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1. UHR-SD-OCT system parameters
1.1 Axial resolution

The axial resolution of an OCT system is directly related to the central wavelength and 
bandwidth of its source. In fact, the axial resolution is set by the width of the Fourier transform 
of the detected source spectrum (with the z axis rescaled by a factor of 2 to account for light 
travelling twice through the sample), i.e., the FWHM of the coherence envelope. If the source 
is Gaussian of spectral width |𝑘2 ― 𝑘1| (FWHM), the corresponding coherence envelope is also 
Gaussian, and the axial resolution is [1,2]:

𝛿𝑧 = 2 ln(2)
𝜋𝑛

𝜆1𝜆2

|𝜆2 ― 𝜆1| (S1) 

with 𝜆1 = 2𝜋/𝑘1, 𝜆2 = 2𝜋/𝑘2, and 𝑛 the refractive index. For 𝜆1 = 1.0 µm and 𝜆2 = 1.6 µm, 
the theoretical axial resolution is 𝛿𝑧 = 1.2 µm. The reason UHR-OCT systems typically use 
shorter-wavelength sources is clear: 𝛿𝑧 scales with 𝜆1𝜆2. Conversely, a UHR-OCT system at 
longer wavelengths has increased complexity from the limited availability of sources, detectors, 
and from the challenges related to management of chromatic aberration with a large bandwidth. 
It should be noted that our source spectrum is not Gaussian; therefore, we normalize received 
data by the source spectrum for numerical spectral flattening (see section 3 below for full data 
processing). Furthermore, we employ windowing to reduce sidelobes and improve sensitivity 
at the expense of resolution (see section 5 below for corresponding theory and measurements 
of resolution and sensitivity). However, the scaling ideas presented above still hold: a system 
operating at a shorter central wavelength and larger bandwidth will have improved axial 
resolution.

1.2 Lateral resolution

The lateral resolution of an OCT system depends on the numerical aperture of the objective 
lens (as in histology). The lateral spot size of the laser on the sample
(2𝑤0 = 1/e2 spot diameter) can be calculated from Gaussian optics, assuming a perfect lens [3]:

2𝑤0 = 4𝜆𝑓
𝜋𝑑 (S2) 

where 𝜆 is the wavelength, f is the focal length of the lens, d is the beam size on the back 
aperture of the objective (1/e2 diameter), and where the numerical aperture can be approximated 
as NA = d/(2f) in air. Using equation S2, in our system, the lateral FWHM (= 2 ln2 𝑤0) is 
approximately 15 µm (confirmed with a USAF 1951 resolution target).

1.3 Maximum imaging depth

The maximum imaging depth in OCT is affected by several distinct parameters. A first 
consideration is the depth of focus (DOF), which is defined as the axial distance over which the 
beam size doubles in diameter from its smallest point (focal spot). The axial DOF is given by 
equation S3 [4], and can be directly related to lateral spot size:

DOF = 8𝜆𝑓2

𝜋𝑑2 = 2𝜋
𝜆 𝑤2

0 (S3) 



Thus, we note the compromise between lateral resolution and DOF; as lateral resolution is 
improved, imaging depth is reduced, since a more tightly focused beam diverges faster. If the 
beam has diverged too much, there will not be sufficient light returning to the spectrometer to 
observe a signal. In our system, DOF = 0.78 mm. 

Secondly, tissue penetration depth is the maximum depth in a sample at which an OCT 
signal can be observed, which depends on sample absorption and scattering properties. These 
properties are related to source wavelength, where scattering tends to decrease in tissue with 
longer wavelengths in the infrared, especially with respect to visible wavelengths [5–7].

Another factor affecting OCT imaging depth is sensitivity, which is the smallest signal that 
can be observed with respect to incident power on the sample, and is usually expressed in 
decibels (dB). It is limited by the noise sources in the system, notably detector noise (thermal 
noise), laser relative intensity noise (RIN) and shot noise [8]. When using supercontinuum 
sources for OCT to achieve a broad spectral bandwidth, the RIN tends to be the most important 
source of noise [9].

Next, the imaging range (𝑧max) is related to the finite spectral sampling of the spectrometer, 
and represents the axial depth that can be imaged in one spectrometer acquisition [1]:

𝑧max = 𝑛𝜆0
2

4Δ𝜆 (S4) 

where Δ𝜆 is the wavelength spacing between pixels of the spectrometer. In our system, 
𝑧max = 1.4 mm in air. This range can be doubled by implementing “full-range OCT”, as 
described in Refs. [1,7,10,11].

Lastly, the signal-to-noise ratio (SNR) falls off with depth due to “roll-off”, where 𝑅(Δ𝑧) 
gives the envelope of the decay with respect to depth (Δ𝑧) and is theoretically expressed 
by [12]:

𝑅(Δ𝑧) = sinc2 𝜋Δ𝑧
2𝛼

exp ― 𝜋2𝑟2(Δ𝑧)2

8𝛼2ln(2)
(S5) 

with 𝑟 = 𝛿𝜆/Δ𝜆 and 𝛼 = 𝜆2
0/(4Δ𝜆), where Δ𝜆 is the wavelength spacing between pixels, 𝛿𝜆 is 

the spectrometer resolution, and 𝜆0 is the center wavelength. To calculate 𝛿𝜆, we look at a 
diffraction-limited spot produced on the camera by a single wavelength 𝜆𝑎, and determine the 
wavelength 𝜆𝑏 that would be one spot FWHM away on the camera. Then, 𝛿𝜆 = 𝜆𝑏 ― 𝜆𝑎. Our 
spectrometer design aimed to match 𝛿𝜆 to Δ𝜆, where one spot size diameter on the camera 
would equal the size of a pixel (10 µm). The theoretical r for our system is therefore r = 1, 
however, r = 1.52 was found to better match the experimental data. This discrepancy is likely 
the result of slight misalignment in the spectrometer.

2. Spectrometer design
Proper spectrometer design is critical toward achieving good sensitivity over a large depth (low 
roll-off and signal loss). To minimize aberrations and for ease of alignment, we chose a grating 
with a small spatial frequency of 600 lines/mm (Wasatch Photonics WP-600/1550-25.4, angle 
of incidence (AOI) 𝜃𝑖 = -27.7°) for use with long focal length lenses. The grating equation (S6) 
illustrates that a small spatial frequency reduces the transmission angle and thus allows the use 
of longer focal length lenses:

sin𝜃𝑡 ― sin𝜃𝑖 = 𝑙 ∙ 𝑚 ∙ 𝜆 (S6) 

where 𝜃𝑡 is the transmitted angle, 𝜃𝑖 is the grating AOI, l is the spatial frequency of the grating 
(lines per millimeter) and m is the order. In our spectrometer, we use the first order, checking 
that the second order does not overlap for any wavelength used. To determine the required lens 
focal lengths, we maximized the detected bandwidth (𝜆2 ― 𝜆1), centered at 1.3 µm, while 
satisfying the constraints outlined below. The linescan camera (GL2048R, Sensors Unlimited) 



has 2048 pixels of size 10 µm (pitch) by 210 µm (height). Therefore, the reddest and bluest 
wavelengths are separated by 20.47 mm on the camera (equation S7). Furthermore, the spot 
size of a monochromatic source on the camera should be <10 µm to minimize roll-off. Since 
the input fiber to the spectrometer has a mode field diameter (MFD) of 6 µm across the entire 
bandwidth, collimating and focusing lenses of equal focal lengths (fcol = ffocus = f) satisfy this 
condition. We also wanted to select this focal length f such that the beam of width d is not 
clipped on the 1-inch grating (equation S8) or the 2-inch focusing optics (equation S9). These 
constraints can be summarized as follows:

20.47 mm
2 = 𝑓 ∙ tan 𝜃2 ― 𝜃1

2
(S7) 

2 ∙ 𝜆2 ∙ 𝑓
𝜋 ∙ 6 µm < 25.4 mm

2
∙ cos (27.7°) (S8) 

20.47 mm
2 + 2 ∙ 𝜆2 ∙ 𝑓

𝜋 ∙ 6 µm < 50.8 mm
2 (S9) 

with the variables defined in the spectrometer schematic in Fig. S1. Collimating and focusing 
optics with 50 mm focal lengths satisfy these constraints, with 𝜆1 = 985 nm and 𝜆2 = 1615 nm.

Fig. S1. Spectrometer parameters.

To design the spectrometer focusing optics with off-the-shelf lenses over our broad 
wavelength band, we minimized chromatic as well as geometric aberrations with Zemax® ray-
tracing software. First, a perfect grating was inserted into the simulation, then a cemented 
achromat (Thorlabs AC508-080-C) with a slightly longer focal length than the desired focal 
length (used: f = 80 mm; desired: f = 50 mm). N-BK7 lenses were then added before and after 
the cemented achromat with variable distances and radii of curvature. A generic merit function 
was applied, minimizing the RMS spot size along the camera line dimension (y). The design 
was not diffraction-limited after optimization, and therefore, another degree of freedom was 
added: lateral translation of the source and grating. The final design shown in Fig. S2 includes 
a plano-convex lens with f = 150 mm (Thorlabs LA1417-C), the cemented achromat with 
f = 80 mm, and a positive meniscus lens with f = 150 mm (Thorlabs LE1418-C).

Fig. S2. Final spectrometer focusing optics, simulated and optimized in Zemax®



The RMS spot diameter (simulated by Zemax®) is shown Fig. S3 and is compared with a 
simple pair of f = 100 mm cemented achromats (Thorlabs AC508-100-C). With the pair of 
achromats, aberrations dominate and cause the spot size along the camera axis (y) to be larger 
than 10 µm over most of the desired spectral band. Perpendicular to the camera axis, in both 
cases, the spot size remains well below the camera pixel height.

Fig. S3. Simulated focused spot diameters in our spectrometer using Zemax® ray tracing. 
Comparison of our optimized design with two cemented achromats, the diffraction limit, and the 
camera pixel size. (Left) along camera axis. (Right) perpendicular to camera axis.

3. Image processing
The raw signal received on the line camera is:

𝐼det(𝑘) = 1
4

 𝐼source(𝑘) 1 + 𝑟𝑠 + 2 𝑟𝑠 cos(2𝑘∆𝑧 + 𝜑(𝑘)) (S10)

where 𝐼source(𝑘) is the source spectrum, k = 2π/λ is the wavenumber, 𝑟𝑠 is the sample 
reflectivity, ∆𝑧 is the sample depth (optical path length difference between the sample and 
reference arms) and 𝜑(𝑘) is the dispersion mismatch between the sample and reference arms. 
The processing steps from the acquired raw spectra to images are:

• Background subtraction;
• Envelope normalization (dividing by the source spectrum acquired from the reference 

arm);
• k-mapping (on the camera, the signal is linear in wavelength λ, but it must be 

resampled to be linear in k = 2π/λ);
• Numerical dispersion compensation;
• Windowing;
• Fourier transform (k → z);
• z-scaling to assign delay values in µm.

In more detail, first, calibration was performed by placing a mirror in the sample position 
and interferograms were acquired at 50 µm displacements of the reference mirror. For the initial 
calibration step, 2,000 interferograms were acquired and averaged per mirror position to ensure 
accurate mapping, but no such time-averaging was performed in the system characterization 
acquisitions. 2,000 reference spectra were recorded and averaged with the sample arm blocked. 
The averaged reference spectrum was subtracted from the interferograms, and then the 
interferograms were divided by the reference spectrum for numerical spectral flattening, i.e., 
envelope normalization.

k-mapping was achieved by taking the difference of the phase of the Hilbert transform of 
consecutive interferograms, yielding 2𝑘∆𝑧𝑖+1 ―2𝑘∆𝑧𝑖, where i represents each of the mirror 
positions. This difference phase was fitted with the sum of a hyperbola representing the 
wavelength-to-wavenumber conversion and a third-order polynomial to partially account for 
aberrations. k-mapping of each interferogram was then performed by cubic spline interpolation.



Dispersion compensation was implemented similarly to Refs. [13,14], where the phase of 
the Hilbert transform of the interferogram (now mapped to wavenumber) yields 2𝑘∆𝑧 + 𝜑(𝑘). 
This curve was fitted with a seventh-order polynomial, where the first order represents the 
desired signal and the higher order terms represent the dispersion. The dispersion can then be 
compensated by multiplying the interferogram by an inverse phase term.

Next, the interferogram was windowed to reduce sidelobes at the expense of resolution [15] 
with a half-Blackman, half-Hamming window (see section 5 below). The corrected 
interferogram was then Fourier transformed to yield an A-line using a fast Fourier transform 
with 214 points. Lastly, the A-line was z-scaled with a linear fit, assuming a 50 µm translation 
between each interferogram and squared to calculate the reflectivity profile (but not to calculate 
resolution).

To process data after this calibration, we performed background subtraction and 
normalization, then simply applied the saved k-mapping, dispersion compensation, windowing, 
Fourier transform and z-scaling for each A-line.

4. Power level on sample

Table S1. Maximum Permissible Exposure (MPE), Rule 1

Wavelength (nm) 1000 ≤ λ ≤ 1050 1050 ≤ λ ≤ 1400 1400 ≤ λ ≤ 1500 1500 ≤ λ ≤ 1600
MPEa (J/cm2) 2.0 CA × 10 -2 = .080 2.0 CA × 10 -2 = .10 0.3 1.0
MPEb (µJ/spot) 0.42 0.53 1.6 5.3
Energy fractionc 0.01 0.60 0.20 0.19
Energy (µJ)d 3.1 × 10 -6 1.9 × 10 -4 6.3 × 10 -5 5.9 × 10 -5

Energy/MPE 7.4 × 10 -6 3.5 × 10 -4 3.9 × 10 -5 1.1 × 10 -5

∑ Energy/MPE 0.00041
aCA = 100.002(λ-700) for 1000 ≤ λ ≤ 1050; in the worst case, with λ = 1000 nm, CA = 4.0.

CA = 5.0 for 1050 ≤ λ ≤ 1400.
bMPE per focal spot is MPE in J/cm2 multiplied by the spot area (π (0.0013 cm)2 = 5.3 × 10-6 cm2), where 0.0013 cm 

is the 1/e2 beam radius at the focal spot.
cFraction of total energy in this wavelength band (integral over different regions of Fig. 2a in main text).

dEnergy in one pulse (0.025 W/(80 × 106 Hz) = 3.1 × 10-10 J) multiplied by energy fraction.

Table S2. Maximum Permissible Exposure (MPE), Rule 2

Wavelength (nm) 1000 ≤ λ ≤ 1050 1050 ≤ λ ≤ 1400 1400 ≤ λ ≤ 1500 1500 ≤ λ ≤ 1600
MPEa (J/cm2) 1.1 CA × t 0.25 = 0.44 1.1 CA × t 0.25 = 0.55 0.3 1.0
MPEb (µJ/spot) 2.3 2.9 1.6 5.3
Power fractionc 0.01 0.60 0.20 0.19
Power (mW)d 0.25 15 5.0 4.8
Energy (µJ)e .025 1.5 0.50 .48
Energy/MPE .011 0.51 0.31 0.089
∑ Energy/MPE 0.93

aCA = 100.002(λ-700) for 1000 ≤ λ ≤ 1050; in the worst case, with λ = 1000 nm, CA = 4.0.
CA = 5.0 for 1050 ≤ λ ≤ 1400. t is the acquisition time for one A-line (10-4 s).

bMPE per focal spot is MPE in J/cm2 multiplied by the spot area (π (0.0013 cm)2 = 5.3 × 10-6 cm2), where 0.0013 cm 
is the 1/e2 beam radius at the focal spot.

cFraction of total power in this wavelength band (integral over different regions of Fig. 2a in main text).
d25 mW multiplied by power fraction.

ePower multiplied by exposure time (10-4 s).

To determine the safety limits to laser power on the sample, we refer to the maximum 
permissible exposure (MPE) listed in the American National Standard for Safe Use of Lasers 
(ANSI Z136.1), Tables 7b and 7c, on pages 87 and 88, respectively [16]. The two ANSI Rules 
that apply to non-ocular (i.e., “skin”) exposure are: “Exposure of the skin shall not exceed the 
MPE based upon a single-pulse exposure (Rule 1), and the average irradiance of the pulse train 
shall not exceed the MPE applicable for the total pulse train, duration T (Rule 2)” (p. 68). 
Furthermore, when multiple wavelength bands are used, “the MPE must first be determined for 
each wavelength separately. Exposures from several wavelengths are additive on a proportional 



basis of spectral effectiveness” (p. 64). Mathematically, the sum of the ratios of exposures Q to 
MPEs (both energies in units of Joules) over each wavelength band i must be less than 1 [17]:

∑𝑖
𝑄𝑖

𝑀𝑃𝐸𝑖
< 1 (S11)

The MPE calculations for a single pulse (Rule 1) and a single A-line (Rule 2) are given in 
Tables S1 and S2, respectively. The final row of each Table shows that the constraint outlined 
in equation S11 is satisfied. We note, however, that the MPE could be exceeded by Rule 2 in 
our system in certain scenarios. Firstly, the MPE is given in the ANSI standard for uniform 
illumination across an aperture, not a Gaussian beam. Secondly, the beam may be kept fixed 
on a certain spot for alignment or if there is a desire to average many consecutive A-lines, 
increasing the effective exposure time. The beam may also be more tightly confined with a 
higher NA objective for improved lateral resolution. Therefore, in a clinical setting, it may be 
desirable to lower the power in the sample arm, or to operate the system at a faster A-line rate 
for lower energy accumulation per spot. This decrease in sample illumination power will not 
necessarily degrade image quality; as proposed in the main text, the sensitivity can be improved 
by up to ~10 dB using sources with lower relative intensity noise.

5. Windowing: trade-off of sensitivity versus axial resolution
As mentioned in section 1 above, the theoretical axial resolution in OCT is given by the 
envelope of the Fourier transform of the source spectrum. A basic example is shown in Fig. S4. 
A theoretical Gaussian spectrum (in k space, solid curve in Fig. S4a) of
FWHM = |2π/λ1-2π/λ2| with λ1 = 1.0 µm and λ2 = 1.6 µm is processed by a Fast Fourier 
Transform (FFT) to yield a point spread function (PSF) that is a Gaussian of FWHM 
δz = 1.2 µm, as predicted by equation S1. However, in a real OCT system with a finite number 
of spectrometer pixels to acquire the signal, the source spectrum is effectively multiplied by a 
rectangular window of width |2π/λ1-2π/λ2|. Furthermore, in our experiments, we numerically 
flatten the envelope of the signal by dividing it by the source spectrum. Therefore, our 
processed spectrum is theoretically shaped like a rectangular window (dashed curve in 
Fig. S4a). The ensuing PSF obtained by FFT is a sinc function, with a wider PSF of FWHM 
1.6 µm, along with sidelobes (dashed curve in Fig. S4b). To reduce the presence of these 
sidelobes and improve sensitivity, the interferograms in k space can be multiplied by a window 
function. 

Fig. S4. (a) Normalized theoretical Gaussian source spectrum of FWHM = |2π/λ1-2π/λ2| with 
λ1 = 1.0 µm and λ2 = 1.6 µm (solid curve). The dashed curve shows a rectangular window of 
width equal to the Gaussian FWHM. (b) Absolute value of the FFT of the two curves shown in 
(a). Illustrated FWHM of 1.2 µm is for Gaussian; FWHM obtained for rectangular window is 
1.6 µm.



Fig. S5. Effects of windowing on point spread functions of a -60 dB reflector. Measurement 
procedure is as described in main text, section 2 and Fig. 3, and processing is discussed in 
section 3 above. (a-d) Different applied windows to the interferograms before Fourier 
transforming. Outside of the range shown, the amplitude is null with zero padding of the FFT. 
(e-h) Point spread functions at a delay of 40 µm, where axial resolution is defined as the FWHM 
of the coherence envelope. Dashed black curves are the theoretical resolution limits of each 
applied window (FFT of window), dotted pink curve is the real part of the measured PSF and 
solid pink curve is the absolute value of the measured PSF. (i-l) Sensitivity curves illustrating 
SNR from reflectivity profiles.

As stated in section 3 above, we multiplied acquired interferograms by a window function 
before Fourier transforming to improve sensitivity at the expense of axial resolution. The 
theoretical PSF is then simply the Fourier transform of the window function. Figure S5 shows 
our axial resolution and sensitivity measurements for different applied windows. Since the 
signal is weaker for shorter wavelengths, the SNR is lower; therefore, the Blackman window 
improves the sensitivity by reducing the weighting of shorter wavelengths. In fact, we found a 
significant increase in the noise floor (~7 dB) at 10 klps by using a full Hamming window 
compared with a Blackman window. However, resolution is worsened with the Blackman 



window as it decreases the effective source bandwidth. At longer wavelengths, the signal 
strength remains high, therefore, we opted for a half-Blackman, half-Hamming window as a 
compromise between reducing sidelobes and maintaining axial resolution. Note that we also 
experimented with applying an additional narrow window to suppress the pump peak at 
1064 nm, but found that this step did not have a significant effect on the results.

6. Location of cardiac imaging
Figure S6 shows a photo of the laser spot on the membranous septum of the pig heart during 
UHR-SD-OCT imaging (the longpass filter was removed from the supercontinuum output to 
observe the laser position on the sample). 

Fig. S6. Imaging location of membranous septum (MS) of pig heart. (a) Laser spot on the MS 
between the semilunar lines of attachment of the right coronary leaflet (RCL) and the non-
coronary leaflet (NCL) of the aortic valve. The MS was located via trans-illumination from the 
right side of the heart. For visualization of the laser spot on the sample, the 980 nm longpass 
filter was removed from the UHR-OCT setup to transmit visible light from the supercontinuum 
source. RCA: right coronary artery. (b) A section of a pig's heart after formalin fixation. The 
area of the membranous septum (MS) was located as described in the fresh specimen.
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