CSTs species richness

b)

Average number of species-specific strains inside each Vaginal CST analyzed

CSTI CSTI CSTII CSTV

a)

	SNPs analysis							
DH type		DH3						
Base number	135	655	825	915	942	759		
LB62	G	Т	Т	Т	Т	А		
LB63	G	Т	Т	Т	Т	G		
LB58	G	Т	Т	Т	Т	G		
LB59	G	Т	Т	Т	Т	G		
LB57	А	G	С	С	С	G		
LB61	А	G	С	С	С	G		
PRL2021	G	G	С	С	С	G		
LB56	G	G	С	С	С	G		

AA substitution	D	D	D	D	Y	Y	Y	Y
SNPs	Т	Т	Т	Т	G	G	G	G
Hours	PRL2021	LB56	LB61	LB57	LB58	LB59	LB63	LB62
0	5.766805	5.89645	5.666625	5.93095	5.66703	5.866285	5.76248	5.75008
1	5.70809	5.73268	5.605935	5.751005	5.525155	5.743165	5.634885	5.67624
2	5.6583	5.6745	5.53725	5.649115	5.43512	5.67178	5.558415	5.618385
3	5.57904	5.57261	5.42669	5.51574	5.2899	5.56089	5.42215	5.533295
4	5.44218	5.40904	5.24976	5.2872	5.085535	5.386605	5.19885	5.396715
5	5.22695	5.18953	5.00504	4.96311	4.854435	5.149875	4.919025	5.204105
6	4.949475	4.95217	4.732485	4.63109	4.63129	4.87417	4.628135	4.974515
Ph Excursion	0.81733	0.94428	0.93414	1.29986	1.03574	0.992115	1.134345	0.775565
7	4.67057	4.73466	4.483935	4.36832	4.43747	4.62313	4.386115	4.739225
8	4.435645	4.54851	4.29602	4.18756	4.28159	4.41868	4.205605	4.520535
9	4.26137	4.39263	4.16063	4.06571	4.161185	4.262245	4.082175	4.337365
10	4.13414	4.26818	4.061655	3.980915	4.06775	4.14523	3.994295	4.19322
11	4.039435	4.17148	3.98761	3.91935	3.995935	4.057	3.92962	4.07945
12	3.96656	4.09486	3.92936	3.8712	3.940075	3.988735	3.87749	3.989475
Ph Excursion	1.800245	1.80159	1.737265	2.05975	1.726955	1.87755	1.88499	1.760605
13	3.90805	4.03474	3.8812	3.832235	3.896345	3.93558	3.835365	3.91764
14	3.860305	3.98509	3.84037	3.79926	3.859285	3.893585	3.797925	3.858235
15	3.819135	3.94451	3.80632	3.77141	3.829005	3.85991	3.771725	3.80925
16	3.784045	3.90874	3.77663	3.75026	3.804535	3.83261	3.75259	3.768415
17	3.75297	3.87842	3.75409	3.738365	3.785305	3.8101	3.74119	3.73382
18	3.725335	3.85147	3.742845	3.741965	3.77208	3.79125	3.737195	3.703765
19	3.702165	3.82818	3.738295	3.746865	3.767125	3.775195	3.736845	3.680825
20	3.68938	3.80656	3.73455	3.751995	3.763135	3.762155	3.736985	3.673875
21	3.687655	3.78752	3.731435	3.756	3.766565	3.75178	3.737775	3.67404
22	3.68785	3.77014	3.728865	3.760015	3.772115	3.74309	3.738765	3.67457
23	3.68693	3.75365	3.728865	3.76109	3.77556	3.73659	3.739235	3.67576
24	3.68556	3.73903	3.72942	3.76165	3.776195	3.73418	3.740185	3.676345
Ph Excursion	2.081245	2.15742	1.93776	2.192585	1.903895	2.132105	2.025635	2.076205

	PRL2021_2248	-	alpha,alpha-phosphotrehalase
n sm	PRL2021_2247	-	alpha-glycosidase
i be iloc	PRL2021_2246	-	maltose phosphorylase
olve etak	PRL2021_2245	-	beta-phosphoglucomutase
nvc me	PRL2021_2244	-	sugar ABC transporter ATP-binding protein
ss i en	PRL2021_2243	-	maltose ABC superfamily ATP-binding substrate-binding protein
ene cog	PRL2021_2242	-	sugar ABC transporter permease
glyc	PRL2021_2241	-	sugar ABC transporter permease

Supplementary figure legends

Figure S1. Microbial biodiversity in the vaginal microbiota.

Panel a reports the species richness analysis obtained through METAnnotatorX2 profiling of the 80 vaginal samples. Panel b shows the strain tracking result for the 4 *Lactobacillus* species analyzed in 80 vaginal samples, divided by CST I, II, III and V, through the use of strainGST software.

Figure S2. Analysis of bacteriocin gene distribution and correlation to inhibition halo.

Panel a reports an HCl analysis relative to the distribution of the six bacteriocin clusters (LCB) between the analyzed strains of *Lb. crispatus*, while panel b) shows correlation of the presence of the six different LCB and the inhibition halo of *Lb. crispatus* grown with the nine species used as test.

Figure S3. Evaluation of lactic acid production by vaginal lactobacilli.

Panel a displays the pH lowering through fermentation process in MRS. The variation of pH as a function of time is reported. Panel b) shows the evaluation of lactic acid production through fermentation process in Simulated Vaginal Fluid (SVF). The variation of pH as a function of time is reported.

Figure S4. SNP analysis in DH genes.

The figure reports all five SNPs identified in the DH1 gene and the single SNP identified in the DH3 gene, with the relative NT substitution. Additionally, for the SNP at position 655 in the DH1 gene, is reported also the relative AA subsitution, correlated to pH profile of each *Lb. crispatus* genome isolated from human vagina.

Figure S5. Cluster of genes for glycogen metabolism in Lactobacillus crispatus.

The figure shows the cluster of genes involved in glycogen metabolism conserved within the *Lactobacillus crispatus* strains used in the growth assays. Panels a) and b) show the genes present within the conserved cluster for glycogen metabolism both in LB57 and PRL2021 strains.