Deng et al. $(2020)^{44}$	Mice	C57BL/6 (M)	Gavage		10	2D Post						
Oin at al. $(2021)^{1/3}$	Mice	C57BL/6 (M)	Gavage		10	EOT						
O_{in} et al. (2021) ¹¹³	Mice		Gavage		400	LOT						
Qin et al. $(2021)^{1/6}$	NICE	C5/BL/6J (M)	Gavage	PFOS + HFD	400	EOT						
Wang G et al. (2020) ¹⁰⁰	NICe	C57BL/7 (M)	Gavage	PFUS	16D	EOI	00	0				
Xing et al. (2016) ⁷⁰⁴	Mice	C57BL/7 (M)	Gavage	PFOS	30D	EOI	○▲ ▲					
Huang et al. (2020) ³⁷	Mice	Kunming (M)	Gavage	PFOS	21D	EOT	▲					
Huang et al. (2020) ⁵⁷	Mice	Kunming (M)	Gavage	PFOS + GSPE	21D	EOT	0					
Lai et al. (2017) ⁶³	Mice	C57BL/7 (MF)	Prenatal	PFOS + DEN	E0-E18.5	EOT	A					
							L _I		1.		1/	
							0		50	1	100	250
									Dose (ppm)			
Seacat et al. (2003)87	Rats	SD (F)	Diet	PFOS	4W	EOT	00 0	0				
Seacat et al. (2003)87	Rats	SD (M)	Diet	PFOS	4W	EOT	00 0	0				
Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	1D Post		0				0
Elcombe et al. $(2012b)^{47}$	Rats	SD (M)	Diet	PFOS	7D	28D Post		0				0
Elcombe et al (2012b)47	Rats	SD (M)	Diet	PFOS	7D	56D Post		0				0
Elcombe et al. $(2012b)^{47}$	Rats	SD (M)	Diet	PFOS	7D	84D Post		0				0
Elcombe et al. $(2012a)^{46}$	Rats	SD (M)	Diet	PEOS	1D	FOT		0				0
Elcombe et al. $(2012a)^{46}$	Rate	SD (M)	Diet	PEOS	70	FOT		0				0
Elcombe et al. $(2012a)^{46}$	Rate	SD (M)	Diet	PEOS	280	FOT -		0				0
Butophoff at al. $(2012h)^{34}$	Pate		Diet	PEOS	52\\/	101 W/4		0				
Butenhoff et al. $(2012b)^3$	Rais		Diet	PFOS	5211	VV4 \\/1.4		0				
Buterhoff et al. $(2012b)^{34}$	Rais		Diet	PF03	5277	VV 14		0				
Butennoff et al. (2012b) ³⁷	Rats	SD (F)	Diet	PFUS	5200	VV27	00 0	0				
Butennoff et al. (2012b) ³⁴	Rats	SD (F)	Diet	PFUS	5200	EOI	00 0	0				
Butennoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFUS	5200	VV4	00 0	•				
Butenhoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFOS	52W	VV14	00 0	0				
Butenhoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFOS	52W	W27	00 0	0				
Butenhoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFOS	52W	EOT	00 0	0				
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS	2D	EOT						•
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS + CS	2D	EOT –						•
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS	9D	EOT						•
Bagley et al. (2017)28	Rats	SD (M)	Diet	PFOS + CS	9D	EOT						•
Bagley et al. (2017)28	Rats	SD (M)	Diet	PFOS	16D	EOT						0
Bagley et al. (2017)28	Rats	SD (M)	Diet	PFOS + CS	16D	EOT						0
Bagley et al. (2017)28	Rats	SD (M)	Diet	PFOS	23D	EOT						0
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS + CS	23D	EOT						0
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS	2D	FOT						š
Badley et al. (2017) ²⁸	Rats	SD (F)	Diet	PEOS + CS	20	FOT						š
Badley et al. (2017) ²⁸	Rate	SD (F)	Diet	PEOS	9D	FOT						~
Badley et al. (2017) ²⁸	Rate	SD (F)	Diet		9D	EOT						
Baglov at al. $(2017)^{28}$	Pate		Diet	DEOS	3D 16D	EOT -						•
Dayley et al. $(2017)^{20}$	Rais		Diet		160	EOT						0
Dagley et al. $(2017)^{20}$	Rats	SD (F)	Diet	PFUS + US	160	EUI						0
Bagley et al. (2017)20	Rats	5D (F)	Diet	PFUS	230	EUI						•
Bagley et al. $(2017)^{28}$	Rats	SD (F)	Diet	PFOS + CS	23D	EOT						•
Qazi et al. (2010) ⁸⁰	Mice	C57BL/6 (M)	Diet	PFOS	10D	EOT	0					
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS	10D	EOT	0					
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS + Con A	10D	EOT	A					
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS	28D	EOT	0					
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS + Con A	28D	EOT	A					
· /							L ,					

Figure S3. Strip plots for PFOS and AST in animal studies. Blue triangles indicate a significant increase in AST and red diamonds indicate a significant decrease in AST relative to control. Circles indicate a significant change in AST relative to control. Plots are ordered by species and strain. *Abbreviations:* End of treatment (EOT); embryonic day (E); Vitamin C (VC); polychlorinated biphenyl (PCB); diethylnitrosamine (DEN); choline supplementation (CS); concanavalin A (Con A); naringin (Nar); Sprague Dawley (SD); grape seed proanthocyanidin extract (GSPE). An accessible version of this figure is available in Table S9.

			Exposure			Sample					
Reference	Species	Strain (Sex)	Route	Exposure	Duration	Collection			Dose (mg/kg)		
Curran et al. (2008)42	Rats	SD (M)	Diet	PFOS	28D	EOT	- 0				
Curran et al. (2008)42	Rats	SD (F)	Diet	PFOS	28D	EOT					
Han et al. (2018b) ⁵⁶	Rats	SD (M)	Gavage	PFOS	28D	EOT	0				
Kim et al. (2011) ⁶²	Rats	SD (M)	Gavage	PFOS	28D	EOT	0 0	A			
Kim et al. (2011) ⁶²	Rats	SD (F)	Gavage	PFOS	28D	EOT	0 0				
Martin et al. (2007)74	Rats	SD (M)	Gavage	PFOS	1D	EOT	-	0			
Martin et al. (2007)74	Rats	SD (M)	Gavage	PFOS	2D	EOT		0			
Martin et al. (2007)74	Rats	SD (M)	Gavage	PFOS	5D	EOT		A			
Yan et al. (2014) ¹⁰⁶	Mice	BALB/c (M)	Gavage	PFOS	28D	EOT					
Lv et al. (2018) ⁷¹	Mice	- (M)	Gavage	PFOS	21D	EOT		A			
Lv et al. (2018) ⁷¹	Mice	- (M)	Gavage	PFOS + Nar	21D	EOT	-	A			
Qin et al. (2021) ¹¹³	Mice	C57BL/6J (M)	Gavage	PFOS	4W	EOT					
Qin et al. (2021) ¹¹³	Mice	C57BL/6J (M)	Gavage	PFOS + HFD	4W	EOT					
Wang et al. (2020) ¹⁰⁰	Mice	C57BL/6J (M)	Gavage	PFOS	16D	EOT			A		
Xing et al. (2016) ¹⁰⁴	Mice	C57BL/6J (M)	Gavage	PFOS	30D	EOT		A			
Huang et al. (2020)57	Mice	Kunming (M)	Gavage	PFOS	21D	EOT	-	A			
Huang et al. (2020)57	Mice	Kunming (M)	Gavage	PFOS + GSPE	21D	EOT					
Margues et al. (2021)73	Mice	CD-1 (dams)	Gavage	PFOS	GD1-PND21	EOT	0				
Margues et al. (2021)73	Mice	CD-1 (dams)	Gavage	PFOS + HFD	GD1-PND21	EOT	0				
Marques et al. (2021)73	Mice	CD-1 (MF)	Prenatal	PFOS	GD1-PND90	EOT	0				
Marques et al. (2021)73	Mice	CD-1 (MF)	Prenatal	PFOS + HFD	GD1-PND90	EOT	•				
Marques et al. (2021)73	Mice	CD-1 (M)	Prenatal	PFOS	GD1-PND90	EOT	0				
Margues et al. (2021)73	Mice	CD-1 (M)	Prenatal	PFOS + HFD	GD1-PND90	EOT	0				
Marques et al. (2021)73	Mice	CD-1 (F)	Prenatal	PFOS	GD1-PND90	EOT	0				
Marques et al. (2021)73	Mice	CD-1 (F)	Prenatal	PFOS + HFD	GD1-PND90	EOT	0				
		·					0	20	40		100

(Figure S4 continued on next page)

			Exposure			Sample						
Reference	Species	Strain (Sex)	Route	Exposure	Duration	Collection			Dose (ppm)			
Seacat et al. (2003)87	Rats	SD (F)	Diet	PFOS	4W	EOT	000	0				T
Seacat et al. (2003)87	Rats	SD (F)	Diet	PFOS	14W	EOT	000	A				
Seacat et al. (2003)87	Rats	SD (M)	Diet	PFOS	4W	EOT	000	A				
Seacat et al. (2003)87	Rats	SD (M)	Diet	PFOS	14W	EOT	000	A				
Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	1D Post		A				
Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	28D Post		0		0		
Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	56D Post		0		0		
Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	84D Post		A		A		
Elcombe et al. (2012a) ⁴⁶	Rats	SD (M)	Diet	PFOS	1D	EOT		0		0		
Elcombe et al. (2012a)46	Rats	SD (M)	Diet	PFOS	7D	EOT	-	0		A		
Elcombe et al. (2012a)46	Rats	SD (M)	Diet	PFOS	28D	EOT		A		A		
Butenhoff et al. (2012b)34	Rats	SD (F)	Diet	PFOS	52W	1W Post		A				
Butenhoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFOS	52W	1W Post		A				
Baglev et al. (2017)28	Rats	SD (F)	Diet	PFOS	22D	EOT						
Bagley et al. (2017)28	Rats	SD (F)	Diet	PFOS + CS	22D	EOT						
Bagley et al. (2017)28	Rats	SD (M)	Diet	PFOS	22D	EOT				A		
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS + CS	22D	EOT						
Butenhoff et al. $(2017)^{36}$	Rats	SD (F)	Inhalation	PFOS	1W*	EOT						
Butenhoff et al. (2017) ³⁶	Rats	SD (M)	Inhalation	PFOS	1W*	EOT					0	
Butenhoff et al. (2017) ³⁶	Rats	SD (F)	Inhalation	PFOS	4W*	EOT	-				0	
Butenhoff et al. (2017) ³⁶	Rats	SD (M)	Inhalation	PFOS	4W*	EOT						
Butenhoff et al. (2017) ³⁶	Rats	SD (F)	Inhalation	PFOS	13W*	EOT		0	c	A		
Butenhoff et al. (2017) ³⁶	Rats	SD (M)	Inhalation	PFOS	13W*	EOT		(C			
Butenhoff et al. (2017) ³⁶	Rats	SD (F)	Inhalation	PFOS	13W*	4W Post		(c	0		
Butenhoff et al. (2017) ³⁶	Rats	SD (M)	Inhalation	PFOS	13W*	4W Post		(C			
Qazi et al. (2010) ⁸⁰	Mice	C57BL/6 (M)	Diet	PFOS	10D	EOT	A					
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS	10D	EOT	A					
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS	28D	EOT	A					
Pfohl et al. (2021) ⁷⁸	Mice	C57BL/6 (M)	Diet	PFOS + LFD	12W	EOT	0					
Pfohl et al. (2021) ⁷⁸	Mice	C57BL/6 (M)	Diet	PFOS + HFD	12W	EOT	- 0					
Zhang et al. (2016)109	Mice	C57BL/6J (M)	Diet	PFOS	24D	EOT						
Zhang et al. (2016) ¹⁰⁹	Mice	C57BL/6J (M)	Diet	PFOS + mMCD	24D	EOT						
Zhang et al. (2016) ¹⁰⁹	Mice	C57BL/6J (M)	Diet	PFOS	6W	EOT	A					
Zhang et al. (2016) ¹⁰⁹	Mice	C57BL/6J (M)	Diet	PFOS + CS	6W	EOT	A					
Huck et al. (2018) ⁵⁸	Mice	C57BL/6J (M)	Diet	PFOS	6W	EOT	A					
Huck et al. (2018) ⁵⁸	Mice	C57BL/6J (M)	Diet	PFOS + HFD	6W	EOT	•					
Margues et al. (2020)72	Mice	C57BL/6N (M)	Diet	PFOS	6W	EOT	A					
Margues et al. (2020)72	Mice	C57BL/6N (M)	Diet	PFOS + HFD/STD	6W	EOT	A					
Margues et al. (2020)72	Mice	C57BL/6N (M)	Diet	PFOS + HFD	6W	EOT	A				//	
						-			50	100	30	٦. ٥

Figure S4. Strip plots for PFOS and relative liver weight in animal studies. Blue triangles indicate a significant increase in relative liver weight relative to control. Black dots indicate no significant change in relative liver weight relative to control. Plots are ordered by species and strain. *Abbreviations:* End of treatment (EOT); marginal methionine/choline-deficient diet (mMCD); choline supplementation (CS); naringin (Nar); Sprague Dawley (SD); grape seed proanthocyanidin extract (GSPE); high fat diet (HFD); low fat diet (LFD); initial high fat diet followed by standard diet (HFD/STD). *Atmospheric exposure occurred for 5 hours/day, 5 days/week. An accessible version of this figure is available in Table S10.

Table S5. Results for PFOA and ALT in animal studies.

Reference	Species	Strain (Sex)	Exposure	Exposure	Duration	Sample	Findings
Martin at al. (2007) ⁷⁴	Pote	SD (M)	Route		1D	Collection	ALT was not significantly different in rate treated with 20 mg/kg DEOA compared to controls
Martin et al. (2007) Martin et al. $(2007)^{74}$	Rats	SD (M)	Gavage	PFOA	2D	FOT	ALT was not significantly different in rats treated with 20 mg/kg PFOA compared to controls.
Martin et al. $(2007)^{74}$	Rats	SD (M)	Gavage	PFOA	5D	EOT	ALT was not significantly different in rats treated with 20 mg/kg PFOA compared to controls.
Rigden et al. (2015) ⁸⁴	Rats	SD (M)	Gavage	PFOA	3D	EOT	ALT was significantly higher in rats treated with 33 mg/kg PFOA compared to controls, but
Butenhoff et al. (2012a) ³³	Rate	SD (M)	Gavage	ΡΕΟΔ	280	FOT	NOT IN FAILS TREATED WITH 10 OF 100 mg/kg PFOA.
Butenhoff et al. $(2012a)^{33}$	Rats	SD (F)	Gavage	PFOA	28D	EOT	ALT was significantly higher in rats treated with 30 mg/kg PFOA compared to controls.
Butenhoff et al. (2012a) ³³	Rats	SD (M)	Gavage	PFOA	28D	3W Post	ALT was not significantly different in rats treated with 30 mg/kg PFOA compared to controls.
Butenhoff et al. (2012a) ³³	Rats	SD (F)	Gavage	PFOA	28D	3W Post	ALT was significantly higher in rats treated with 30 mg/kg PFOA compared to controls.
Owumi et al. (2021)77	Rats	Wistar (M)	Gavage	PFOA	28D	EOT	ALT was significantly higher in rats treated with 5 mg/kg PFOA compared to controls.
Owumi et al. (2021) ⁷⁷	Rats	Wistar (M)	Gavage	PFOA + NAC 25	28D	EOT	ALT was not significantly different in rats treated with 5 mg/kg PFOA and 25 mg NAC compared to controls.
Owumi et al. (2021) ⁷⁷	Rats	Wistar (M)	Gavage	PFOA + NAC 50	28D	EOT	ALT was not significantly different in rats treated with 5 mg/kg PFOA and 25 mg NAC compared to controls.
Minata et al. (2010) ⁷⁵	Mice	129S4/SvImJ (M)	Gavage	PFOA	4W	EOT	ALT was significantly higher in mice treated with 12.5, 25, and 50 mg/kg PFOA compared to controls.
Nakagawa et al. (2012) ⁷⁶	Mice	mPPARα (M)	Gavage	PFOA	6W	EOT	ALT was significantly higher in mice treated with 5 mg/kg PFOA compared to controls, but not in mice treated with 1 mg/kg PFOA.
Nakagawa et al. (2012) ⁷⁶	Mice	hPPARα (M)	Gavage	PFOA	6W	EOT	ALT was significantly higher in mice treated with 5 mg/kg PFOA compared to controls, but not in mice treated with 1 mg/kg PFOA.
Nakagawa at al. $(2012)^{76}$	Mico		Cavago	PEOA	61/1/	FOT	ALT was significantly higher in mice treated with 5 mg/kg PFOA compared to controls, but
Nakayawa et al. (2012) ¹³	wice		Gavage	FFUA	000	EOT	not in mice treated with 1 mg/kg PFOA.
Minata et al. (2010) ⁷⁵	Mice	PPARα-null (M)	Gavage	PFOA	4W	EOT	ALT was significantly higher in mice treated with 12.5, 25, and 50 mg/kg PFOA compared to controls.
Yahia et al. (2010) ¹⁰⁵	Mice	ICR (Dams)	Gavage	PFOA	GD0-GD17	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOA compared to controls, but not in mice treated with 1 or 5 mg/kg PFOA.
Yang et al. (2014) ¹⁰⁸	Mice	Kunming (M)	Gavage	PFOA	14D	EOT	ALT was significantly higher in mice treated with 2.5, 5, and 10 mg/kg PFOA compared to controls.
Wu et al. (2017) ¹⁰³	Mice	Kunming (M)	Gavage	PFOA	1D	EOT	ALT was not significantly different in mice treated with 5 mg/kg PFOA compared to controls.
Wu et al. (2018) ¹¹²	Mice	Kunming (M)	Gavage	PFOA	21D	EOT	ALT was significantly higher in mice treated with 5 mg/kg PFOA compared to controls, but
Zou et al. (2015) ¹¹¹	Mice	Kunming (M)	Gavage	PFOA	15D	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOA.
Zou et al. (2015) ¹¹¹	Mice	Kunming (M)	Gavage	PEOA + Que	15D	FOT	ALT was significantly higher in mice treated with 10 mg/kg PFOA and Que compared to
Liu et al. (2016) ⁶⁸	Mico	Kunming (M)	Gavago	PEOA	14D	EOT	controls.
	MICE		Gavage		14D	LOT	ALT was significantly higher in mice treated with 10 mg/kg PFOA compared to controls.
Liu et al. (2016) ⁶⁶	Mice	Kunming (M)	Gavage	PFOA + GSPE	14D	EOT	controls. ALT was significantly higher in mice treated with 20 mg/kg PFOA compared to controls, but
Yan et al. (2014) ¹⁰⁶	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	not in mice treated with 0.08, 0.31, 1.25, or 5 mg/kg PFOA.
Guo et al. (2019) ⁵¹	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	controls, but not in mice treated with 2 and 10 mg/kg PFOA.
Guo et al. (2021) ⁵²	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	ALI was significantly higher in mice treated with 2 and 10 mg/kg PFOA compared to controls, but not in mice treated with 0.4 mg/kg PFOA.
Yan et al. (2015) ¹⁰⁷	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOA compared to controls.
Yan et al. (2015) ¹⁰⁷	Mice	BALB/c (M)	Gavage	PFOA+4-PBA 125	28D	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOA and 125 mg 4-PBA compared to controls.
Yan et al. (2015) ¹⁰⁷	Mice	BALB/c (M)	Gavage	PFOA+4-PBA 250	28D	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOA and 250 4-PBA compared to controls.
Hui et al. (2017) ⁵⁹ Marques et al. (2021) ⁷³	Mice Mice	BALB/c (M) CD-1 (Dams)	Gavage Gavage	PFOA PFOA	7D GD1-PND21	EOT EOT	ALT was significantly higher in mice treated with 1 and 5 mg/kg PFOA compared to controls. ALT was not significantly different in mice treated with 1 mg/kg PFOA compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (Dams)	Gavage	PFOA + HFD	GD1-PND21	EOT	ALT was not significantly different in mice treated with 1 mg/kg PFOA and HFD compared to controls.
Blake et al. (2020) ³⁰	Mice	CD-1 (Dams)	Gavage	PFOA	E1.5-E11.5	E17.5	ALT was not significantly different in mice treated with 1 or 5 mg/kg PFOA compared to controls.
Blake et al. (2020) ³⁰	Mice	CD-1 (Dams)	Gavage	PFOA	E1.5-E11.5	E11.5	ALT was not significantly different in mice treated with 1 or 5 mg/kg PFOA compared to controls
Tan et al. (2013) ⁹³	Mice	C57BI/6N (M)	Diet	PFOA	3W	EOT	ALT was significantly higher in mice treated with 5 mg/kg PFOA compared to controls.
Tan et al. (2013) ⁹³	Mice	C57BI/6N (M)	Diet	PFOA+HFD	3W	EOT	ALT was significantly higher in mice treated with 5 mg/kg PFOA and HFD compared to controls.
Li X et al. (2019) ⁶⁵	Mice	C57BI/6 (M)	Gavage	PFOA+LFD	16W	EOT	ALT was not significantly different in mice treated with 1 mg/kg PFOA and LFD compared to controls.
Li X et al. (2019) ⁶⁵	Mice	C57Bl/6 (M)	Gavage	PFOA+LFD	8W	EOT	ALT was not significantly different in mice treated with 1 mg/kg PFOA and LFD compared to controls.
Li X et al. (2019) ⁶⁵	Mice	C57BI/6 (M)	Gavage	PFOA+LFD	2W	EOT	ALT was not significantly different in mice treated with 1 mg/kg PFOA and LFD compared to controls.

Li X et al. (2019) ⁶⁵	Mice	C57BI/6 (M)	Gavage	PFOA+HFD	16W	EOT	ALT was not significantly different in mice treated with 1 mg/kg PFOA and HFD compared to controls.
Li X et al. (2019) ⁶⁵	Mice	C57BI/6 (M)	Gavage	PFOA+HFD	8W	EOT	ALT was not significantly different in mice treated with 1 mg/kg PFOA and HFD compared to controls.
Li X et al. (2019) ⁶⁵	Mice	C57BI/6 (M)	Gavage	PFOA+HFD	2W	EOT	ALT was not significantly different in mice treated with 1 mg/kg PFOA and HFD compared to controls.
Crebelli et al. (2019)40	Mice	C57BI/6 (M)	Water	PFOA	5W	EOT	ALT was significantly higher in mice treated with 5 mg/kg PFOA compared to controls, but not in mice treated with 0.1 and 1 mg/kg PFOA.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA	1D	EOT	ALT was significantly higher in mice treated with 300 mg/kg PFOA compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + Que	1D	EOT	ALT was significantly higher in mice treated with 300 mg/kg PFOA and Que compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoHad1	1D	EOT	ALT was significantly higher in mice treated with 300 mg/kg PFOA and HaoHad1 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoHad2	1D	EOT	ALT was significantly higher in mice treated with 300 mg/kg PFOA and HaoHad2 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoLad1	1D	EOT	ALT was significantly higher in mice treated with 300 mg/kg PFOA and HaoLad1 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoLad2	1D	EOT	ALT was significantly higher in mice treated with 300 mg/kg PFOA and HaoLad2 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoHad1	1D	EOT	ALT was significantly higher in mice treated with 300 mg/kg PFOA and LaoHad1 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoHad2	1D	EOT	ALT was not significantly different in mice treated with 300 mg/kg PFOA and LaoHad2compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoLao1	1D	EOT	ALT was significantly higher in mice treated with 300 mg/kg PFOA and LaoLao1 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoLao2	1D	EOT	ALT was significantly higher in mice treated with 300 mg/kg PFOA and LaoLao2 compared to controls.
Wang et al. (2021) ⁹⁹	Mice	C57BL/6J (M)	Gavage	PFOA	15D	EOT	ALT was significantly higher in mice treated with 3 and 30 mg/kg PFOA compared to controls.
Wang et al. (2021) ⁹⁹	Mice	C57BL/6J (M)	Gavage	PFOA	30D	EOT	ALT was significantly higher in mice treated with 2.5, 5, and 10 mg/kg PFOA compared to controls.
Cui et al. (2019) ⁴¹ Cui et al. (2019) ⁴¹	Mice Mice	C57BL/6J (M) miR-34a(-/-) C57BL/6J (M)	Gavage Gavage	PFOA PFOA	28D 28D	EOT EOT	ALT was significantly higher in mice treated with 5 mg/kg PFOA compared to controls. ALT was significantly higher in mice treated with 5 mg/kg PFOA compared to controls.
Pouwer et al. (2019) ⁷⁹	Mice	APOE*3-Leiden CETP (M)	Diet	PFOA	6W	Week 4	ALT was significantly higher in mice treated with 30000 ng/g PFOA compared to controls, but not in mice treated with 10 or 300 ng/g PFOA
Pouwer et al. (2019) ⁷⁹	Mice	APOE*3-Leiden CETP (M)	Diet	PFOA	6W	EOT	ALT was significantly higher in mice treated with 30000 ng/g PFOA compared to controls, but not in mice treated with 10 or 300 ng/g PFOA
Pouwer et al. (2019) ⁷⁹	Mice	APOE*3-Leiden CETP (M)	Diet	PFOA	4W	EOT	ALT was significantly higher in mice treated with 30000 ng/g PFOA compared to controls, but not in mice treated with 10 or 300 ng/g PFOA
Shao et al. (2021) ⁸⁸	Mice	ICR (M)	Prenatal	PFOA	GD13-17	PN Week 12	ALT was not significantly different in mice treated with 0.05 mg/kg PFOA compared to controls.
Li D et al. (2019) ⁶⁴	Mice	Kunming (F)	Prenatal	PFOA	GD1-17	PD21	ALT was significantly higher in mice treated with 1, 2.5, 5, and 10 mg/kg PFOA compared to controls.
Quist et al. (2015) ⁸³	Mice	CD-1 (F)	Prenatal	PFOA	GD1-17	PND91	ALT was not significantly different in mice treated with 0.01, 0.1, 0.3, or 1 mg/kg PFOA compared to controls.
Quist et al. (2015) ⁸³	Mice	CD-1 (F)	Prenatal	PFOA + LFD	GD1-17	PND91	ALT was not significantly different in mice treated with 0.01, 0.1, 0.3, or 1 mg/kg PFOA and LFD compared to controls.
Quist et al. (2015) ⁸³	Mice	CD-1 (F)	Prenatal	PFOA + HFD	GD1-17	PND91 (F)	ALT was not significantly different in mice treated with 0.01, 0.1, 0.3, or 1 mg/kg PFOA and HFD compared to controls.
Quist et al. (2015) ⁸³	Mice	CD-1 (F)	Prenatal	PFOA + HFD	GD1-17	PND91 (NF)	ALT was not significantly different in mice treated with 0.01, 0.1, 0.3, or 1 mg/kg PFOA and HFD compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (MF)	Prenatal	PFOA	GD1-PND21	EOT	ALT was significantly higher in mice treated with 1 mg/kg PFOA compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (MF)	Prenatal	PFOA + HFD	GD1-PND21	EOT	ALT was not significantly different in mice treated with 1 mg/kg PFOA and HFD compared to controls
Marques et al. (2021) ⁷³	Mice	CD-1 (F)	Prenatal	PFOA	GD1-PND21	PND90	ALT was not significantly different in mice treated with 1 mg/kg PFOA compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (F)	Prenatal	PFOA + HFD	GD1-PND21	PND90	ALT was not significantly different in mice treated with 1 mg/kg PFOA and HFD compared to
Marques et al. (2021) ⁷³	Mice	CD-1 (M)	Prenatal	PFOA	GD1-PND21	PND90	ALT was not significantly different in mice treated with 1 mg/kg PFOA compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (M)	Prenatal	PFOA + HFD	GD1-PND21	PND90	ALT was not significantly different in mice treated with 1 mg/kg PFOA and HFD compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (M)	Diet	PFOA	2Y	Month 3	ALT was significantly higher in rats treated with 30 and 300ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats Rate	SD (M)	Diet Diet		2Y 2Y	Month 6 Month 12	ALL was significantly higher in rats treated with 30 and 300ppm PFOA compared to controls.
Butenhoff et al. $(2012c)^{35}$	Rats	SD (M)	Diet	PFOA	2Y	Month 18	ALT was significantly higher in rats treated with 30 and 500ppin FFOA compared to controls, but not in rats treated with 30 ppm PFOA
Butenhoff et al. (2012c) ³⁵	Rats	SD (M)	Diet	PFOA	2Y	EOT	ALT was not significantly different in rats treated with 30 or 300ppm PFOA compared to controls.

Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	Month 3	ALT was not significantly different in rats treated with 30 or 300ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	Month 6	ALT was not significantly different in rats treated with 30 or 300ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	Month 12	ALT was not significantly different in rats treated with 30 or 300ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	Month 18	ALT was not significantly different in rats treated with 30 or 300ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	EOT	ALT was not significantly different in rats treated with 30 or 300ppm PFOA compared to controls.
Qazi et al. (2010) ⁸⁰	Mice	C57BL/6 (M)	Diet	PFOA	10D	EOT	ALT was not significantly different in mice treated with 0.002% w/w PFOA compared to controls.
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	diet	PFOA	10D	EOT	ALT was not significantly different in mice treated with 0.002% w/w PFOA compared to controls.
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	diet	PFOA + Con A	10D	EOT	ALT was significantly higher in mice treated with 0.002% w/w PFOA and Con A compared to controls.
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	diet	PFOA	28D	EOT	ALT was not significantly different in mice treated with 0.00005% w/w PFOA compared to controls.
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	diet	PFOA + Con A	28D	EOT	ALT was significantly higher in mice treated with 0.00005% w/w PFOA and Con A compared to controls.
Botelho et al. (2015) ³¹	Mice	C57BL/6 (M)	Diet	PFOA	10D	EOT	ALT was significantly higher in mice treated with 0.02% w/w PFOA compared to controls, but not in mice treated with 0.002%. 0.005%. or 0.01% w/w PFOA.
Son et al. (2008) ⁹⁰	Mice	ICR (M)	Water	PFOA	21D	EOT	ALT was significantly higher in mice treated with 10, 50, and 250 ppm PFOA compared to controls, but not in mice treated with 2 ppm PFOA.

Notes:

Abbreviations: End of treatment (EOT); low fat diet (LFD); high fat diet (HFD); postnatal day (PND); gestational day (GD); embryonic day (E); Sprague Dawley (SD); N-acetylcysteine (NAC); 4-phenylbutyric acid (4-PBA); quecertin (Que); fasted (F); non-fasted (NF); grape seed proanthocyanidin extract (GSPE). Additional exposure abbreviations in Shi et al (2021) refer to lactic acid bacterial strains.

Table S6. Results for PFOS and ALT in rodent studies.

Reference	Species	Strain (Sex)	Exposure Route	Exposure	Duration	Sample Collection	Findings
Curran et al. (2008) ⁴²	Rats	SD (M)	Diet	PFOS	28D	EOT	ALT was significantly higher in rats treated with 100 mg/kg PFOS compared to controls, but not in rats treated with 2, 20, or 50 mg/kg PFOS.
Curran et al. (2008) ⁴²	Rats	SD (F)	Diet	PFOS	28D	EOT	ALT was not significantly different in rats treated with 2, 20, 50, or 100 mg/kg PFOS compared to controls.
Han et al. (2018a) ⁵⁵	Rats	SD (M)	Gavage	PFOS	28D	EOT	ALT was significantly higher in rats treated with 1 and 10 mg/kg PFOS compared to controls.
Kim et al. (2011) ⁶²	Rats	SD (M)	Gavage	PFOS	28D	EOT	ALT was significantly different in rats treated with 1.25, 5, or 10 mg/kg PFOS compared to
Kim et al. (2011) ⁶²	Poto	SD (E)	Covogo	REOS	200	EOT	controls. ALT was not significantly different in rats treated with 1.25, 5, or 10 mg/kg PFOS compared to
	Rais	3D (F)	Gavage	FF03	200	EOT	controls.
Martin et al. (2016) ³⁰	Rats Rats	SD (M) SD (M)	Gavage	PFOS	28D 1D	FOT	ALT was significantly higher in rats treated with 1 and 10 mg/kg PFOS compared to controls. ALT was not significantly different in rats treated with 10 mg/kg PFOS compared to controls
Martin et al. (2007) ⁷⁴	Rats	SD (M)	Gavage	PFOS	2D	EOT	ALT was not significantly different in rats treated with 10 mg/kg PFOS compared to controls.
Martin et al. (2007)74	Rats	SD (M)	Gavage	PFOS	5D	EOT	ALT was not significantly different in rats treated with 10 mg/kg PFOS compared to controls.
Yan et al. (2014) ¹⁰⁶	Mice	BALB/c (M)	Gavage	PFOS	28D	EOT	ALT was significantly higher in mice treated with 5 mg/kg PFOS compared to controls, but not in rats treated with 1.25 mg/kg PFOS.
Lv et al. (2018) ⁷¹	Mice	- (M)	Gavage	PFOS	21D	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOS compared to controls.
Lv et al. (2018) ⁷¹	Mice	- (M)	Gavage	PFOS + Nar	21D	EOT	ALT was not significantly different in mice treated with 10 mg/kg PFOS and NAR compared to controls
Su et al. (2019) ⁹¹	Mice	ICR (M)	Gavage	PFOS	21D	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOS compared to controls.
Su et al. (2019) ⁹¹	Mice	ICR (M)	Gavage	PFOS + VC100	21D	EOT	ALT was not significantly different in mice treated with 10 mg/kg PFOS and 100 mg VC compared to controls.
Su et al. (2019) ⁹¹	Mice	ICR (M)	Gavage	PFOS + VC200	21D	EOT	ALT was not significantly different in mice treated with 10 mg/kg PFOS and 200 mg VC compared to controls
Deng et al. (2020) ⁴⁴	Mice	C57BL/6 (M)	Gavage	PFOS	1D	2D Post	ALT was not significantly different in mice treated with 250 mg/kg PFOS compared to controls.
Deng et al. (2020) ⁴⁴	Mice	C57BL/6 (M)	Gavage	PFOS + PCB126	1D	2D Post	ALT was significantly higher in mice treated with 250 mg/kg PFOS and PCB126 compared to controls.
Qin et al. (2021) ¹¹³	Mice	C57BL/6J (M)	Gavage	PFOS	4W	EOT	ALT was significantly higher in mice treated with 5 mg/kg PFOS compared to controls.
Qin et al. (2021) ¹¹³ Wang G et al. (2020) ¹⁰⁰	Mice Mice	C57BL/6J (M) C57BL/7 (M)	Gavage Gavage	PFOS + HFD PFOS	4W 16D	EOT EOT	ALT was significantly higher in mice treated with 5 mg/kg PFOS and HFD compared to controls. ALT was significantly higher in mice treated with 0.3, 3, and 30 mg/kg PFOS compared to controls.
Xing et al. (2016) ¹⁰⁴	Mice	C57BL/7 (M)	Gavage	PFOS	30D	EOT	ALT was significantly higher in mice treated with 5 and 10 mg/kg PFOS compared to controls, but
Huang et al. (2020) ⁵⁷	Mice	Kunming (M)	Gavage	PFOS	21D	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOS compared to controls.
Huang et al. (2020) ⁵⁷	Mice	Kunming (M)	Gavage	PFOS + GSPE	21D	EOT	ALT was not significantly different in mice treated with 10 mg/kg PFOS and GSPE compared to controls.
Hamilton et al. (2021) ⁵⁴	Mice	hCYP2B6-Tg (M)	Gavage	PFOS	ЗW	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOS compared to controls, but not in mice treated with 1 mg/kg PFOS.
Hamilton et al. (2021) ⁵⁴	Mice	Cyp2b-null (M)	Gavage	PFOS	ЗW	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOS compared to controls, but not in mice treated with 1 mg/kg PFOS.
Hamilton et al. (2021) ⁵⁴	Mice	hCYP2B6-Tg (F)	Gavage	PFOS	ЗW	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOS compared to controls, but not in mice treated with 1 mg/kg PFOS.
Hamilton et al. (2021) ⁵⁴	Mice	Cyp2b-null (F)	Gavage	PFOS	3W	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOS compared to controls, but not in mice treated with 1 mg/kg PEOS
Hamilton et al. (2021)54	Mice	hCYP2B6-Tg (M)	Gavage	PFOS + HFD	ЗW	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOS and HFD compared to controls.
Hamilton et al. (2021) ⁵⁴	Mice	hCYP2B6-Tg (F)	Gavage	PFOS + HFD	3W	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOS and HFD compared to controls, but not in mice treated with 1 mg/kg PFOS and HFD
Hamilton et al. (2021) ⁵⁴	Mice	Cyp2b-null (F)	Gavage	PFOS + HFD	ЗW	EOT	ALT was significantly higher in mice treated with 10 mg/kg PFOS and HFD compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (dams)	Gavage	PFOS	GD1-PND21	EOT	ALT was significantly higher in mice treated with 1 mg/kg PFOS compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (dams)	Gavage	PFOS + HFD	GD1-PND21	EOT	ALT was not significantly different in mice treated with Ting/kg PFOS and HFD compared to controls.
Lai et al. (2017) ⁶³ Marques et al. (2021) ⁷³	Mice Mice	C57BL/7 (MF) CD-1 (MF)	Prenatal Prenatal	PFOS + DEN PFOS	E0-E18.5 GD1-PND21	EOT EOT	ALT was significantly higher in mice treated with 0.3 mg/kg PFOS and DEN compared to controls. ALT was not significantly different in mice treated with 1 mg/kg PFOS compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (MF)	Prenatal	PFOS + HFD	GD1-PND21	EOT	ALT was not significantly different in mice treated with 1 mg/kg PFOS and HFD compared to
Marques et al. (2021) ⁷³	Mice	CD-1 (F)	Prenatal	PFOS	GD1-PND21	PND90	Controls. ALT was not significantly different in mice treated with 1 mg/kg PFOS compared to controls.
Margues et al. (2021) ⁷³	Mice	CD-1 (F)	Prenatal	PFOS + HFD	GD1-PND21	PND90	ALT was not significantly different in mice treated with 1 mg/kg PFOS and HFD compared to
Margues et al. (2021) ⁷³	Mice	CD-1 (M)	Prenatal	PFOS	GD1-PND21	PND90	controls. ALT was not significantly different in mice treated with 1 mg/kg PFOS compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (M)	Prenatal	PFOS + HFD	GD1-PND21	PND90	ALT was not significantly different in mice treated with 1 mg/kg PFOS and HFD compared to
Seacat et al. (2003) ⁸⁷	Rats	SD (F)	Diet	PFOS	14W	EOT	ALT was not significantly different in rats treated with 0.003%, 0.006%, or 0.012% w/w PFOS
Seacat et al. (2003) ⁸⁷	Rats	SD (M)	Diet	PFOS	14W	EOT	ALT was significantly higher in rats treated with 0.012% w/w PFOS compared to controls, but not 0.006% or 0.012% w/w PFOS
Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	1D Post	ALT was significantly higher in rats treated with 20 and 100ppm PFOS compared to controls.
Elcombe et al. (2012b) ⁴⁷ Elcombe et al. (2012b) ⁴⁷	Rats Rats	SD (M) SD (M)	Diet Diet	PFOS PFOS	7D 7D	28D Post 56D Post	ALT was not significantly different in rats treated with 20 and 100ppm PFOS compared to controls. ALT was not significantly different in rats treated with 20 and 100ppm PFOS compared to controls

Elcombe et al. (2012b) ⁴⁷ Elcombe et al. (2012a) ⁴⁶	Rats Rats	SD (M) SD (M)	Diet Diet	PFOS PFOS	7D 1D	84D Post EOT	ALT was not significantly different in rats treated with 20 and 100ppm PFOS compared to controls. ALT was not significantly different in rats treated with 20 and 100ppm PFOS compared to controls.
Elcombe et al. (2012a) ⁴⁶	Rats	SD (M)	Diet	PFOS	7D	EOT	ALT was not significantly different in rats treated with 20 and 100ppm PFOS compared to controls.
Elcombe et al. (2012a) ⁴⁶	Rats	SD (M)	Diet	PFOS	28D	EOT	ALT was not significantly different in rats treated with 20 and 100ppm PFOS compared to controls.
(2012b) ³⁴	Rats	SD (F)	Diet	PFOS	52W	W4	ALT was not significantly different in rats treated with 0.5, 2, 5, or 20ppm PFOS compared to controls.
Butenhoff et al. (2012b) ³⁴	Rats	SD (F)	Diet	PFOS	52W	W14	ALT was not significantly different in rats treated with 0.5, 2, 5, or 20ppm PFOS compared to controls.
Butenhoff et al. (2012b) ³⁴	Rats	SD (F)	Diet	PFOS	52W	W27	ALT was not significantly different in rats treated with 0.5, 2, 5, or 20ppm PFOS compared to controls.
Butenhoff et al. (2012b) ³⁴	Rats	SD (F)	Diet	PFOS	52W	EOT	ALT was not significantly different in rats treated with 0.5, 2, 5, or 20ppm PFOS compared to controls.
Butenhoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFOS	52W	W4	ALT was not significantly different in rats treated with 0.5, 2, 5, or 20ppm PFOS compared to controls.
Butenhoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFOS	52W	W14	ALT was significantly higher in rats treated with 20 ppm PFOS compared to controls, but not in rats treated with 0.5, 2, or 5 ppm PFOS.
Butenhoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFOS	52W	W27	ALT was not significantly different in rats treated with 0.5, 2, 5, or 20ppm PFOS compared to controls.
Butenhoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFOS	52W	EOT	ALT was significantly higher in rats treated with 20 ppm PFOS compared to controls, but not in rats treated with 0.5, 2, or 5 ppm PFOS.
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS	2D	EOT	ALT was not significantly different in rats treated with 100ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS + CS	2D	EOT	ALT was significantly lower in rats treated with 100ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS	9D	EOT	ALT was not significantly different in rats treated with 100ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS + CS	9D	EOT	ALT was significantly lower in rats treated with 100ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS	16D	EOT	ALT was not significantly different in rats treated with 100ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS + CS	16D	EOT	ALT was not significantly different in rats treated with 100ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS	23D	EOT	ALT was significantly higher in rats treated with 100ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS + CS	23D	EOT	ALT was significantly higher in rats treated with 100ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS	2D	EOT	ALT was not significantly different in rats treated with 100ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS + CS	2D	EOT	ALT was not significantly different in rats treated with 100ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS	9D	EOT	ALT was not significantly different in rats treated with 100ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS + CS	9D	EOT	ALT was not significantly different in rats treated with 100ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS	16D	EOT	ALT was not significantly different in rats treated with 100ppm PFOS compared to controls.
Bagley et al. (2017) ²⁰	Rats	SD (F)	Diet	PFOS + CS	16D	EOT	ALT was not significantly different in rats treated with 100ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁰	Rats	SD (F)	Diet	PFOS	23D	EOT	ALT was not significantly different in rats treated with 100ppm PFOS compared to controls.
Bagley et al. (2017) ²⁰	Rats	SD (F)	Diet	PFOS + CS	23D	EOT	ALT was not significantly different in rats treated with 100ppm PFOS and CS compared to controls.
Butenhoff et al. (2017) ³⁶	Rats	SD (M)	Inhalation*	PFOS	13W*	EOT	ALT was significantly higher in rats treated with 30, 100, and 300 ppm v/v PFOS compared to controls.
Butenhoff et al. (2017) ³⁶	Rats	SD (M)	Inhalation*	PFOS	13W*	4W Post	ALT was not significantly different in rats treated with 30, 100, and 300 ppm v/v PFOS compared to controls.
Butenhoff et al. (2017) ³⁶	Rats	SD (F)	Inhalation*	PFOS	13W*	EOT	ALT was not significantly different in rats treated with 30, 100, and 300 ppm V/V PFOS compared to controls.
Butenhoff et al. $(2017)^{36}$	Rats	SD (F)	Inhalation*	PFOS	13W*	4W Post	ALT was not significantly different in rais treated with 50, 100, and 300 ppm v/v PFOS compared to controls.
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M) C57BL/6 (M)	Diet	PFOS PFOS	10D 10D	EOT	ALT was not significantly different in mice treated with 0.004% w/w PFOS compared to controls. ALT was not significantly different in mice treated with 0.004% w/w PFOS compared to controls.
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS + Con A	10D	EOT	ALT was significantly night in mice treated with 0.004% w/w PPOS and Con A compared to controls.
Qazi et al. (2013a) ⁵⁷	Mice	C57BL/6 (M)	Diet	PFOS	28D	EOT	ALT was not significantly different in mice treated with 0.0001% w/w PFOS compared to controls.
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS + Con A	28D	EOT	ALT was significantly higher in mice treated with 0.0001% w/w PFOS and Con A compared to controls.
Zhang et al. (2016) ¹⁰⁹	Mice	C57BL/6 (M)	Diet	PFOS	2W	EOT	ALT was significantly nigher in mice treated with 0.003% and 0.012% WW PFOS compared to controls, but not in mice treated with 0.006% w/w PFOS.
Zhang et al. (2016) ¹⁰⁹	Mice	C57BL/6 (M)	Diet	PFOS + mMCD	2W	EOT	MCD compared to controls.
Zhang et al. (2016) ¹⁰⁹	Mice	C57BL/6 (M)	Diet	PFOS	6W	EOT	ALT was significantly higher in mice treated with 0.003% w/w PFOS compared to controls.
Zhang et al. (2016) ¹⁰⁹	Mice	C57BL/6 (M)	Diet	PFOS + CS	6W	EOT	ALI was not significantly different in mice treated with 0.003% w/w PFOS and CS compared to controls.

Notes:

Abbreviations: End of treatment (EOT); embryonic day (E); Vitamin C (VC); diethylnitrosamine (DEN); marginal methionine/choline-deficient diet (mMCD); choline supplementation (CS); concanavalin A (Con A); naringin (Nar); Sprague Dawley (SD); grape seed proanthocyanidin extract (GSPE). *Atmospheric exposure occurred for 5 hours/day, 5 days/week.

Table S7. Results for PFOA and AST in animal studies.

Reference	Species	Strain (Sex)	Route	Exposure	Duration	Sample Collection	Findings
Rigden et al. (2015) ⁸⁴	Rats	SD (M)	Gavage	PFOA	3D	EOT	AST was significantly higher in rats treated with 33 mg/kg PFOA compared to controls, but not in rats treated with 10 or 100 mg/kg
Owumi et al. (2021) ⁷⁷	Rats	Wistar (M)	Gavage	PFOA	28D	EOT	AST was significantly higher in rats treated with 5 mg/kg PFOA compared to controls.
Owumi et al. (2021)77	Rats	Wistar (M)	Gavage	PFOA + NAC 25	28D	EOT	AST was not significantly different in rats treated with 5 mg/kg PFOA and 25 mg NAC compared to controls.
Owumi et al. (2021)77	Rats	Wistar (M)	Gavage	PFOA + NAC 50	28D	EOT	AST was not significantly different in rats treated with 5 mg/kg PFOA and 50 mg NAC compared to controls.
Minata et al. (2010)75	Mice	129S4/SvlmJ (M)	Gavage	PFOA	4W	EOT	AST was significantly higher in mice treated with 25 and 50 umol/kg PFOA compared to controls but not in mice treated with 12.5 umol/kg PFOA.
Minata et al. (2010)75	Mice	PPARα-null (M)	Gavage	PFOA	4W	EOT	AST was significantly higher in mice treated with 50 umol/kg PFOA compared to controls but not in mice treated with 12.5 and 25 umol/kg PFOA.
Yahia et al. (2010) ¹⁰⁵	Mice	ICR (Dams)	Gavage	PFOA	GD0-GD17	EOT	AST was significantly higher in mice treated with 10 mg/kg PFOA compared to controls but not in mice treated with 1 or 5 mg/kg PFOA.
Yang et al. (2014) ¹⁰⁸	Mice	Kunming (M)	Gavage	PFOA	14D	EOT	compared to controls but not in mice treated with 5 and 10 mg/kg PFOA
Wu et al. (2017) ¹⁰³	Mice	Kunming (M)	Gavage	PFOA	1D	EOT	AST was not significantly different in mice treated with 5 mg/kg PFOA compared to controls.
Wu et al. (2018) ¹¹²	Mice	Kunming (M)	Gavage	PFOA	21D	EOT	compared to controls but not in mice treated with 5 mg/kg PFOA
Zou et al. (2015) ¹¹¹	Mice	Kunming (M)	Gavage	PFOA	15D	EOT	AST was significantly higher in mice treated with 10 mg/kg PFOA compared to controls.
Zou et al. (2015) ¹¹¹	Mice	Kunming (M)	Gavage	PFOA + Que	15D	EOT	AST was not significantly different in mice treated with 10 mg/kg PFOA and Que compared to controls.
Liu et al. (2016) ⁶⁸	Mice	Kunming (M)	Gavage	PFOA	14D	EOT	AST was significantly higher in mice treated with 10 mg/kg PFOA compared to controls.
Liu et al. (2016) ⁶⁸	Mice	Kunming (M)	Gavage	PFOA + GSPE	14D	EOT	AST was significantly higher in mice treated with 10 mg/kg PFOA and GSPE compared to controls.
Yan et al. (2014) ¹⁰⁶	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	AST was significantly higher in mice treated with 20 mg/kg PFOA compared to controls, but not in mice treated with 0.08, 0.31, 1.25, or 5 mg/kg PFOA.
Guo et al. (2019) ⁵¹	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	AST was significantly lower in mice treated with 0.4 mg/kg PFOA compared to controls, and significantly higher in mice treated with 2 and 10 mg/kg PFOA.
Guo et al. (2021) ⁵²	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	AST was significantly higher in mice treated with 10 mg/kg PFOA compared to controls, but not in mice treated with 0.4 or 2 mg/kg PFOA.
Yan et al. (2015) ¹⁰⁷	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	AST was significantly higher in mice treated with 10 mg/kg PFOA compared to controls.
Yan et al. (2015) ¹⁰⁷	Mice	BALB/c (M)	Gavage	PFOA+4-PBA 125	28D	EOT	AST was not significantly different in mice treated with 10 mg/kg PFOA and 125 mg 4-PBA compared to controls.
Yan et al. (2015) ¹⁰⁷	Mice	BALB/c (M)	Gavage	PFOA+4-PBA 250	28D	EOT	AST was not significantly different in mice treated with 10 mg/kg PFOA and 250 mg 4-PBA compared to controls.
Blake et al. (2020)30	Mice	CD-1 (F)	Gavage	PFOA	E1.5-E11.5	E17.5	AST was not significantly different in mice treated with 1 or 5 mg/kg PFOA compared to controls.
Blake et al. (2020) ³⁰	Mice	CD-1 (F)	Gavage	PFOA	E1.5-E11.5	E11.5	AST was not significantly different in mice treated with 1 or 5 mg/kg PFOA compared to controls.
Wang et al. (2021)99	Mice	C57BL/6J (M)	Gavage	PFOA	15D	EOT	AST was not significantly different in mice treated with 3 or 30 mg/kg PFOA compared to controls.
Wang et al. (2021)99	Mice	C57BL/6J (M)	Gavage	PFOA	30D	EOT	AST was not significantly different in mice treated with 2.5, 5, or 10 mg/kg PFOA compared to controls.
Tan et al. (2013) ⁹³	Mice	C57BI/6N (M)	Diet	PFOA	ЗW	EOT	AST was not significantly different in mice treated with 5 mg/kg PFOA compared to controls.
Tan et al. (2013) ⁹³	Mice	C57BI/6N (M)	Diet	PFOA + HFD	ЗW	EOT	AST was significantly higher in mice treated with 5 mg/kg PFOA and HFD compared to controls.
Crebelli et al. (2019)40	Mice	C57BI/6 (M)	Water	PFOA	5W	EOT	AST was significantly higher in mice treated with 5 mg/kg PFOA compared to controls, but not in mice treated with 0.1 or 1 mg/kg PFOA.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA	1D	EOT	AST was not significantly different in mice treated with 300 mg/kg PFOA compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + Que	1D	EOT	AST was significantly higher in mice treated with 300 mg/kg PFOA and Que compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoHad1	1D	EOT	AST was not significantly different in mice treated with 300 mg/kg PFOA and HaoHad1 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoHad2	1D	EOT	AST was not significantly different in mice treated with 300 mg/kg PFOA and HaoHad2 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoLad1	1D	EOT	AST was not significantly different in mice treated with 300 mg/kg PFOA and HaoLad1 compared to controls.

Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoLad2	1D	EOT	and HaoLad2 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoHad1	1D	EOT	AST was significantly higher in mice treated with 300 mg/kg PFOA and LaoHad1 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoHad2	1D	EOT	AST was not significantly different in mice treated with 300 mg/kg PFOA and LaoHad2 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoLao1	1D	EOT	AST was significantly higher in mice treated with 300 mg/kg PFOA and LaoLao1 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoLao2	1D	EOT	AST was not significantly different in mice treated with 300 mg/kg PFOA and LaoLao2 compared to controls.
Cui et al. (2019) ⁴¹	Mice	C57BL/6J (M)	Gavage	PFOA	28D	EOT	AST was significantly higher in mice treated with 5 mg/kg PFOA compared to controls.
Cui et al. (2019) ⁴¹	Mice	miR-34a(-/-) C57BL/6J (M)	Gavage	PFOA	28D	EOT	AST was significantly higher in mice treated with 5 mg/kg PFOA compared to controls.
Shao et al. (2021) ⁸⁸	Mice	ICR (M)	Prenatal	PFOA	GD13-17	PN Week 12	AST was significantly higher in mice treated with 0.05 mg/kg PFOA compared to controls.
Li D et al. (2019) ⁶⁴	Mice	Kunming (F)	Prenatal	PFOA	GD1-17	PD21	AST was significantly higher in mice treated with 1, 2.5, 5, and 10 mg/kg PFOA compared to controls.
Quist et al. (2015) ⁸³	Mice	CD-1 (F)	Prenatal	PFOA	GD1-17	PND91	AST was not significantly different in mice treated with 0.01, 0.1, 0.3, or 1 mg/kg PFOA compared to controls.
Quist et al. (2015) ⁸³	Mice	CD-1 (F)	Prenatal	PFOA + LFD	GD1-17	PND91	AST was not significantly different in mice treated with 0.01, 0.1, 0.3, or 1 mg/kg PFOA compared to controls.
Quist et al. (2015) ⁸³	Mice	CD-1 (F)	Prenatal	PFOA + HFD	GD1-17	PND91 (F)	AST was not significantly different in mice treated with 0.01, 0.1, 0.3, or 1 mg/kg PFOA compared to controls.
Quist et al. (2015) ⁸³	Mice	CD-1 (F)	Prenatal	PFOA + HFD	GD1-17	PND91 (NF)	AST was not significantly different in mice treated with 0.01, 0.1, 0.3, or 1 mg/kg PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (M)	Diet	PFOA	2Y	Month 3	AST was not significantly different in rats treated with 30 or 300 ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (M)	Diet	PFOA	2Y	Month 6	AST was significantly lower in rats treated with 30 and 300 ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (M)	Diet	PFOA	2Y	Month 12	AST was significantly lower in rats treated with 30 and 300 ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (M)	Diet	PFOA	2Y	Month 18	AST was not significantly different in rats treated with 30 or 300 ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (M)	Diet	PFOA	2Y	EOT	AST was significantly higher in rats treated with 300 ppm PFOA compared to controls, but not in rats treated with 30 ppm PFOA.
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	Month 3	AST was not significantly different in rats treated with 30 or 300 ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	Month 6	AST was not significantly different in rats treated with 30 or 300 ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	Month 12	AST was not significantly different in rats treated with 30 or 300 ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	Month 18	AST was not significantly different in rats treated with 30 or 300 ppm PFOA compared to controls.
Butenhoff et al. (2012c) ³⁵	Rats	SD (F)	Diet	PFOA	2Y	EOT	AST was not significantly different in rats treated with 30 or 300 ppm PFOA compared to controls.
Qazi et al. (2010) ⁸⁰	Mice	C57BL/6 (M)	Diet	PFOA	10D	EOT	AST was not significantly different in mice treated with 0.002% w/w PFOA compared to controls.
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA	10D	EOT	AST was not significantly different in mice treated with 0.002% w/w PFOA compared to controls.
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA + Con A	10D	EOT	AST was significantly higher in mice treated with 0.002% w/w PFOA and Con A compared to controls.
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA	28D	EOT	AST was not significantly different in mice treated with 0.00005% w/w PFOA compared to controls.
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA + Con A	28D	EOT	AS I was significantly higher in mice treated with 0.00005% w/w PFOA and Con A compared to controls.
Son et al. (2008) ⁹⁰	Mice	ICR (M)	Water	PFOA	21D	EOT	PFOA compared to controls, but not in mice treated with 50 and 250 ppm PFOA compared to controls, but not in mice treated with 2 or 10 ppm PFOA.

· • •

Notes:

Abbreviations: End of treatment (EOT); low fat diet (LFD); high fat diet (HFD); postnatal day (PND); gestational day (GD); embryonic day (E); Sprague Dawley (SD); N-acetylcysteine (NAC); 4-phenylbutyric acid (4-PBA); quecertin (Que); fasted (F); non-fasted (NF); grape seed proanthocyanidin extract (GSPE). Additional exposure abbreviations in Shi et al (2021) refer to lactic acid bacterial strains.

Table S8. Results for PFOA and relative liver weight in animal studies.

Reference	Species	Strain (Sex)	Exposure Route	Exposure	Duration	Sample Collection	Findings
Martin et al. (2007) ⁷⁴	Rats	SD (M)	Gavage	PFOA	1D	EOT	Liver weight was not significantly different in rats treated with 20 mg/kg PFOA compared to controls.
Martin et al. (2007)74	Rats	SD (M)	Gavage	PFOA	2D	EOT	Liver weight was significantly higher in rats treated with 20 mg/kg PFOA compared to controls.
Martin et al. (2007)74	Rats	SD (M)	Gavage	PFOA	5D	EOT	Liver weight was significantly higher in rats treated with 20 mg/kg PFOA compared to controls.
Rigden et al. (2015) ⁸⁴	Rats	SD (M)	Gavage	PFOA	3D	4D Post	Liver weight was significantly higher in rats treated with 10, 33, and 100 mg/kg PFOA compared to controls.
Butenhoff et al. (2012a)35	Rats	SD (M)	Gavage	PFOA	28D	EOT	Liver weight was significantly higher in rats treated with 30 mg/kg PFOA compared to controls.
Butenhoff et al. (2012a)35	Rats	SD (F)	Gavage	PFOA	28D	EOT	Liver weight was significantly higher in rats treated with 30 mg/kg PFOA compared to controls.
Butenhoff et al. (2012a)35	Rats	SD (M)	Gavage	PFOA	28D	3W Post	Liver weight was significantly higher in rats treated with 30 mg/kg PFOA compared to controls.
Butenhoff et al. (2012a)35	Rats	SD (F)	Gavage	PFOA	28D	3W Post	Liver weight was not significantly different in rats treated with 30 mg/kg PFOA compared to controls.
Owumi et al. (2021)77	Rats	Wistar (M)	Gavage	PFOA	28D	EOT	Liver weight was not significantly different in rats treated with 5 mg/kg PFOA compared to controls.
Owumi et al. (2021)77	Rats	Wistar (M)	Gavage	PFOA + NAC 25	28D	EOT	Liver weight was not significantly different in rats treated with 5 mg/kg PFOA and 25 mg NAC compared to controls.
Owumi et al. (2021)77	Rats	Wistar (M)	Gavage	PFOA + NAC 50	28D	EOT	Liver weight was not significantly different in rats treated with 5 mg/kg PFOA and 50 mg NAC compared to controls.
Minata et al. (2010)75	Mice	129S4/Svlmj (M)	Gavage	PFOA	4W	EOT	Liver weight was significantly higher in mice treated with 12.5, 25, and 50 umol/kg PFOA compared to controls.
Nakagawa et al. (2012) ⁷⁶	Mice	mPPARα (M)	Gavage	PFOA	6W	EOT	Liver weight was significantly higher in mice treated with 1 and 5 mg/kg PFOA compared to controls.
Nakagawa et al. (2012) ⁷⁶	Mice	hPPARα (M)	Gavage	PFOA	6W	EOT	Liver weight was significantly higher in mice treated with 1 and 5 mg/kg PFOA compared to controls.
Nakagawa et al. (2012) ⁷⁶	Mice	PPARα-null (M)	Gavage	PFOA	6W	EOT	Liver weight was significantly higher in mice treated with 1 and 5 mg/kg PFOA compared to controls.
Minata et al. (2010)75	Mice	PPARα-null (M)	Gavage	PFOA	4W	EOT	Liver weight was significantly higher in mice treated with 12.5, 25, and 50 umol/kg PFOA compared to controls.
Das et a. (2017) ⁴³	Mice	PPARα-null (M)	Gavage	PFOA	7D	EOT	Liver weight was significantly higher in mice treated with 10 mg/kg PFOA compared to controls.
Das et a. (2017) ⁴³	Mice	SV129 (M)	Gavage	PFOA	7D	EOT	Liver weight was significantly higher in mice treated with 10 mg/kg PFOA compared to controls.
Yahia et al. (2010) ¹⁰⁵	Mice	ICR (Dams)	Gavage	PFOA	GD0-GD17	EOT	Liver weight was significantly higher in mice treated with 1, 5, and 10 mg/kg PFOA compared to controls.
Yang et al. (2014)108	Mice	Kunming (M)	Gavage	PFOA	14D	EOT	Liver weight was significantly higher in mice treated with 2.5, 5, and 10 mg/kg PFOA compared to controls.
Wu et al. (2018) ¹¹²	Mice	Kunming (M)	Gavage	PFOA	21D	EOT	Liver weight was significantly higher in mice treated with 5 mg/kg PFOA compared to controls, but not in mice treated with 1 mg/kg PFOA.
Yan et al. (2014) ¹⁰⁶	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	Liver weight was significantly higher in mice treated with 0.31, 1.25, 5, and 20 mg/kg PFOA compared to controls, but not in mice treated with
Cup at al. $(2010)^{51}$	Mico		Covogo	RECA	290	FOT	0.08 mg/kg PFOA. Liver weight was significantly higher in mice treated with 0.4, 2, and 10
Guo et al. $(2019)^{52}$	Mice	BALB/C (IVI)	Gavage	PFOA	200	EOT	mg/kg PFOA compared to controls. Liver weight was significantly higher in mice treated with 0.4, 2, and 10
Sub et al. $(2021)^{107}$	Mice	BALB/C (IVI)	Gavage	PFOA	200	EOT	mg/kg PFOA compared to controls. Liver weight was significantly higher in mice treated with 5 mg/kg PFOA
Yan et al. $(2015)^{107}$	Mice	BALB/C (IVI)	Gavage		200	EOT	compared to controls. Liver weight was significantly higher in mice treated with 5 mg/kg PFOA
Yan et al. $(2015)^{107}$	Mice	BALB/C (IVI)	Gavage	PFOA+4-PBA 123	200	EOT	and 125 mg 4-PBA compared to controls. Liver weight was significantly higher in mice treated with 5 mg/kg PFOA
Margues et al. (2013)	Mice	CD-1 (Dams)	Gavage			EOT	and 250 mg 4-PBA compared to controls. Liver weight was significantly higher in mice treated with 1 mg/kg PFOA
Marques et al. $(2021)^{73}$	Mico	CD-1 (Dams)	Gavage			EOT	compared to controls. Liver weight was significantly higher in mice treated with 1 mg/kg PFOA
Plake et al. $(2020)^{30}$	Mice	CD-1 (Dams)	Gavage		GDT-FND21	E01	and HFD compared to controls. Liver weight was significantly higher in mice treated with 1 and 5 mg/kg
Diake et al. $(2020)^{32}$	Mice	CD-1 (Dams)	Gavage	PFOA	E1.5-11.5	ET7.5	PFOA compared to controls. Liver weight was significantly higher in mice treated with 1 and 5 mg/kg
Top of al. $(2012)^{93}$	Mice		Diet	PFOA	21.3-11.3	EOT	PFOA compared to controls. Liver weight was significantly higher in mice treated with 5 mg/kg PFOA
Tan et al. $(2013)^{52}$	Mice		Diet		3///	EOT	compared to controls. Liver weight was significantly higher in mice treated with 5 mg/kg PFOA
$1 \text{ an et al. } (2013)^{65}$	Nice		Diet		300	EOT	and HFD compared to controls. Liver weight was significantly higher in mice treated with 1 mg/kg PFOA
Li A et al. (2019)	IVIICE	C3/DL/0 (IVI)	Gavage	PFUA+LFU	1010	EOI	compared to controls.

Li X et al. (2019) ⁶⁵	Mice	C57BL/6 (M)	Gavage	PFOA+LFD	8W	EOT	Liver weight was significantly higher in mice treated with 1 mg/kg PFOA compared to controls.
Li X et al. (2019) ⁶⁵	Mice	C57BL/6 (M)	Gavage	PFOA+LFD	2W	EOT	Liver weight was significantly higher in mice treated with 1 mg/kg PFOA compared to controls.
Li X et al. (2019) ⁶⁵	Mice	C57BL/6 (M)	Gavage	PFOA+HFD	16W	EOT	Liver weight was significantly higher in mice treated with 1 mg/kg PFOA and HFD compared to controls.
Li X et al. (2019) ⁶⁵	Mice	C57BL/6 (M)	Gavage	PFOA+HFD	8W	EOT	Liver weight was significantly higher in mice treated with 1 mg/kg PFOA and HFD compared to controls.
Li X et al. (2019) ⁶⁵	Mice	C57BL/6 (M)	Gavage	PFOA+HFD	2W	EOT	Liver weight was significantly higher in mice treated with 1 mg/kg PFOA and HFD compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA	1D	EOT	Liver weight was significantly higher in mice treated with 300 mg/kg PFOA compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + Que	1D	EOT	Liver weight was significantly higher in mice treated with 300 mg/kg PFOA and Que compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoHad1	1D	EOT	Liver weight was significantly higher in mice treated with 300 mg/kg PFOA and HaoHad1 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoHad2	1D	EOT	Liver weight was significantly higher in mice treated with 300 mg/kg PFOA and HaoHad2 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoLad1	1D	EOT	Liver weight was significantly higher in mice treated with 300 mg/kg PFOA and HaoLad1 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + HaoLad2	1D	EOT	Liver weight was significantly higher in mice treated with 300 mg/kg PFOA and HaoLad2 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoHad1	1D	EOT	Liver weight was significantly higher in mice treated with 300 mg/kg PFOA and LaoHad1 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoHad2	1D	EOT	Liver weight was significantly higher in mice treated with 300 mg/kg PFOA and LaoHad2 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoLao1	1D	EOT	Liver weight was significantly higher in mice treated with 300 mg/kg PFOA and LaoLao1 compared to controls.
Shi et al. (2021) ⁸⁹	Mice	C57BL/6J (M)	Gavage	PFOA + LaoLao2	1D	EOT	Liver weight was significantly higher in mice treated with 300 mg/kg PFOA and LaoLao2 compared to controls.
Wang et al. (2021)99	Mice	C57BL/6J (M)	Gavage	PFOA	15D	EOT	Liver weight was significantly higher in mice treated with 3 and 30 mg/kg PFOA compared to controls.
Wang et al. (2021)99	Mice	C57BL/6J (M)	Gavage	PFOA	30D	EOT	Liver weight was significantly higher in mice treated with 2.5, 5, and 10 mg/kg PFOA compared to controls.
Cui et al. (2019) ⁴¹	Mice	C57BL/6J (M)	Gavage	PFOA	28D	EOT	Liver weight was significantly higher in mice treated with 5 mg/kg PFOA compared to controls.
Cui et al. (2019) ⁴¹	Mice	miR-34a-/- C57BL/6J (M)	Gavage	PFOA	28D	EOT	Liver weight was significantly higher in mice treated with 5 mg/kg PFOA compared to controls.
Pouwer et al. (2019) ⁷⁹	Mice	APOE*3-Leiden CETP (M)	Diet	PFOA	6W	EOT	Liver weight was significantly higher in mice treated with 30000 ng/g PFOA compared to controls, but not in mice treated with 300 or 10 ng/g PFOA.
Pouwer et al. (2019) ⁷⁹	Mice	APOE*3-Leiden CETP (M)	Diet	PFOA	4W	EOT	Liver weight was significantly higher in mice treated with 30000 ng/g PFOA compared to controls, but not in mice treated with 300 or 10 ng/g PFOA.
Schlezinger et al. (2020) ⁸⁶	Mice	hPPARa (M)	Water	PFOA	6W	EOT	Liver weight was significantly higher in mice treated with 0.7 mg/kg PFOA compared to controls.
Schlezinger et al. (2020)86	Mice	PPARa-null (M)	Water	PFOA	6W	EOT	Liver weight was significantly higher in mice treated with 0.7 mg/kg PFOA compared to controls.
Schlezinger et al. (2020)86	Mice	hPPARa (F)	Water	PFOA	6W	EOT	Liver weight was significantly higher in mice treated with 0.7 mg/kg PFOA compared to controls.
Schlezinger et al. (2020) ⁸⁶	Mice	PPARa-null (F)	Water	PFOA	6W	EOT	Liver weight was significantly higher in mice treated with 0.7 mg/kg PFOA compared to controls.
Li D et al. (2019) ⁶⁴	Mice	Kunming (F)	Prenatal	PFOA	GD1-17	PND21	Liver weight was significantly higher in mice treated with 1, 2.5, 5, and 10 mg/kg PFOA compared to controls.
Quist et al. (2015) ⁸³	Mice	CD-1 (F)	Prenatal	PFOA	GD1-17	PND21	Liver weight was significantly higher in mice treated with 0.3 and 1 mg/kg PFOA compared to controls, but not in mice treated with 0.01 or 0.1 mg/kg PFOA
Quist et al. (2015) ⁸³	Mice	CD-1 (F)	Prenatal	PFOA	GD1-17	PND91	Liver weight was not significantly different in mice treated with 0.01, 0.1, 0.3, or 1 mg/kg PFOA compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (MF)	Prenatal	PFOA	GD1-PND21	EOT	Liver weight was significantly higher in mice treated with 1 mg/kg PFOA compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (MF)	Prenatal	PFOA + HFD	GD1-PND21	EOT	Liver weight was significantly higher in mice treated with 1 mg/kg PFOA and HFD compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (M)	Prenatal	PFOA	GD1-PND21	PND90	Liver weight was not significantly different in mice treated with 1 mg/kg PFOA compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (M)	Prenatal	PFOA + HFD	GD1-PND21	PND90	Liver weight was not significantly different in mice treated with 1 mg/kg PFOA and HFD compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (F)	Prenatal	PFOA	GD1-PND21	PND90	Liver weight was not significantly different in mice treated with 1 mg/kg PFOA compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (F)	Prenatal	PFOA + HFD	GD1-PND21	PND90	Liver weight was significantly lower in mice treated with 1 mg/kg PFOA and HFD compared to controls.

Butenhoff et al. (2012c)35	Rats	SD (M)	Diet	PFOA	2Y	EOT	Liver weight was significantly higher in rats treated with 300 ppm PFOA compared to controls.
Butenhoff et al. (2012c)35	Rats	SD (F)	Diet	PFOA	2Y	EOT	Liver weight was not significantly different in rats treated with 300 ppm PFOA compared to controls.
Butenhoff et al. (2012c)35	Rats	SD (M)	Diet	PFOA	1Y	EOT	Liver weight was not significantly different in rats treated with 30 or 300 ppm PFOA compared to controls.
Butenhoff et al. (2012c)35	Rats	SD (F)	Diet	PFOA	1Y	EOT	Liver weight was not significantly different in rats treated with 30 or 300 ppm PFOA compared to controls.
Botelho et al. (2015) ³¹	Mice	C57BL/6 (M)	Diet	PFOA	10D	EOT	Liver weight was significantly higher in mice treated with 0.002%, 0.005%, 0.01%, 0.02% w/w PFOA compared to controls.
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA	10D	EOT	Liver weight was significantly higher in mice treated with 0.002% w/w PFOA compared to controls.
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA + Con A	10D	EOT	Liver weight was significantly higher in mice treated with 0.002% w/w PFOA and Con A compared to controls.
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA	28D	EOT	Liver weight was significantly higher in mice treated with 0.00005% w/w PFOA compared to controls.
Qazi et al. (2013b) ⁸²	Mice	C57BL/6 (M)	Diet	PFOA + Con A	28D	EOT	Liver weight was not significantly different in mice treated with 0.00005% w/w PFOA and Con A compared to controls.
Son et al. (2008) ⁹⁰	Mice	ICR (M)	Water	PFOA	21D	EOT	Liver weight was significantly higher in mice treated with 2, 10, 50, and 250 ppm PFOA compared to controls.

Notes:

Abbreviations: End of treatment (EOT); low fat diet (LFD); high fat diet (HFD); postnatal day (PND); gestational day (GD); embryonic day (E); Sprague Dawley (SD); N-acetylcysteine (NAC); 4-phenylbutyric acid (4-PBA); quecertin (Que); grape seed proanthocyanidin extract (GSPE). Additional exposures in Shi et al (2021) refer to lactic acid bacterial strains.

Table S9. Results for PFOS and AST in animal studies.

Reference	Species	Strain (Sex)	Exposure Route	Exposure	Duration	Sample Collection	Findings
Curran et al. (2008) ⁴²	Rats	SD (M)	Diet	PFOS	28D	EOT	AST was not significantly different in rats treated with 2, 30, 50, or 100 mg/kg PFOS compared to controls.
Curran et al. (2008) ⁴²	Rats	SD (F)	Diet	PFOS	28D	EOT	AST was significantly lower in rats treated with 100 mg/kg PFOS compared to controls, but not in rats treated with 2, 30, or 50 mg/kg PFOS.
Han et al. (2018a) ⁵⁵	Rats	SD (M)	Gavage	PFOS	28D	EOT	AST was significantly higher in rats treated with 10 mg/kg PFOS compared to controls, but not in rats treated with 1 mg/kg PFOS.
Han et al. (2018b) ⁵⁶	Rats	SD (M)	Gavage	PFOS	28D	EOT	AST was significantly higher in rats treated with 10 mg/kg PFOS compared to controls, but not in rats treated with 1 mg/kg PFOS. AST was significantly higher in rats treated with 10 mg/kg PFOS
Kim et al. (2011) ⁶²	Rats	SD (M)	Gavage	PFOS	28D	EOT	compared to controls, but not in rats treated with 1.25 and 5 mg/kg PFOS.
Kim et al. (2011) ⁶²	Rats	SD (F)	Gavage	PFOS	28D	EOT	compared to controls, but not in rats treated with 1.25 and 10 mg/kg PFOS PFOS.
Wan et al. (2016) ⁹⁶	Rats	SD (M)	Gavage	PFOS	28D	EOT	AST was significantly higher in rats treated with 10 mg/kg PFOS compared to controls, but not in rats treated with 1 mg/kg PFOS. AST was significantly higher in mice treated with 5 mg/kg PFOS
Yan et al. (2014) ¹⁰⁶	Mice	BALB/c (M)	Gavage	PFOS	28D	EOT	compared to controls, but not in mice treated with 1.25 mg/kg PFOS.
Lv et al. (2018) ⁷¹	Mice	- (M)	Gavage	PFOS	21D	EOT	AST was significantly higher in mice treated with 10 mg/kg PFOS compared to controls.
Lv et al. (2018) ⁷¹	Mice	- (M)	Gavage	PFOS + Nar	21D	EOT	AST was significantly higher in mice treated with 10 mg/kg PFOS and Nar compared to controls.
Su et al. (2019) ⁹¹	Mice	ICR (M)	Gavage	PFOS	21D	EOT	AST was significantly higher in mice treated with 10 mg/kg PFOS compared to controls.
Su et al. (2019) ⁹¹	Mice	ICR (M)	Gavage	PFOS + VC100	21D	EOT	AST was not significantly different in mice treated with 10 mg/kg PFOS and 100 mg VC compared to controls.
Su et al. (2019) ⁹¹	Mice	ICR (M)	Gavage	PFOS + VC200	21D	EOT	AST was not significantly different in mice treated with 10 mg/kg PFOS and 200 mg VC compared to controls.
Deng et al. (2020)44	Mice	C57BL/6 (M)	Gavage	PFOS	1D	2D Post	AST was not significantly different in mice treated with 250 mg/kg PFOS compared to controls.
Deng et al. (2020)44	Mice	C57BL/6 (M)	Gavage	PFOS + PCB126	1D	2D Post	AST was significantly higher in mice treated with 250 mg/kg PFOS and PCB126 compared to controls.
Qin et al. (2021) ¹¹³	Mice	C57BL/6J (M)	Gavage	PFOS	4W	EOT	AST was significantly higher in mice treated with 5 mg/kg PFOS compared to controls.
Qin et al. (2021) ¹¹³	Mice	C57BL/6J (M)	Gavage	PFOS + HFD	4W	EOT	AST was significantly higher in mice treated with 5 mg/kg PFOS and HFD compared to controls.
Wang G et al. (2020)100	Mice	C57BL/7 (M)	Gavage	PFOS	16D	EOT	AST was not significantly different in mice treated with 0.3, 3, or 30 mg/kg PFOS compared to controls.
Xing et al. (2016) ¹⁰⁴	Mice	C57BL/7 (M)	Gavage	PFOS	30D	EOT	AST was not significantly different in mice treated with 0.3, 3, or 30 mg/kg PFOS compared to controls.
Huang et al. (2020)57	Mice	Kunming (M)	Gavage	PFOS	21D	EOT	AST was significantly higher in mice treated with 10 mg/kg PFOS compared to controls.
Huang et al. (2020) ⁵⁷	Mice	Kunming (M)	Gavage	PFOS + GSPE	21D	EOT	AST was not significantly different in rats treated with 10 mg/kg PFOS and GSPE compared to controls.
Lai et al. (2017) ⁶³	Mice	C57BL/7 (MF)	Prenatal	PFOS + DEN	E0-E18.5	EOT	AST was significantly higher in mice treated with 0.3 mg/kg PFOS and DEN compared to controls.
Seacat et al. (2003)87	Rats	SD (F)	Diet	PFOS	4W	EOT	AST was not significantly different in rats treated with 0.5, 2, 5, or 20 ppm PFOS compared to controls.
Seacat et al. (2003)87	Rats	SD (M)	Diet	PFOS	4W	EOT	AST was not significantly different in rats treated with 0.5, 2, 5, or 20 ppm PFOS compared to controls.
Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	1D Post	AST was not significantly different in rats treated with 20 or 100 ppm PFOS compared to controls.
Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	28D Post	AST was not significantly different in rats treated with 20 or 100 ppm PFOS compared to controls.
Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	56D Post	AST was not significantly different in rats treated with 20 or 100 ppm PFOS compared to controls.
Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	84D Post	AST was not significantly different in rats treated with 20 or 100 ppm PFOS compared to controls.
Elcombe et al. (2012a) ⁴⁶	Rats	SD (M)	Diet	PFOS	1D	EOT	AST was not significantly different in rats treated with 20 or 100 ppm PFOS compared to controls.
Elcombe et al. (2012a) ⁴⁶	Rats	SD (M)	Diet	PFOS	7D	EOT	AST was not significantly different in rats treated with 20 or 100 ppm PFOS compared to controls.
Elcombe et al. (2012a) ⁴⁶	Rats	SD (M)	Diet	PFOS	28D	EOT	AST was not significantly different in rats treated with 20 or 100 ppm PFOS compared to controls.
Butenhoff et al. (2012b) ³⁴	Rats	SD (F)	Diet	PFOS	52W	W4	AST was significantly lower in rats treated with 20 ppm PFOS compared to control, but not in rats treated with 0.5, 2, or 5 ppm PFOS.

Butenhoff et al. (2012b) ³⁴	Rats	SD (F)	Diet	PFOS	52W	W14	AST was not significantly different in rats treated with 0.5, 2, 5, or 20 ppm PFOS compared to controls.
Butenhoff et al. (2012b)34	Rats	SD (F)	Diet	PFOS	52W	W27	AST was not significantly different in rats treated with 0.5, 2, 5, or 20 ppm PFOS compared to controls.
Butenhoff et al. (2012b)34	Rats	SD (F)	Diet	PFOS	52W	EOT	AST was not significantly different in rats treated with 0.5, 2, 5, or 20
Butenhoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFOS	52W	W4	AST was not significantly different in rats treated with 0.5, 2, 5, or 20 ppm PEOS compared to controls
Butenhoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFOS	52W	W14	AST was not significantly different in rats treated with 0.5, 2, 5, or 20
Butenhoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFOS	52W	W27	AST was not significantly different in rats treated with 0.5, 2, 5, or 20
Butenhoff et al. (2012b) ³⁴	Rats	SD (M)	Diet	PFOS	52W	EOT	AST was not significantly different in rats treated with 0.5, 2, 5, or 20
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS	2D	EOT	AST was significantly lower in rats treated with 100 ppm PFOS
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS + CS	2D	EOT	AST was significantly lower in rats treated with 100 ppm PFOS and
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS	9D	EOT	AST was significantly lower in rats treated with 100 ppm PFOS
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS + CS	9D	EOT	AST was significantly lower in rats treated with 100 ppm PFOS and
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS	16D	EOT	AST was not significantly different in rats treated with 100 ppm PEOS compared to controls
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS + CS	16D	EOT	AST was not significantly different in rats treated with 100 ppm PEOS and CS compared to controls
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS	23D	EOT	AST was not significantly different in rats treated with 100 ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS + CS	23D	EOT	AST was not significantly different in rats treated with 100 ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS	2D	EOT	AST was not significantly different in rats treated with 100 ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS + CS	2D	EOT	AST was not significantly different in rats treated with 100 ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS	9D	EOT	AST was significantly lower in rats treated with 100 ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS + CS	9D	EOT	AST was significantly lower in rats treated with 100 ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS	16D	EOT	AST was not significantly different in rats treated with 100 ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS + CS	16D	EOT	AST was significantly lower in rats treated with 100 ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS	23D	EOT	AST was significantly lower in rats treated with 100 ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS + CS	23D	EOT	AST was significantly lower in rats treated with 100 ppm PFOS and CS compared to controls.
Qazi et al. (2010) ⁸⁰	Mice	C57BL/6 (M)	Diet	PFOS	10D	EOT	AST was not significantly different in mice treated with 0.0005% w/w PEOS compared to controls
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS	10D	EOT	AST was not significantly different in mice treated with 0.004% w/w PEOS compared to controls
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS + Con A	10D	EOT	AST was significantly higher in mice treated with 0.004% w/w PFOS and Con A compared to controls.
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS	28D	EOT	AST was not significantly different in mice treated with 0.0001% w/w PFOS compared to controls.
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS + Con A	28D	EOT	AST was significantly higher in mice treated with 0.0001% w/w PFOS and Con A compared to controls.

Notes:

Abbreviations: End of treatment (EOT); embryonic day (E); Vitamin C (VC); diethylnitrosamine (DEN); marginal methionine/choline-deficient diet (mMCD); choline supplementation (CS); concanavalin A (Con A); naringin (Nar); Sprague Dawley (SD); grape seed proanthocyanidin extract (GSPE). *Atmospheric exposure occurred for 5 hours/day, 5 days/week.

Table S10. Results for PFOS and relative liver weight in animal studies.

Reference	Species	Strain (Sex)	Exposure Route	Exposure	Duration	Sample Collection	Dose (mg/kg)
Curran et al. (2008) ⁴²	Rats	SD (M)	Diet	PFOS	28D	EOT	Liver weight was significantly higher in rats treated with 20, 50, 100 mg/kg PFOS compared to controls, but not in rats treated with 2 mg/kg PFOS.
Curran et al. (2008) ⁴²	Rats	SD (F)	Diet	PFOS	28D	EOT	Liver weight was significantly higher in rats treated with 2, 20, 50, 100 mg/kg PFOS compared to controls.
Han et al. (2018b) ⁵⁶	Rats	SD (M)	Gavage	PFOS	28D	EOT	Liver weight was significantly higher in rats treated with 10 mg/kg PFOS compared to controls, but not in rats treated with 1 mg/kg
Kim et al. (2011) ⁶²	Rats	SD (M)	Gavage	PFOS	28D	EOT	Liver weight was significantly higher in rats treated with 10 mg/kg PFOS compared to controls, but not in rats treated with 1.25 or 5 mg/kg PFOS.
Kim et al. (2011) ⁶²	Rats	SD (F)	Gavage	PFOS	28D	EOT	Liver weight was significantly higher in rats treated with 10 mg/kg PFOS compared to controls, but not in rats treated with 1.25 or 5 mg/kg PEOS
Martin et al. (2007) ⁷⁴	Rats	SD (M)	Gavage	PFOS	1D	EOT	Liver weight was not significantly different in rats treated with 10 mg/kg PFOS compared to controls.
Martin et al. (2007)74	Rats	SD (M)	Gavage	PFOS	2D	EOT	Liver weight was not significantly different in rats treated with 10 mg/kg PFOS compared to controls.
Martin et al. (2007)74	Rats	SD (M)	Gavage	PFOS	5D	EOT	Liver weight was significantly higher in rats treated with 10 mg/kg PFOS compared to controls.
Yan et al. (2014) ¹⁰⁶	Mice	BALB/c (M)	Gavage	PFOS	28D	EOT	Liver weight was significantly higher in mice treated with 1.25 and 5 mg/kg PFOS compared to controls.
Lv et al. (2018) ⁷¹	Mice	- (M)	Gavage	PFOS	21D	EOT	Liver weight was significantly higher in mice treated with 10 mg/kg PFOS compared to controls.
Lv et al. (2018) ⁷¹	Mice	- (M)	Gavage	PFOS + Nar	21D	EOT	Liver weight was significantly higher in mice treated with 10 mg/kg PFOS and Nar compared to controls.
Qin et al. (2021) ¹¹³	Mice	C57BL/6J (M)	Gavage	PFOS	4W	EOT	Liver weight was significantly higher in mice treated with 5 mg/kg PFOS compared to controls.
Qin et al. (2021) ¹¹³	Mice	C57BL/6J (M)	Gavage	PFOS + HFD	4W	EOT	Liver weight was significantly higher in mice treated with 5 mg/kg PFOS and HFD compared to controls.
Wang et al. (2020) ¹⁰⁰	Mice	C57BL/6J (M)	Gavage	PFOS	16D	EOT	Liver weight was significantly higher in mice treated with 0.3, 3, and 30 mg/kg PFOS compared to controls.
Xing et al. (2016) ¹⁰⁴	Mice	C57BL/6J (M)	Gavage	PFOS	30D	EOT	Liver weight was significantly higher in mice treated with 2.5, 5, and 10 mg/kg PFOS compared to controls.
Huang et al. (2020)57	Mice	Kunming (M)	Gavage	PFOS	21D	EOT	Liver weight was significantly higher in mice treated with 10 mg/kg PFOS compared to controls.
Huang et al. (2020) ⁵⁷	Mice	Kunming (M)	Gavage	PFOS + GSPE	21D	EOT	Liver weight was significantly higher in mice treated with 10 mg/kg PFOS and GSPE compared to controls.
Marques et al. (2021)73	Mice	CD-1 (dams)	Gavage	PFOS	GD1-PND21	EOT	Liver weight was not significantly different in mice treated with 1 mg/kg PFOS compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (dams)	Gavage	PFOS + HFD	GD1-PND21	EOT	Liver weight was not significantly different in mice treated with 1 mg/kg PFOS and HFD compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (MF)	Prenatal	PFOS	GD1-PND90	EOT	Liver weight was not significantly different in mice treated with 1 mg/kg PFOS compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (MF)	Prenatal	PFOS + HFD	GD1-PND90	EOT	Liver weight was significantly lower in mice treated with 1 mg/kg PFOS and HFD compared to controls.
Marques et al. (2021)73	Mice	CD-1 (M)	Prenatal	PFOS	GD1-PND90	EOT	Liver weight was not significantly different in mice treated with 1 mg/kg PFOS compared to controls.
Marques et al. (2021)73	Mice	CD-1 (M)	Prenatal	PFOS + HFD	GD1-PND90	EOT	Liver weight was not significantly different in mice treated with 1 mg/kg PEOS and HED compared to controls.
Marques et al. (2021) ⁷³	Mice	CD-1 (F)	Prenatal	PFOS	GD1-PND90	EOT	Liver weight was not significantly different in mice treated with 1 mg/kg PFOS compared to controls.
Marques et al. (2021)73	Mice	CD-1 (F)	Prenatal	PFOS + HFD	GD1-PND90	EOT	Liver weight was not significantly different in mice treated with 1 mg/kg PFOS and HFD compared to controls.
Seacat et al. (2003)87	Rats	SD (F)	Diet	PFOS	4W	EOT	Liver weight was not significantly different in rats treated with 0.5, 2, 5, or 20 ppm PFOS compared to controls.
Seacat et al. (2003) ⁸⁷	Rats	SD (F)	Diet	PFOS	14W	EOT	Liver weight was significantly higher in rats treated with 20 ppm PFOS compared to controls, but not in rats treated with 0.5, 2, or 5 ppm PFOS.
Seacat et al. (2003)87	Rats	SD (M)	Diet	PFOS	4W	EOT	Liver weight was significantly higher in rats treated with 20 ppm PFOS compared to controls, but not in rats treated with 0.5, 2, or 5 ppm PFOS.
Seacat et al. (2003) ⁸⁷	Rats	SD (M)	Diet	PFOS	14W	EOT	Liver weight was significantly higher in rats treated with 20 ppm PFOS compared to controls, but not in rats treated with 0.5, 2, or 5 ppm PFOS.
Elcombe et al. (2012b) ⁴⁷	Rats	SD (M)	Diet	PFOS	7D	1D Post	Liver weight was significantly higher in rats treated with 20 and 100 ppm PFOS compared to controls.

Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	28D Post	Liver weight was not significantly different in rats treated with 20 and 100 ppm PFOS compared to controls.
Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	56D Post	Liver weight was not significantly different in rats treated with 20 and 100 ppm PEOS compared to controls
Elcombe et al. (2012b)47	Rats	SD (M)	Diet	PFOS	7D	84D Post	Liver weight was significantly higher in rats treated with 20 and
Elcombe et al. (2012a) ⁴⁶	Rats	SD (M)	Diet	PFOS	1D	EOT	Liver weight was not significantly different in rats treated with 20 and 100 ppm PFOS compared to controls.
Elcombe et al. (2012a) ⁴⁶	Rats	SD (M)	Diet	PFOS	7D	EOT	Liver weight was significantly higher in rats treated with 100 ppm PFOS compared to controls, but not in rats treated with 20 ppm PFOS
Elcombe et al. (2012a) ⁴⁶	Rats	SD (M)	Diet	PFOS	28D	EOT	Liver weight was significantly higher in rats treated with 20 and 100 ppm PFOS compared to controls.
Butenhoff et al. (2012b)34	Rats	SD (F)	Diet	PFOS	52W	1W Post	Liver weight was significantly higher in rats treated with 20 ppm PFOS compared to controls.
Butenhoff et al. (2012b)34	Rats	SD (M)	Diet	PFOS	52W	1W Post	Liver weight was significantly higher in rats treated with 20 ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS	22D	EOT	Liver weight was significantly higher in rats treated with 100 ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (F)	Diet	PFOS + CS	22D	EOT	Liver weight was significantly higher in rats treated with 100 ppm PFOS and CS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS	22D	EOT	Liver weight was significantly higher in rats treated with 100 ppm PFOS compared to controls.
Bagley et al. (2017) ²⁸	Rats	SD (M)	Diet	PFOS + CS	22D	EOT	Liver weight was significantly higher in rats treated with 100 ppm PFQS and CS compared to controls.
Butenhoff et al. (2017) ³⁶	Rats	SD (F)	Inhalation	PFOS	1W*	EOT	Liver weight was not significantly different in rats treated with 300
Butenhoff et al. (2017) ³⁶	Rats	SD (M)	Inhalation	PFOS	1W*	EOT	Liver weight was significantly higher in rats treated with 300 ppm PEOS compared to controls
Butenhoff et al. (2017) ³⁶	Rats	SD (F)	Inhalation	PFOS	4W*	EOT	Liver weight was significantly higher in rats treated with 300 ppm PEOS compared to controls
Butenhoff et al. (2017) ³⁶	Rats	SD (M)	Inhalation	PFOS	4W*	EOT	Liver weight was significantly higher in rats treated with 300 ppm PEOS compared to controls
Butenhoff et al. (2017) ³⁶	Rats	SD (F)	Inhalation	PEOS	13W*	FOT	Liver weight was significantly higher in rats treated with 100 and 300 ppm PEOS compared to controls but not in rats treated with
	- tato	00 (.)	innalation			201	30 ppm PFOS.
Butenhoff et al. (2017) ³⁶	Rats	SD (M)	Inhalation	PFOS	13W*	EOT	300 ppm PFOS compared to controls, but not in rats treated with 30 ppm PFOS
Butenhoff et al. (2017) ³⁶	Rats	SD (F)	Inhalation	PFOS	13W*	4W Post	Liver weight was significantly higher in rats treated with 300 ppm PFOS compared to controls, but not in rats treated with 30 and 100 ppm PFOS
Butenhoff et al. (2017) ³⁶	Rats	SD (M)	Inhalation	PFOS	13W*	4W Post	Liver weight was significantly higher in rats treated with 100 and 300 ppm PFOS compared to controls, but not in rats treated with 30 ppm PFOS
Qazi et al. (2010) ⁸⁰	Mice	C57BL/6 (M)	Diet	PFOS	10D	EOT	Liver weight was significantly higher in mice treated with 0.005%
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS	10D	EOT	Liver weight was significantly higher in mice treated with 0.004%
Qazi et al. (2013a) ⁸¹	Mice	C57BL/6 (M)	Diet	PFOS	28D	EOT	Liver weight was significantly higher in mice treated with
Pfohl et al. (2021)78	Mice	C57BL/6 (M)	Diet	PFOS + LFD	12W	EOT	Liver weight was not significantly different in rats treated with 0.0003% w/w PEOS and LED compared to controls
Pfohl et al. (2021) ⁷⁸	Mice	C57BL/6 (M)	Diet	PFOS + HFD	12W	EOT	Liver weight was not significantly different in rats treated with
Zhang et al. (2016) ¹⁰⁹	Mice	C57BL/6J (M)	Diet	PFOS	24D	EOT	Liver weight was significantly higher in mice treated with 0.003, 0.006 and 0.012% w/w PEOS compared to controls
Zhang et al. (2016) ¹⁰⁹	Mice	C57BL/6J (M)	Diet	PFOS + mMCD	24D	EOT	Liver weight was significantly higher in mice treated with 0.003, 0.006 and 0.012% w/w PEOS and mMCD compared to controls
Zhang et al. (2016) ¹⁰⁹	Mice	C57BL/6J (M)	Diet	PFOS	6W	EOT	Liver weight was significantly higher in mice treated with 0.003%
Zhang et al. (2016) ¹⁰⁹	Mice	C57BL/6J (M)	Diet	PFOS + CS	6W	EOT	Liver weight was significantly higher in mice treated with 0.003%
Huck et al. (2018) ⁵⁸	Mice	C57BL/6J (M)	Diet	PFOS	6W	EOT	Liver weight was significantly higher in mice treated with 0.0001% w/w PEOS compared to controls
Huck et al. (2018)58	Mice	C57BL/6J (M)	Diet	PFOS + HFD	6W	EOT	Liver weight was significantly lower in mice treated with 0.0001% w/w PEOS and HED compared to controls
Marques et al. (2020) ⁷²	Mice	C57BL/6N (M)	Diet	PFOS	6W	EOT	Liver weight was significantly higher in mice treated with 0.0003% w/w PEOS compared to controls
Marques et al. (2020) ⁷²	Mice	C57BL/6N (M)	Diet	PFOS + HFD/STD	6W	EOT	Liver weight was significantly higher in mice treated with 0.0003% w/w PFOS and HFD/ST compared to controls.

Marques et al. (2020)72	Mice	C57BL/6N (M)	Diet	PFOS + HFD	6W	EOT	Liver weight was significantly higher in mice treated with 0.0003% w/w PFOS and HFD compared to controls.
-------------------------	------	--------------	------	------------	----	-----	--

Notes:

Abbreviations: End of treatment (EOT); embryonic day (E); Vitamin C (VC); diethylnitrosamine (DEN); marginal methionine/choline-deficient diet (mMCD); choline supplementation (CS); concanavalin A (Con A); naringin (Nar); Sprague Dawley (SD); grape seed proanthocyanidin extract (GSPE). *Atmospheric exposure occurred for 5 hours/day, 5 days/week.

References

1. OHAT. 2015b. OHAT Risk of Bias Rating Tool for Human and Animal Studies. Washington DC.

2. Attanasio R. 2019. Sex differences in the association between perfluoroalkyl acids and liver function in US adolescents: Analyses of NHANES 2013-2016. Environ Pollut 254:113061.

3. Attanasio R. 2019. Association between perfluoroalkyl acids and liver function: Data on sex differences in adolescents. Data Brief 27:104618.

4. Bassler J, Ducatman A, Elliott M, Wen S, Wahlang B, Barnett J, et al. 2019. Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines. Environ Pollut 247:1055-1063.

5. Darrow LA, Groth AC, Winquist A, Shin HM, Bartell SM, Steenland K. 2016. Modeled Perfluorooctanoic Acid (PFOA) Exposure and Liver Function in a Mid-Ohio Valley Community. Environ Health Perspect 124:1227-1233.

6. Emmett EA, Zhang H, Shofer FS, Freeman D, Rodway NV, Desai C, et al. 2006. Community Exposure to Perfluorooctanoate: Relationships Between Serum Levels and Certain Health Parameters. Journal of Occupational and Environmental Medicine 48.

7. Gallo V, Leonardi G, Genser B, Lopez-Espinosa MJ, Frisbee SJ, Karlsson L, et al. 2012. Serum perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) concentrations and liver function biomarkers in a population with elevated PFOA exposure. Environ Health Perspect 120:655-660.

8. Gilliland FD, Mandel JS. 1996. Serum perfluorooctanoic acid and hepatic enzymes, lipoproteins, and cholesterol: a study of occupationally exposed men. Am J Ind Med 29:560-568.

9. Gleason JA, Post GB, Fagliano JA. 2015. Associations of perfluorinated chemical serum concentrations and biomarkers of liver function and uric acid in the US population (NHANES), 2007-2010. Environ Res 136:8-14.

10. Jain RB, Ducatman A. 2019. Selective Associations of Recent Low Concentrations of Perfluoroalkyl Substances With Liver Function Biomarkers: NHANES 2011 to 2014 Data on US Adults Aged ≥20 Years. J Occup Environ Med 61:293-302.

11. Jain RB. 2019. Concentration of selected liver enzymes across the stages of glomerular function: the associations with PFOA and PFOS. Heliyon 5:e02168.

12. Jin R, McConnell R, Catherine C, Xu S, Walker DI, Stratakis N, et al. 2020. Perfluoroalkyl substances and severity of nonalcoholic fatty liver in Children: An untargeted metabolomics approach. Environ Int 134:105220.

13. Khalil N, Ebert JR, Honda M, Lee M, Nahhas RW, Koskela A, et al. 2018. Perfluoroalkyl substances, bone density, and cardio-metabolic risk factors in obese 8-12 year old children: A pilot study. Environ Res 160:314-321.

14. Lin CY, Lin LY, Chiang CK, Wang WJ, Su YN, Hung KY, et al. 2010. Investigation of the associations between low-dose serum perfluorinated chemicals and liver enzymes in US adults. Am J Gastroenterol 105:1354-1363.

15. Mora AM, Fleisch AF, Rifas-Shiman SL, Woo Baidal JA, Pardo L, Webster TF, et al. 2018. Early life exposure to per- and polyfluoroalkyl substances and mid-childhood lipid and alanine aminotransferase levels. Environ Int 111:1-13.

16. Mundt DJ, Mundt KA, Luippold RS, Schmidt MD, Farr CH. 2007. Clinical epidemiological study of employees exposed to surfactant blend containing perfluorononanoic acid. Occup Environ Med 64:589-594.

17. Nian M, Li QQ, Bloom M, Qian ZM, Syberg KM, Vaughn MG, et al. 2019. Liver function biomarkers disorder is associated with exposure to perfluoroalkyl acids in adults: Isomers of C8 Health Project in China. Environ Res 172:81-88.

18. Olsen GW, Burris JM, Mandel JH, Zobel LR. 1999. Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees. Journal of Occupational and Environmental Medicine 41:799-806.

19. Olsen GW, Burris JM, Burlew MM, Mandel JH. 2003. Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. J Occup Environ Med 45:260-270.

20. Olsen GW, Zobel LR. 2007. Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. Int Arch Occup Environ Health 81:231-246.

21. Rantakokko P, Männistö V, Airaksinen R, Koponen J, Viluksela M, Kiviranta H, et al. 2015. Persistent organic pollutants and non-alcoholic fatty liver disease in morbidly obese patients: A cohort study. Environmental Health: A Global Access Science Source 14.

22. Sakr CJ, Kreckmann KH, Green JW, Gillies PJ, Reynolds JL, Leonard RC. 2007. Cross-sectional study of lipids and liver enzymes related to a serum biomarker of exposure (ammonium perfluorooctanoate or APFO) as part of a general health survey in a cohort of occupationally exposed workers. J Occup Environ Med 49:1086-1096.

23. Sakr CJ, Leonard RC, Kreckmann KH, Slade MD, Cullen MR. 2007. Longitudinal study of serum lipids and liver enzymes in workers with occupational exposure to ammonium perfluorooctanoate. J Occup Environ Med 49:872-879.

24. Salihovic S, Stubleski J, Kärrman A, Larsson A, Fall T, Lind L, et al. 2018. Changes in markers of liver function in relation to changes in perfluoroalkyl substances - A longitudinal study. Environ Int 117:196-203.

25. Sen P, Qadri S, Luukkonen PK, Ragnarsdottir O, McGlinchey A, Jäntti S, et al. 2021. Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease. Journal of hepatology.

26. Stratakis N, D VC, Jin R, Margetaki K, Valvi D, Siskos AP, et al. 2020. Prenatal Exposure to Perfluoroalkyl Substances Associated With Increased Susceptibility to Liver Injury in Children. Hepatology 72:1758-1770.

27. Yamaguchi M, Arisawa K, Uemura H, Katsuura-Kamano S, Takami H, Sawachika F, et al. 2013. Consumption of seafood, serum liver enzymes, and blood levels of PFOS and PFOA in the Japanese population. J Occup Health 55:184-194.

28. Bagley BD, Chang SC, Ehresman DJ, Eveland A, Zitzow JD, Parker GA, et al. 2017. Perfluorooctane Sulfonate-Induced Hepatic Steatosis in Male Sprague Dawley Rats Is Not Attenuated by Dietary Choline Supplementation. Toxicol Sci 160:284-298.

29. Bijland S, Rensen PC, Pieterman EJ, Maas AC, van der Hoorn JW, van Erk MJ, et al. 2011. Perfluoroalkyl sulfonates cause alkyl chain lengthdependent hepatic steatosis and hypolipidemia mainly by impairing lipoprotein production in APOE*3-Leiden CETP mice. Toxicol Sci 123:290-303.

30. Blake BE, Cope HA, Hall SM, Keys RD, Mahler BW, McCord J, et al. 2020. Evaluation of maternal, embryo, and placental effects in CD-1 mice following gestational exposure to perfluorooctanoic acid (PFOA) or hexafluoropropylene oxide dimer acid (HFPO-DA or GenX). Environmental Health Perspectives 128.

31. Botelho SC, Saghafian M, Pavlova S, Hassan M, DePierre JW, Abedi-Valugerdi M. 2015. Complement activation is involved in the hepatic injury caused by high-dose exposure of mice to perfluorooctanoic acid. Chemosphere 129:225-231.

32. Butenhoff JL, Chang SC, Ehresman DJ, York RG. 2009. Evaluation of potential reproductive and developmental toxicity of potassium perfluorohexanesulfonate in Sprague Dawley rats. Reprod Toxicol 27:331-341.

33. Butenhoff JL, Bjork JA, Chang SC, Ehresman DJ, Parker GA, Das K, et al. 2012. Toxicological evaluation of ammonium perfluorobutyrate in rats: Twenty-eight-day and ninety-day oral gavage studies. Reproductive Toxicology 33:513-530.

34. Butenhoff JL, Chang SC, Olsen GW, Thomford PJ. 2012. Chronic dietary toxicity and carcinogenicity study with potassium perfluorooctanesulfonate in Sprague Dawley rats. Toxicology 293:1-15.

35. Butenhoff JL, Kennedy GL, Jr., Chang SC, Olsen GW. 2012. Chronic dietary toxicity and carcinogenicity study with ammonium perfluorooctanoate in Sprague-Dawley rats. Toxicology 298:1-13.

36. Butenhoff JL, Olsen GW, Chang S. 2017. Toxicological response of Sprague Dawley rats from inhalation exposure to perfluorooctane sulfonyl fluoride (POSF). Toxicol Lett 271:38-49.

37. Chang S, Butenhoff JL, Parker GA, Coder PS, Zitzow JD, Krisko RM, et al. 2018. Reproductive and developmental toxicity of potassium perfluorohexanesulfonate in CD-1 mice. Reprod Toxicol 78:150-168.

38. Chappell GA, Thompson CM, Wolf JC, Cullen JM, Klaunig JE, Haws LC. 2020. Assessment of the Mode of Action Underlying the Effects of GenX in Mouse Liver and Implications for Assessing Human Health Risks. Toxicol Pathol 48:494-508.

39. Chengelis CP, Kirkpatrick JB, Radovsky A, Shinohara M. 2009. A 90-day repeated dose oral (gavage) toxicity study of perfluorohexanoic acid (PFHxA) in rats (with functional observational battery and motor activity determinations). Reprod Toxicol 27:342-351.

40. Crebelli R, Caiola S, Conti L, Cordelli E, De Luca G, Dellatte E, et al. 2019. Can sustained exposure to PFAS trigger a genotoxic response? A comprehensive genotoxicity assessment in mice after subacute oral administration of PFOA and PFBA. Regul Toxicol Pharmacol 106:169-177.

41. Cui R, Li C, Wang J, Dai J. 2019. Induction of hepatic miR-34a by perfluorooctanoic acid regulates metabolism-related genes in mice. Environ Pollut 244:270-278.

42. Curran I, Hierlihy SL, Liston V, Pantazopoulos P, Nunnikhoven A, Tittlemier S, et al. 2008. Altered fatty acid homeostasis and related toxicologic sequelae in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). J Toxicol Environ Health A 71:1526-1541.

43. Das KP, Wood CR, Lin MT, Starkov AA, Lau C, Wallace KB, et al. 2017. Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis. Toxicology 378:37-52.

44. Deng P, Wang C, Wahlang B, Sexton T, Morris AJ, Hennig B. 2020. Co-exposure to PCB126 and PFOS increases biomarkers associated with cardiovascular disease risk and liver injury in mice. Toxicol Appl Pharmacol 409:115301.

45. Ding L, Hao F, Shi Z, Wang Y, Zhang H, Tang H, et al. 2009. Systems biological responses to chronic perfluorododecanoic acid exposure by integrated metabonomic and transcriptomic studies. J Proteome Res 8:2882-2891.

46. Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Butenhoff JL. 2012. Hepatocellular hypertrophy and cell proliferation in Sprague-Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPARα and CAR/PXR. Toxicology 293:16-29.

47. Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Noker PE, et al. 2012. Evaluation of hepatic and thyroid responses in male Sprague Dawley rats for up to eighty-four days following seven days of dietary exposure to potassium perfluorooctanesulfonate. Toxicology 293:30-40.

48. Fang X, Zou S, Zhao Y, Cui R, Zhang W, Hu J, et al. 2012. Kupffer cells suppress perfluorononanoic acid-induced hepatic peroxisome proliferator-activated receptor α expression by releasing cytokines. Arch Toxicol 86:1515-1525.

49. Fang X, Gao G, Zhang X, Wang H. 2015. Perfluorononanoic acid disturbed the metabolism of lipid in the liver of streptozotocin-induced diabetic rats. Toxicol Mech Methods 25:622-627.

50. Foreman JE, Chang SC, Ehresman DJ, Butenhoff JL, Anderson CR, Palkar PS, et al. 2009. Differential hepatic effects of perfluorobutyrate mediated by mouse and human PPAR-alpha. Toxicol Sci 110:204-211.

51. Guo H, Wang J, Yao J, Sun S, Sheng N, Zhang X, et al. 2019. Comparative Hepatotoxicity of Novel PFOA Alternatives (Perfluoropolyether Carboxylic Acids) on Male Mice. Environ Sci Technol 53:3929-3937.

52. Guo H, Chen J, Zhang H, Yao J, Sheng N, Li Q, et al. 2021. Exposure to GenX and Its Novel Analogs Disrupts Hepatic Bile Acid Metabolism in Male Mice. Environmental Science and Technology.

53. Guo H, Sheng N, Guo Y, Wu C, Xie W, Dai J. 2021. Exposure to GenX and its novel analogs disrupts fatty acid metabolism in male mice. Environmental Pollution 291.

54. Hamilton MC, Heintz MM, Pfohl M, Marques E, Ford L, Slitt AL, et al. 2021. Increased toxicity and retention of perflourooctane sulfonate (PFOS) in humanized CYP2B6-Transgenic mice compared to Cyp2b-null mice is relieved by a high-fat diet (HFD). Food and Chemical Toxicology 152.

55. Han R, Hu M, Zhong Q, Wan C, Liu L, Li F, et al. 2018. Perfluorooctane sulphonate induces oxidative hepatic damage via mitochondriadependent and NF-κB/TNF-α-mediated pathway. Chemosphere 191:1056-1064.

56. Han R, Zhang F, Wan C, Liu L, Zhong Q, Ding W. 2018. Effect of perfluorooctane sulphonate-induced Kupffer cell activation on hepatocyte proliferation through the NF-KB/TNF-A/IL-6-dependent pathway. Chemosphere 200:283-294.

57. Huang T, Zhang Y, Zhang W, Lin T, Chen L, Yang B, et al. 2020. Attenuation of Perfluorooctane Sulfonate-Induced Steatohepatitis by Grape Seed Proanthocyanidin Extract in Mice. Biomed Res Int 2020:8818160.

58. Huck I, Beggs K, Apte U. 2018. Paradoxical Protective Effect of Perfluorooctanesulfonic Acid Against High-Fat Diet-Induced Hepatic Steatosis in Mice. Int J Toxicol 37:383-392.

59. Hui Z, Li R, Chen L. 2017. The impact of exposure to environmental contaminant on hepatocellular lipid metabolism. Gene 622:67-71.

60. Kato H, Fujii S, Takahashi M, Matsumoto M, Hirata-Koizumi M, Ono A, et al. 2015. Repeated dose and reproductive/developmental toxicity of perfluorododecanoic acid in rats. Environmental Toxicology 30:1244-1263.

61. Kim SC, Hong JT, Jang SJ, Kang WS, Yoo HS, Yun YP. 1998. Formation of 8-oxodeoxyguanosine in liver DNA and hepatic injury by peroxisome proliferator clofibrate and perfluorodecanoic acid in rats. J Toxicol Sci 23:113-119.

62. Kim HS, Jun Kwack S, Sik Han E, Seok Kang T, Hee Kim S, Young Han S. 2011. Induction of apoptosis and CYP4A1 expression in Sprague-Dawley rats exposed to low doses of perfluorooctane sulfonate. J Toxicol Sci 36:201-210.

63. Lai KP, Li JW, Cheung A, Li R, Billah MB, Chan TF, et al. 2017. Transcriptome sequencing reveals prenatal PFOS exposure on liver disorders. Environ Pollut 223:416-425.

64. Li D, Zhang L, Zhang Y, Guan S, Gong X, Wang X. 2019. Maternal exposure to perfluorooctanoic acid (PFOA) causes liver toxicity through PPAR-α pathway and lowered histone acetylation in female offspring mice. Environ Sci Pollut Res Int 26:18866-18875.

65. Li X, Wang Z, Klaunig JE. 2019. The effects of perfluorooctanoate on high fat diet induced non-alcoholic fatty liver disease in mice. Toxicology 416:1-14.

66. Liang X, Xie G, Wu X, Su M, Yang B. 2019. Effect of prenatal PFOS exposure on liver cell function in neonatal mice. Environ Sci Pollut Res Int 26:18240-18246.

67. Lieder PH, Chang S-C, York RG, Butenhoff JL. 2009. Toxicological evaluation of potassium perfluorobutanesulfonate in a 90-day oral gavage study with Sprague–Dawley rats. Toxicology 255:45-52.

68. Liu W, Xu C, Sun X, Kuang H, Kuang X, Zou W, et al. 2016. Grape seed proanthocyanidin extract protects against perfluorooctanoic acidinduced hepatotoxicity by attenuating inflammatory response, oxidative stress and apoptosis in mice. Toxicol Res (Camb) 5:224-234.

69. Luo M, Tan Z, Dai M, Song D, Lin J, Xie M, et al. 2017. Dual action of peroxisome proliferator-activated receptor alpha in perfluorodecanoic acid-induced hepatotoxicity. Archives of Toxicology 91:897-907.

70. Lv Z, Li G, Li Y, Ying C, Chen J, Chen T, et al. 2013. Glucose and lipid homeostasis in adult rat is impaired by early-life exposure to perfluorooctane sulfonate. Environ Toxicol 28:532-542.

71. Lv Z, Wu W, Ge S, Jia R, Lin T, Yuan Y, et al. 2018. Naringin protects against perfluorooctane sulfonate-induced liver injury by modulating NRF2 and NF-κB in mice. Int Immunopharmacol 65:140-147.

72. Marques E, Pfohl M, Auclair A, Jamwal R, Barlock BJ, Sammoura FM, et al. 2020. Perfluorooctanesulfonic acid (PFOS) administration shifts the hepatic proteome and augments dietary outcomes related to hepatic steatosis in mice. Toxicol Appl Pharmacol 408:115250.

73. Marques ES, Agudelo J, Kaye EM, Modaresi SMS, Pfohl M, Bečanová J, et al. 2021. The role of maternal high fat diet on mouse pup metabolic endpoints following perinatal PFAS and PFAS mixture exposure. Toxicology 462.

74. Martin MT, Brennan RJ, Hu W, Ayanoglu E, Lau C, Ren H, et al. 2007. Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity. Toxicol Sci 97:595-613.

75. Minata M, Harada KH, Kärrman A, Hitomi T, Hirosawa M, Murata M, et al. 2010. Role of peroxisome proliferator-activated receptor-alpha in hepatobiliary injury induced by ammonium perfluorooctanoate in mouse liver. Ind Health 48:96-107.

76. Nakagawa T, Ramdhan DH, Tanaka N, Naito H, Tamada H, Ito Y, et al. 2012. Modulation of ammonium perfluorooctanoate-induced hepatic damage by genetically different PPARα in mice. Arch Toxicol 86:63-74.

77. Owumi S, Bello T, Oyelere AK. 2021. N-acetyl cysteine abates hepatorenal toxicities induced by perfluorooctanoic acid exposure in male rats. Environmental Toxicology and Pharmacology 86.

78. Pfohl M, Marques E, Auclair A, Barlock B, Jamwal R, Goedken M, et al. 2021. An 'Omics Approach to Unraveling the Paradoxical Effect of Diet on Perfluorooctanesulfonic Acid (PFOS) and Perfluorononanoic Acid (PFNA)-Induced Hepatic Steatosis. Toxicol Sci.

79. Pouwer MG, Pieterman EJ, Chang SC, Olsen GW, Caspers MPM, Verschuren L, et al. 2019. Dose Effects of Ammonium Perfluorooctanoate on Lipoprotein Metabolism in APOE*3-Leiden.CETP Mice. Toxicological Sciences 168:519-534.

80. Qazi MR, Abedi MR, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2010. Dietary exposure to perfluorooctanoate or perfluorooctane sulfonate induces hypertrophy in centrilobular hepatocytes and alters the hepatic immune status in mice. Int Immunopharmacol 10:1420-1427.

81. Qazi MR, Hassan M, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2013. Both sub-acute, moderate-dose and short-term, low-dose dietary exposure of mice to perfluorooctane sulfonate exacerbates concanavalin A-induced hepatitis. Toxicol Lett 217:67-74.

82. Qazi MR, Hassan M, Nelson BD, Depierre JW, Abedi-Valugerdi M. 2013. Sub-acute, moderate-dose, but not short-term, low-dose dietary preexposure of mice to perfluorooctanoate aggravates concanavalin A-induced hepatitis. Toxicol Lett 219:1-7.

83. Quist EM, Filgo AJ, Cummings CA, Kissling GE, Hoenerhoff MJ, Fenton SE. 2015. Hepatic Mitochondrial Alteration in CD-1 Mice Associated with Prenatal Exposures to Low Doses of Perfluorooctanoic Acid (PFOA). Toxicol Pathol 43:546-557.

84. Rigden M, Pelletier G, Poon R, Zhu J, Auray-Blais C, Gagnon R, et al. 2015. Assessment of Urinary Metabolite Excretion After Rat Acute Exposure to Perfluorooctanoic Acid and Other Peroxisomal Proliferators. Archives of Environmental Contamination and Toxicology 68:148-158.

85. Roth K, Yang Z, Agarwal M, Liu W, Peng Z, Long Z, et al. 2021. Exposure to a mixture of legacy, alternative, and replacement per- and polyfluoroalkyl substances (PFAS) results in sex-dependent modulation of cholesterol metabolism and liver injury. Environment International 157.

86. Schlezinger JJ, Puckett H, Oliver J, Nielsen G, Heiger-Bernays W, Webster TF. 2020. Perfluorooctanoic acid activates multiple nuclear receptor pathways and skews expression of genes regulating cholesterol homeostasis in liver of humanized PPARα mice fed an American diet. Toxicology and Applied Pharmacology 405.

87. Seacat AM, Thomford PJ, Hansen KJ, Clemen LA, Eldridge SR, Elcombe CR, et al. 2003. Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology 183:117-131.

88. Shao W, Xu J, Xu C, Weng Z, Liu Q, Zhang X, et al. 2021. Early-life perfluorooctanoic acid exposure induces obesity in male offspring and the intervention role of chlorogenic acid. Environmental Pollution 272.

89. Shi L, Pan R, Lin G, Liang X, Zhao J, Zhang H, et al. 2021. Lactic acid bacteria alleviate liver damage caused by perfluorooctanoic acid exposure via antioxidant capacity, biosorption capacity and gut microbiota regulation. Ecotoxicology and Environmental Safety 222.

90. Son HY, Kim SH, Shin HI, Bae HI, Yang JH. 2008. Perfluorooctanoic acid-induced hepatic toxicity following 21-day oral exposure in mice. Arch Toxicol 82:239-246.

91. Su M, Liang X, Xu X, Wu X, Yang B. 2019. Hepatoprotective benefits of vitamin C against perfluorooctane sulfonate-induced liver damage in mice through suppressing inflammatory reaction and ER stress. Environ Toxicol Pharmacol 65:60-65.

92. Takahashi M, Ishida S, Hirata-Koizumi M, Ono A, Hirose A. 2014. Repeated dose and reproductive/developmental toxicity of perfluoroundecanoic acid in rats. J Toxicol Sci 39:97-108.

93. Tan X, Xie G, Sun X, Li Q, Zhong W, Qiao P, et al. 2013. High fat diet feeding exaggerates perfluorooctanoic acid-induced liver injury in mice via modulating multiple metabolic pathways. PLoS One 8:e61409.

94. van Esterik JCJ, Sales LB, Dollé MET, Håkansson H, Herlin M, Legler J, et al. 2016. Programming of metabolic effects in C57BL/6JxFVB mice by in utero and lactational exposure to perfluorooctanoic acid. Archives of Toxicology 90:701-715.

95. Wan HT, Zhao YG, Wei X, Hui KY, Giesy JP, Wong CK. 2012. PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport. Biochim Biophys Acta 1820:1092-1101.

96. Wan C, Han R, Liu L, Zhang F, Li F, Xiang M, et al. 2016. Role of miR-155 in fluorooctane sulfonate-induced oxidative hepatic damage via the Nrf2-dependent pathway. Toxicol Appl Pharmacol 295:85-93.

97. Wang J, Yan S, Zhang W, Zhang H, Dai J. 2015. Integrated proteomic and miRNA transcriptional analysis reveals the hepatotoxicity mechanism of PFNA exposure in mice. J Proteome Res 14:330-341.

98. Wang J, Wang X, Sheng N, Zhou X, Cui R, Zhang H, et al. 2017. RNA-sequencing analysis reveals the hepatotoxic mechanism of perfluoroalkyl alternatives, HFPO2 and HFPO4, following exposure in mice. J Appl Toxicol 37:436-444.

99. Wang G, Pan R, Liang X, Wu X, Wu Y, Zhang H, et al. 2021. Perfluorooctanoic acid-induced liver injury is potentially associated with gut microbiota dysbiosis. Chemosphere 266:129004.

100. Wang G, Sun S, Wu X, Yang S, Wu Y, Zhao J, et al. 2020. Intestinal environmental disorders associate with the tissue damages induced by perfluorooctane sulfonate exposure. Ecotoxicol Environ Saf 197:110590.

101. Wang D, Gao Q, Wang T, Kan Z, Li X, Hu L, et al. 2020. Green tea polyphenols and epigallocatechin-3-gallate protect against perfluorodecanoic acid induced liver damage and inflammation in mice by inhibiting NLRP3 inflammasome activation. Food Res Int 127:108628.

102. Weatherly LM, Shane HL, Lukomska E, Baur R, Anderson SE. 2021. Systemic toxicity induced by topical application of heptafluorobutyric acid (PFBA) in a murine model. Food and Chemical Toxicology 156.

103. Wu X, Liang M, Yang Z, Su M, Yang B. 2017. Effect of acute exposure to PFOA on mouse liver cells in vivo and in vitro. Environ Sci Pollut Res Int 24:24201-24206.

104. Xing J, Wang G, Zhao J, Wang E, Yin B, Fang D, et al. 2016. Toxicity assessment of perfluorooctane sulfonate using acute and subchronic male C57BL/6J mouse models. Environ Pollut 210:388-396.

105. Yahia D, El-Nasser MA, Abedel-Latif M, Tsukuba C, Yoshida M, Sato I, et al. 2010. Effects of perfluorooctanoic acid (PFOA) exposure to pregnant mice on reproduction. J Toxicol Sci 35:527-533.

106. Yan S, Wang J, Zhang W, Dai J. 2014. Circulating microRNA profiles altered in mice after 28d exposure to perfluorooctanoic acid. Toxicology Letters 224:24-31.

107. Yan S, Zhang H, Wang J, Zheng F, Dai J. 2015. Perfluorooctanoic acid exposure induces endoplasmic reticulum stress in the liver and its effects are ameliorated by 4-phenylbutyrate. Free Radic Biol Med 87:300-311.

108. Yang B, Zou W, Hu Z, Liu F, Zhou L, Yang S, et al. 2014. Involvement of oxidative stress and inflammation in liver injury caused by perfluorooctanoic acid exposure in mice. Biomed Res Int 2014:409837.

109. Zhang L, Krishnan P, Ehresman DJ, Smith PB, Dutta M, Bagley BD, et al. 2016. Perfluorooctane sulfonate-choline ion pair formation: A potential mechanism modulating hepatic steatosis and oxidative stress in mice. Toxicological Sciences 153:186-197.

110. Zhang Y, Klaassen CD, Cheng X. 2018. Alteration of Bile Acid and Cholesterol Biosynthesis and Transport by Perfluorononanoic Acid (PFNA) in Mice. Toxicol Sci 162:225-233.

111. Zou W, Liu W, Yang B, Wu L, Yang J, Zou T, et al. 2015. Quercetin protects against perfluorooctanoic acid-induced liver injury by attenuating oxidative stress and inflammatory response in mice. Int Immunopharmacol 28:129-135.

112. Wu X, Xie G, Xu X, Wu W, Yang B. 2018. Adverse bioeffect of perfluorooctanoic acid on liver metabolic function in mice. Environ Sci Pollut Res Int 25:4787-4793.

113. Qin Y, Gu T, Ling J, Luo J, Zhao J, Hu B, et al. 2021. PFOS facilitates liver inflammation and steatosis: An involvement of NLRP3 inflammasome-mediated hepatocyte pyroptosis. Journal of Applied Toxicology.