Supplementary information

Anti-tuberculosis treatment strategies and drug development: challenges and priorities

In the format provided by the authors and unedited

Supplementary Table 1: approved 1st, 2nd and 3rd line agents recommended for treatment of active TB ^(*)

Disease		Year of	Route of	Commonto
indication	Drug or drug class	discovery/approval	administration	Comments
	Isoniazid (INH)	1952/1952	Oral	Administered as 2 months of INH-PZA-RIF-
Drug susceptible TB	Pyrazinamide (PZA)	1952/1953	Oral	EMB (intensive phase, approved as Rifater
	Rifampicin (RIF)	1966/1974	Oral	drug combination in 1994) followed by 4
	Ethambutol (EMB)	1961/1968	Oral	months of INH-RIF (continuation phase).
	Rifapentine (RPT)	1965/1998	Oral	
	Fluoroquinolones	1987/1998,	Oral	
	(levofloxacin, moxifloxacin)	1991/1999		
	Aminoglycosides	1946/1947,	Injectable (i.m	Gradually replaced with bedaquiline where
	(streptomycin, amikacin)	1971/1993	or i.v.)	available ¹
	Rifabutin (RBT)	1975/1992	Oral	5-10% of RIF-resistant strains are susceptible
				to and can be treated with RBT
Multideug	Capreomycin	1960/1973	Injectable (i.m	
resistant (MDR) TR			or i.v.)	
(resistant to INH	Pyrazinamide	1952/1953	Oral	
and RIE ^(**)	Ethambutol	1961/1968	Oral	
	Thioamides (ethionamide,	1956/1968	Oral	Date of discovery/approval of prothionamide
	prothionamide)			not available
	Para-amino-salicylate	1944/1950	Oral	
	Cycloserine	1954/1968	Oral	
	Bedaquiline	2004/2012	Oral	
	Nitroimidazole delamanid	2006/2014	Oral	Approved by the EMEA but not the FDA for
				treatment of MDR-TB
Extensively drug	Nitroimidazole pretomanid	2000/2019	Oral	FDA-approved for highly drug resistant forms
resistant (XDR) TB				of TB in combination with bedaquiline and
(resistant to INH,				linezolid
RIF,	Clofazimine	1954/1969	Oral	Approved for the treatment of leprosy in
fluoroquinolones				1969; approved for off-label compassionate
and one				use (expanded access) against TB
injectable) (Linezolid	Mid-1990s/ 2000	Oral	Approved for off-label use only against TB
	MDR-TB drugs as appropriate			
	based on drug susceptibility			
	profile			

| profile ^(*) See ⁵ for a recent and comprehensive review. (**) A 3 to 5 drug regimen is optimized based on the individual's drug susceptibility profile. i.m.: intramuscular; i.v. : intravenous; EMEA: European Medicines Evaluation Agency

Supplementary Table 2: proposed biomarkers of progression from LTBI to active TB

Study type / methodology	Discovery or validation cohorts	Study outcome	references			
Immunodiagnostics						
Various interferon-γ release assays (IGRA) used as a baseline "Target Product Profile" by the WHO ^(*) to benchmark improvements in sensitivity and specificity of new markers	Multiple large cohorts in UK, South Africa, Norway, 10 European countries, and Germany	Limited sensitivity and specificity of IGRAs to predict incipient TB among subjects with LTBI.	6-10 11			
IGRA versus tuberculin skin test	Meta-analysis of 15 studies across 4 continents	Highlights the comparable predictive ability of both tests, the limited predictive value of a single test and the need for longitudinal testing to improve accuracy and facilitate interpretation	12			
Transcriptomics						
Clinical blood transcriptomics	Compiled analysis of multiple cohorts	Systematic comparison and evaluation of 17 and 7 blood signatures, respectively, of incipient TB, and identification of best performing signatures	13,14,15			
Whole blood RNA sequencing	47 progressors and 107 matched controls from Adolescent Cohort Study or ACS ¹⁶	16-gene signature (ZAK16) of risk of progression in the 12 months preceding TB diagnosis	17			
Blood transcriptomics of 11 genes selected from ZAK16, by RT-qPCR	2 validation cohorts: (1) 820 HIV-positive subjects, and (2) 764 RISK-positive and 1,784 RISK- negative participants	Validation of an 11-gene signature (RISK11) for diagnosis of symptomatic tuberculosis, and for short-term prediction of incident tuberculosis: RISK11 identified prevalent tuberculosis and predicted risk of progression to incident tuberculosis within 15 months in HIV-positive subjects	18,19 (**)			
Blood-based transcriptomics linked to PET/CT findings	10 likely progressors identified by PET/CT among 35	Transcripts of the classical complement pathway and Fcγ receptor 1 overabundant in subclinical stages of disease; validated in HIV- negative cohort from Zak <i>et al</i> . ¹⁷	20			

	HIV-positive		
	subjects with LTBI		
Whole blood RNAseq, plasma	44 progressors	Longitudinal blood transcriptional analysis complemented with	21
proteome and purified T cell gene	and 107 matched	proteomic analysis of plasma and T cell responses, indicating	
expression analysis	controls from ACS	orchestrated changes that precede progression to TB disease.	
Whole blood RNA sequencing	12 progressors	A 3-gene signature (ROE3) for short term risk of progression within	22
	and 48 non-	90 days in HIV-negative subjects (BATF2, GBP5, and SCARF1)	
	progressors		
Whole blood RNA sequencing and	79 progressors	2- and 4-gene signatures of risk to progression in 3 to 24 months	23 24
RT-qPCR	and 328 matched	preceding TB diagnosis	
	non-progressors		
	from ACS		
Blood RNA sequencing and RT-	43 progressors	Validation of a 3-gene signature – initially discovered to distinguish	25,26
qPCR in adolescents	among 144	active TB from healthy individuals – to predict risk of progression to	
	adolescents with	active TB	
	LTBI ^(***)		
RNAseq of peripheral blood	16 progressors	Evaluated the predictive performance of six	27
mononuclear cells	and 21 non-	published signatures on the transcriptional profiles of peripheral	
	progressors for	blood mononuclear cells from progressors and non-progressors	
	the new	during a five-year follow-up, and derived a new 29-gene signature	
	signature	that predicts progression up to 5 years prior to disease	
	discovery set	development	
Blood transcriptomics by RT-qPCR	ACS as discovery	A 6-gene transcriptomic signature of TB disease risk, validated by	28
	cohort; 7 large	blind application using microfluidic qRT-PCR to samples from seven	
	validation cohorts	different cohorts	
Blood transcriptomic analyses of	ACS (46	From ²¹ and ²⁸ , identified differentially expressed genes in	29
human, mouse, and macaque	progressors and	controllers and progressors across species, and defined a TB risk	
samples	107 matched	signature gene in humans, mice and macaques	
	controls), mouse:		
	16 progressors,13		
	controllers, 10		
	naïve; macaque:		
	8 progressors, 4		
	controllers, 4		
	naïve.		
Genetics			
Genome Wide Association Study	2175 early	Identified variants of monocyte-specific regulatory element in 3q23	30
	progressors and		
	1827 non-		

	progressing household contacts		
Epigenetics and proteomics in monocytes and granulocytes	8 active TB and 8 LTBI	Pilot study linking DNA methylome, transcriptome and proteome to distinguish LTBI from active TB	31
Proteomics			
Highly multiplexed proteomic assay (SOMAscan) to quantify 3,000 human proteins in plasma	ACS (44 progressors and 107 matched controls) for discovery; 1,948 HIV-negative household TB contacts for validation	Identified a 5-protein signature, TB Risk Model 5 (TRM5), and 3- protein signature, 3-protein pair-ratio (3PR) with excellent predictive value within 6 months of active TB diagnosis	32
Imaging	·		
PET-CT imaging	35 HIV-positive subjects with LTBI	10 subjects with subclinical TB identified by PET/CT, progression to active TB not assessed	33
PET/MRI imaging	30 household contacts of active TB index cases	Identified abnormalities in asymptomatic patients indicative of subclinical TB; no significant correlation between presence of PET/MRI abnormalities (SUVmax values) and initial quantitative IGRA values	34
PET-CT/MRI across species	Not included, study compilation	Exhaustive review covering PET, MRI and/or CT imaging in mouse, rabbit, and non-human primate models, and in TB patients, as (i) a tool to study and predict progression to active disease, (ii) a biomarker of treatment response and relapse, (iii) a patient stratification tool for clinical trials, and (iv) a modality to measure vaccine efficacy.	35

(*) <u>https://apps.who.int/iris/bitstream/handle/10665/259176/WHOHTM-TB-2017.18-eng.pdf?sequence=1</u> (**) see appendix to ¹⁵ for a comparison of individual signature performance to the WHO Target Product Profile criteria (***) this was the validation cohort. The discovery cohort in ²⁶ included n = 1023 samples

Supplementary Table 3: Selected animal models used to evaluate drug efficacy against active TB and/or penetration at the site of disease

Species and Model	Relative cost/Duration	Compound requirements ^(*)	Major Read-out(s)	Strengths	Limitations	References
Zebrafish (larvae)	+ / 1-2 weeks	≤ 1 mg	Survival, fluorescence	Amenable to medium	Absence of pulmonary	36,37
			as a surrogate of CFU	throughput drug screening	site of infection	
BALB/c acute model of low dose aerosol infection	++ / 2 months	≤1g	∆ lung CFU of treated versus control in the fast-replicating phase of infection	Rapid, low cost, modest space requirements; large body of published data available as benchmark		38,39
BALB/c chronic model of low dose aerosol infection	++/ 3 months	≤1g	Δ lung CFU of treated versus control in the slow/non-replicating phase of infection		Lack of necrotic lesions and cavities	
BALB/c relapse model	+++/8-12 months	6-10 g	Δ lung CFU, relapse rate following varying treatment durations	Exhaustive body of data available with single drugs and drug combinations; Reasonably predicts relapse in patients		
C3HeB/FeJ necrotic lesion model	+++ / 4-6 months	1-3 g	∆ lung CFU and relapse rates; site-of- disease pharmacokinetics	Presence of large necrotic lesions; pathology variability delivers bimodal response of drug efficacy in necrotic versus cellular lesions (two models in one)	Large sample size required due to varying pathology; model is very sensitive to strain and inoculum size (inter-lab reproducibility is a challenge)	40-43
Guinea pig model	+++ / 4-5 months	10-20 g	∆ lung CFU	Presence of cellular, caseating and calcified granulomas	Limited body of efficacy data to estimate the predictive value of the model; used more frequently to evaluate vaccine than drug efficacy	44-46
Rabbit cavitary model	+++ / 5-6 months	20-200 g	single lesion CFU; site- of-disease pharmacokinetics	Presence of cellular, necrotic, cavitating granulomas and open cavities	Not validated for efficacy studies of drug regimens	47-50

Marmoset model of	++++ / 5-6	10-20 g	single lesion CFU;	Recapitulates major human	Cost, bioethics, model	51,52
active TB	months		corresponding ¹⁸ FDG	pathology features; PET-CT	validation still in	
			uptake by PET as a	read out allows for	progress	
			measure of lesion-	longitudinal evaluation and		
			associated	reduced numbers of		
			inflammation; volume	animals; small animal size (~		
			of disease by CT	500 g)		
Macaque model of	+++++ / 6-12	50-300 g	Same as above;	Same as above; ability to co-	Cost, space	53-55
active TB	months		relapse following SIV	infect macaques with SIV to	requirements, bioethics	
			infection	model HIV co-infection		

(*) conservative estimates based on average sample size, average human equivalent dose, and treatment duration recorded in the literature; CFU: colony forming unit; PET: positron emission tomography; ¹⁸FDG: fluoro-deoxy-glucose (PET tracer); CT: computerized tomography; NHP: non-human primate; SIV: Simian Immunodeficiency Virus.

Supplementary Box 1 | Propose, apply, and endorse new clinical trial designs to improve the pace of regimen development

Adaptive trial designs rely on accumulated data and interim analyses to make preplanned adaptations, such as stopping an arm early for futility or safety and increasing allocation ratios to best performing arms. They are usually more efficient and informative than traditional fixed designs, offer savings in time, resources, and sample size ². One such adaptive design applied to TB trials is the Multi-Arm Multi-Stage (MAMS) concept, under which multiple treatment options are compared simultaneously, against a control arm. These can either be different drug combinations, doses, or treatment durations. Through interim analyses with predetermined adaptation rules, randomization can be adjusted to reallocate patients to most effective or least toxic regimens ³. MAMS has been applied to inventive Phase II trials such as TRUNCATE-TB (https://www.newtbdrugs.org/pipeline/trials/truncate-tb).

A new Phase IIC trial design has been created specifically in the context of TB to accelerate regimen development: the Selection Trial with Extended Post-treatment follow-up (STEP)⁴. Experimental regimens are given for the duration for which they will be studied in phase III and patients are followed for clinical outcomes of treatment failure and relapse for a total of 12 months from randomization. Collection of clinical outcome data in a relatively small number of participants over only 12 months provides information about the likelihood of success of each arm in a phase III trial. MAMS and STEP can be sequentially combined to accelerate both Phase II and III trials.

In the figure below, the adaptive design principle (a), MAMS (b), STEP (c) and a two stage STEP-to-STEP (d) schematic designs are shown. In the STEP-to-STEP stage 1, two new regimens are compared side-by-side to the standard of care, leading to go/no go decisions and if appropriate, the selection of best performing new combination at the completion of the 12-month follow up. In stage 2, different durations of the selected regimen are tested to identify the shortest treatment duration delivering non-inferiority results.

a Adaptive trial design

b MAMS design

C STEP design

d STEP to STEP design

Panel c reprinted from ref 4, CC BY 4.0

REFERENCES

- 1 WHO. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Report No. ISBN 978-92-4-155052-9, (World Health Organization, Geneva, Switzerland, 2019).
- 2 Millen, G. C. & Yap, C. Adaptive trial designs: what are multiarm, multistage trials? *Arch Dis Child Educ Pract Ed* **105**, 376-378, doi:10.1136/archdischild-2019-317826 (2020).
- 3 Cellamare, M., Ventz, S., Baudin, E., Mitnick, C. D. & Trippa, L. A Bayesian response-adaptive trial in tuberculosis: The endTB trial. *Clin Trials* **14**, 17-28, doi:10.1177/1740774516665090 (2017).
- 4 Phillips, P. P. *et al.* A new trial design to accelerate tuberculosis drug development: the Phase IIC Selection Trial with Extended Post-treatment follow-up (STEP). *BMC Med* **14**, 51, doi:10.1186/s12916-016-0597-3 (2016).
- 5 Horsburgh, C. R., Jr., Barry, C. E., 3rd & Lange, C. Treatment of Tuberculosis. *N Engl J Med* **373**, 2149-2160, doi:10.1056/NEJMra1413919 (2015).
- 6 Gupta, R. K. *et al.* Quantitative IFN-gamma Release Assay and Tuberculin Skin Test Results to Predict Incident Tuberculosis. A Prospective Cohort Study. *Am J Respir Crit Care Med* **201**, 984-991, doi:10.1164/rccm.201905-0969OC (2020).
- 7 Andrews, J. R. *et al.* Serial QuantiFERON testing and tuberculosis disease risk among young children: an observational cohort study. *Lancet Respir Med* **5**, 282-290, doi:10.1016/S2213-2600(17)30060-7 (2017).
- 8 Winje, B. A. *et al.* Stratification by interferon-gamma release assay level predicts risk of incident TB. *Thorax*, doi:10.1136/thoraxjnl-2017-211147 (2018).
- Zellweger, J. P. *et al.* Risk Assessment of Tuberculosis in Contacts by IFN-gamma Release Assays.
 A Tuberculosis Network European Trials Group Study. *Am J Respir Crit Care Med* 191, 1176-1184, doi:10.1164/rccm.201502-0232OC (2015).
- 10 Diel, R., Loddenkemper, R., Niemann, S., Meywald-Walter, K. & Nienhaus, A. Negative and positive predictive value of a whole-blood interferon-gamma release assay for developing active tuberculosis: an update. *Am J Respir Crit Care Med* **183**, 88-95, doi:10.1164/rccm.201006-0974OC (2011).
- 11 Dheda, K. & Davids, M. Latent Tuberculosis Infection-associated Immunodiagnostic Test Responses as Biomarkers of Incipient Tuberculosis: Fruitful or Futile? *Am J Respir Crit Care Med* **201**, 895-898, doi:10.1164/rccm.201912-2425ED (2020).
- 12 Rangaka, M. X. *et al.* Predictive value of interferon-gamma release assays for incident active tuberculosis: a systematic review and meta-analysis. *Lancet Infect Dis* **12**, 45-55, doi:10.1016/S1473-3099(11)70210-9 (2012).
- 13 Warsinske, H., Vashisht, R. & Khatri, P. Host-response-based gene signatures for tuberculosis diagnosis: A systematic comparison of 16 signatures. *PLoS Med* **16**, e1002786, doi:10.1371/journal.pmed.1002786 (2019).
- 14 Gupta, R. K. *et al.* Concise whole blood transcriptional signatures for incipient tuberculosis: a systematic review and patient-level pooled meta-analysis. *Lancet Respir Med* **8**, 395-406, doi:10.1016/S2213-2600(19)30282-6 (2020).
- 15 Turner, C. T. *et al.* Blood transcriptional biomarkers for active pulmonary tuberculosis in a highburden setting: a prospective, observational, diagnostic accuracy study. *Lancet Respir Med* **8**, 407-419, doi:10.1016/S2213-2600(19)30469-2 (2020).
- 16 Mahomed, H. *et al.* TB incidence in an adolescent cohort in South Africa. *PLoS One* **8**, e59652, doi:10.1371/journal.pone.0059652 (2013).
- 17 Zak, D. E. *et al.* A blood RNA signature for tuberculosis disease risk: a prospective cohort study. *Lancet* **387**, 2312-2322, doi:10.1016/S0140-6736(15)01316-1 (2016).

- 18 Mendelsohn, S. C. *et al.* Validation of a host blood transcriptomic biomarker for pulmonary tuberculosis in people living with HIV: a prospective diagnostic and prognostic accuracy study. *Lancet Glob Health* **9**, e841-e853, doi:10.1016/S2214-109X(21)00045-0 (2021).
- 19 Scriba, T. J. *et al.* Biomarker-guided tuberculosis preventive therapy (CORTIS): a randomised controlled trial. *Lancet Infect Dis* **21**, 354-365, doi:10.1016/S1473-3099(20)30914-2 (2021).
- 20 Esmail, H. *et al.* Complement pathway gene activation and rising circulating immune complexes characterize early disease in HIV-associated tuberculosis. *Proc Natl Acad Sci U S A* **115**, E964-E973, doi:10.1073/pnas.1711853115 (2018).
- 21 Scriba, T. J. *et al.* Sequential inflammatory processes define human progression from M. tuberculosis infection to tuberculosis disease. *PLoS Pathog* **13**, e1006687, doi:10.1371/journal.ppat.1006687 (2017).
- 22 Roe, J. *et al.* Blood Transcriptomic Stratification of Short-term Risk in Contacts of Tuberculosis. *Clin Infect Dis* **70**, 731-737, doi:10.1093/cid/ciz252 (2020).
- 23 Suliman, S. *et al.* Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis. *Am J Respir Crit Care Med* **197**, 1198-1208, doi:10.1164/rccm.201711-2340OC (2018).
- 24 Schumacher, S. G. & Denkinger, C. M. Diagnostic Test for Incipient Tuberculosis: A Step Forward, Many More to Go. *Am J Respir Crit Care Med* **197**, 1106-1107, doi:10.1164/rccm.201803-0469ED (2018).
- 25 Warsinske, H. C. *et al.* Assessment of Validity of a Blood-Based 3-Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease Severity, and Treatment Response. *JAMA Netw Open* **1**, e183779, doi:10.1001/jamanetworkopen.2018.3779 (2018).
- 26 Sweeney, T. E., Braviak, L., Tato, C. M. & Khatri, P. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. *Lancet Respir Med* **4**, 213-224, doi:10.1016/S2213-2600(16)00048-5 (2016).
- 27 Leong, S. *et al.* Cross-validation of existing signatures and derivation of a novel 29-gene transcriptomic signature predictive of progression to TB in a Brazilian cohort of household contacts of pulmonary TB. *Tuberculosis (Edinb)* **120**, 101898, doi:10.1016/j.tube.2020.101898 (2020).
- 28 Penn-Nicholson, A. *et al.* RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response. *Sci Rep* **10**, 8629, doi:10.1038/s41598-020-65043-8 (2020).
- 29 Ahmed, M. *et al.* Immune correlates of tuberculosis disease and risk translate across species. *Sci Transl Med* **12**, doi:10.1126/scitranslmed.aay0233 (2020).
- Luo, Y. *et al.* Early progression to active tuberculosis is a highly heritable trait driven by 3q23 in Peruvians. *Nat Commun* **10**, 3765, doi:10.1038/s41467-019-11664-1 (2019).
- 31 Esterhuyse, M. M. *et al.* Epigenetics and Proteomics Join Transcriptomics in the Quest for Tuberculosis Biomarkers. *mBio* **6**, e01187-01115, doi:10.1128/mBio.01187-15 (2015).
- 32 Penn-Nicholson, A. *et al.* Discovery and validation of a prognostic proteomic signature for tuberculosis progression: A prospective cohort study. *PLoS Med* **16**, e1002781, doi:10.1371/journal.pmed.1002781 (2019).
- 33 Esmail, H. *et al.* Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission and computed tomography. *Nat Med* **22**, 1090-1093, doi:10.1038/nm.4161 (2016).
- 34 Molton, J. S. *et al.* Sub-clinical abnormalities detected by PET/MRI in household tuberculosis contacts. *BMC Infect Dis* **19**, 83, doi:10.1186/s12879-019-3705-0 (2019).
- 35 Malherbe, S. T., Kleynhans, L. & Walzl, G. The potential of imaging tools as correlates of infection and disease for new TB vaccine development. *Semin Immunol* **39**, 73-80, doi:10.1016/j.smim.2018.06.001 (2018).

- 36 Takaki, K., Cosma, C. L., Troll, M. A. & Ramakrishnan, L. An in vivo platform for rapid highthroughput antitubercular drug discovery. *Cell Rep* 2, 175-184, doi:10.1016/j.celrep.2012.06.008 (2012).
- 37 Ordas, A. *et al.* Testing tuberculosis drug efficacy in a zebrafish high-throughput translational medicine screen. *Antimicrob Agents Chemother* **59**, 753-762, doi:10.1128/AAC.03588-14 (2015).
- 38 Nuermberger, E. Using animal models to develop new treatments for tuberculosis. *Semin Respir Crit Care Med* **29**, 542-551 (2008).
- 39 Nuermberger, E. L. Preclinical Efficacy Testing of New Drug Candidates. *Microbiol Spectr* **5**, doi:10.1128/microbiolspec.TBTB2-0034-2017 (2017).
- 40 Davis, S. L. *et al.* Noninvasive pulmonary [18F]-2-fluoro-deoxy-D-glucose positron emission tomography correlates with bactericidal activity of tuberculosis drug treatment. *Antimicrob Agents Chemother* **53**, 4879-4884, doi:10.1128/AAC.00789-09 (2009).
- 41 Driver, E. R. *et al.* Evaluation of a mouse model of necrotic granuloma formation using C3HeB/FeJ mice for testing of drugs against Mycobacterium tuberculosis. *Antimicrob Agents Chemother* **56**, 3181-3195, doi:10.1128/AAC.00217-12 (2012).
- 42 Rosenthal, I. M. *et al.* Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis. *Antimicrob Agents Chemother* **56**, 4331-4340, doi:10.1128/AAC.00912-12 (2012).
- Irwin, S. M. *et al.* Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis. *Dis Model Mech* **8**, 591-602, doi:10.1242/dmm.019570 (2015).
- Palanisamy, G. S. *et al.* Disseminated disease severity as a measure of virulence of
 Mycobacterium tuberculosis in the guinea pig model. *Tuberculosis (Edinb)* 88, 295-306 (2008).
- 45 Lenaerts, A. J. *et al.* Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. *Antimicrob Agents Chemother* **51**, 3338-3345, doi:10.1128/AAC.00276-07 (2007).
- 46 Creissen, E., Izzo, L., Dawson, C. & Izzo, A. A. Guinea Pig Model of Mycobacterium tuberculosis Infection. *Curr Protoc* **1**, e312, doi:10.1002/cpz1.312 (2021).
- 47 Blanc, L. *et al.* Impact of immunopathology on the antituberculous activity of pyrazinamide. *J Exp Med* **215**, 1975-1986, doi:10.1084/jem.20180518 (2018).
- 48 Manabe, Y. C. *et al.* Different strains of Mycobacterium tuberculosis cause various spectrums of disease in the rabbit model of tuberculosis. *Infect Immun.* **71**, 6004-6011. (2003).
- 49 Subbian, S. *et al.* Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response. *Open Biol* **1** (2011).
- 50 Via, L. E. *et al.* Infection Dynamics and Response to Chemotherapy in a Rabbit Model of Tuberculosis using [18F]2-Fluoro-Deoxy-D-Glucose Positron Emission Tomography and Computed Tomography. *Antimicrob Agents Chemother* **56**, 4391-4402, doi:10.1128/AAC.00531-12 (2012).
- 51 Via, L. E. *et al.* Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset (Callithrix jacchus). *Infect Immun* **81**, 2909-2919, doi:10.1128/IAI.00632-13 (2013).
- 52 Via, L. E. *et al.* A Sterilizing Tuberculosis Treatment Regimen Is Associated with Faster Clearance of Bacteria in Cavitary Lesions in Marmosets. *Antimicrob Agents Chemother* **59**, 4181-4189, doi:10.1128/AAC.00115-15 (2015).
- 53 Kaushal, D., Mehra, S., Didier, P. J. & Lackner, A. A. The non-human primate model of tuberculosis. *J Med Primatol* **41**, 191-201, doi:10.1111/j.1600-0684.2012.00536.x (2012).

- 54 Lin, P. L. *et al.* Radiologic responses in cynomolgous macaques for assessing tuberculosis chemotherapy regimens. *Antimicrob Agents Chemother* **57**, 4237-4244, doi:10.1128/AAC.00277-13 (2013).
- 55 Foreman, T. W., Mehra, S., Lackner, A. A. & Kaushal, D. Translational Research in the Nonhuman Primate Model of Tuberculosis. *ILAR J* 58, 151-159, doi:10.1093/ilar/ilx015 (2017).