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Supplementary Discussion 

An alternative explanation for the brain differences revealed in this longitudinal study might be that 

the coronavirus infection leads to neuroinflammation, which can initiate chronic neuronal 

dysfunction1,2. In particular, activation of the peripheral innate immune system can induce the 

production of inflammatory cytokines in the brain, leading not only to severe impairment in memory, 

cognition and emotional behaviour, but also to microglial abnormalities in the hippocampus, which 

is particularly vulnerable to neuroinflammation3-5. In line with these findings, in the case of an averred 

neurotropic virus such as influenza, which spreads to central nervous system via infection of the 

olfactory neurons in the olfactory epithelium6, various long-term inflammatory-induced functional 

and structural alterations of the hippocampus, accompanied by impairment in spatial memory, have 

been recently observed7. Even in the possible absence of neurotropism, mild SARS-CoV-2 infection 

appears to lead to impaired hippocampal neurogenesis, decreased oligodendrocytes and myelin 

loss8. It is also possible that the choroid plexus, which appears to relay peripheral inflammation due 

to SARS-CoV-2 into the brain2, plays a role in the specific targeting of olfactory regions, as they might 

regulate the dynamics of the subventricular zone responsible for the neurogenesis occurring in the 

olfactory bulbs9. (Maladaptive) immune regulation through the microglia might also modulate these 

neurogenic niches10. Finally, other factors related to being infected by SARS-CoV-2, such as added 

anxiety, stress or isolation, might play a role in our findings. However, we did not find any non-

imaging phenotype (measured pre-infection) that, when controlled for, greatly reduced the 

association of infection with the longitudinal IDP effects. It is also worth noting that most of the cases 

involved in this study were either asymptomatic or mild — and indeed, most of our significant 

olfactory-related results stand when excluding the infected participants with more moderate or 

severe COVID-19 (hospitalised cases) — and most of the controls would have had also been exposed 

to higher levels of anxiety, stress and isolation during the pandemic in the UK. In addition, brain 

regions typically involved in these mental health factors, while overlapping with our limbic results, 

do not affect these regions consistently: higher and lower volumes have both been observed in these 

limbic structures for anxiety and stress, including higher (as opposed to lower in our study) volume 

of the parahippocampal gyrus in stress11-14, while social isolation impacts a different network of brain 

regions (the so-called “default mode” network), which does not overlap with the pattern associated 

with SARS-CoV-2 infection in our results15. While the number of influenza cases arising between two 

scans is probably too low at present in UK Biobank to draw any firm conclusion, further longitudinal 

investigations we carried out out-of-sample demonstrated that the pattern of abnormalities 

associated with pneumonia (not related to COVID-19) do not overlap with that of SARS-CoV-2 

(Supplementary Analysis 3). Whether our findings, which seem to delineate a clear limbic network 

of the primary and secondary olfactory and possibly gustatory cortex, reflect a corollary effect of the 

infection, an indirect brain-related pathophysiological process of SARS-CoV-2 through either 

anterograde degeneration or neuroinflammatory process, or a direct effect of the spread of the virus 

itself, remains to be elucidated. 
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Supplementary Figures 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig. 1. Histogram of the date of diagnosis. Diagnosis date was available for 351 cases, 

covering periods when the original strain, as well as the Alpha, Beta and Gamma variants were in 

circulation.   
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Supplementary Fig. 2. Voxel-wise, cross-sectional baseline group differences between future 

infected participants and controls in grey matter volume and mean diffusivity (age-modulated). 

Top row. The thresholded map (|Z|>3) shows that the localised lower grey matter volume at baseline 

in the future 401 SARS-CoV-2 positive participants compared with the 384 controls are bilaterally in 

the subcortical structures, specifically the caudate nucleus, putamen, ventral striatum, thalamus and 

hippocampus, and in the brainstem. None of these regions spatially overlap with the main 

longitudinal results. Bottom row. The thresholded map (|Z|>3) of mean diffusivity shows very few, 

scattered clusters of baseline differences (green), not overlapping with those longitudinal differences 

between the two groups (orange). We show the voxel-wise cross-sectional effects for illustrative 

purposes, avoiding any thresholding based on significance (as this would be statistically circular). 
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Supplementary Fig. 3. Histogram of the time between diagnosis and the second scan. Diagnosis 

date was available for 351 cases, more than 80% of whom had less than 6 months between infection 

and their second scan.   
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Supplementary Fig. 4. Histograms of group comparison Z statistics of longitudinal change in cortical 

thickness.  Top row. Model 1: All SARS-CoV-2 participants vs controls. Left, histogram of Z-statistics 

(blue) across all cortical vertices of the left hemisphere (with grey lines showing 100 null histograms 

created through random permutations of the group variable). Middle: right hemisphere Z-statistics 

(orange) and matched nulls. Right: the same left and right hemisphere Z-statistics histograms overlaid 

(with a pooled null histogram in grey). Bottom row. Model 4: All hospitalised vs non-hospitalised 

SARS-CoV-2 participants. Same representation of Z-statistics histograms as in the top row. 
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Supplementary Tables  

 

Supplementary Table 1. Full list of reproducible imaging-derived phenotypes (IDPs) used in the 

hypothesis-driven and exploratory approaches, and corresponding statistics for the longitudinal 

analyses (Models 1-4).  

 

Please see separate xls spreadsheet for the full table. 

 

Supplementary Table 2: Full list of reproducible imaging-derived phenotypes (IDPs) used in the 

hypothesis-driven and exploratory approaches, and corresponding statistics for the cross-

sectional, baseline analysis comparing SARS-CoV-2 and control groups (binary and age-modulated). 

 

Please see separate xls spreadsheet for the full table. 

 

Supplementary Table 3: Full list of reproducible imaging-derived phenotypes (IDPs) used in the 

hypothesis-driven and exploratory approaches, and corresponding statistics for the cross-

sectional, second timepoint analysis comparing SARS-CoV-2 and control groups (binary and age-

modulated). 

 

Please see separate xls spreadsheet for the full table. 

 

Supplementary Table 4. Full list of non-imaging phenotypes (nIDPs) used for the cross-sectional, 

baseline comparison between SARS-CoV-2 and control groups, and corresponding statistics 

(binary).  

 

Please see separate xls spreadsheet for the full table. 

 

Supplementary Table 5: Full list of reproducible imaging-derived phenotypes (IDPs) used in the 

hypothesis-driven and exploratory approaches, and corresponding statistics for the longitudinal 

analyses using a binary regressor for group comparisons.  

 

Please see separate xls spreadsheet for the full table. 
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Supplementary Longitudinal Plots  

 

Longitudinal percentage changes with age plots, as well as scatter and box plots for the top 10 results 

found using the hypothesis-driven approach, and for the top 10 results found using the exploratory 

approach. 

 

Longitudinal hypothesis-driven results 
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Olfactory tubercle functional network – ISOVF 
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Frontal piriform cortex functional network – MD (mean) 
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Temporal piriform cortex functional network – MD 
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Olfactory tubercle functional network – MD 
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Lateral orbitofrontal cortex L – thickness (DKT atlas) 
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Temporal piriform cortex functional network – ISOVF 
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Anterior olfactory nucleus functional network – MD 
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Parahippocampal gyrus L – intensity contrast (Desikan atlas) 
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Anterior olfactory nucleus functional network – ISOVF 
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Longitudinal exploratory results 
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Normalised CSF – volume 
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Lateral ventricle R – volume 
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Superior fronto-occipital fasciculus R – ICVF 
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Brain volume without ventricles (surface model estimate) 
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Rostral anterior cingulate cortex L – thickness (Desikan atlas) 
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Brain volume without ventricles 
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Supratentorial volume without ventricles 
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Cerebellum crus II – volume 
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Supplementary Baseline Plots. Percentage difference at baseline with age plots, as well as scatter 

and box plots for the top 10 IDPs showing longitudinal effects using the hypothesis-driven approach, 

and for the top 10 longitudinal IDPs found using the exploratory approach. 

 

Baseline hypothesis-driven results 
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Olfactory tubercle functional network – ISOVF 
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Frontal piriform cortex functional network – MD (mean) 
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Temporal piriform cortex functional network – MD 
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Olfactory tubercle functional network – MD 

 
 

 

 

 

  

85

90

95

100

105

110

115

120

125



32 
 

 

Lateral orbitofrontal cortex L – thickness (DKT atlas) 
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Temporal piriform cortex functional network – ISOVF 
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Anterior olfactory nucleus functional network – MD 
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Parahippocampal gyrus L – intensity contrast (Desikan atlas) 
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Anterior olfactory nucleus functional network – ISOVF 
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Baseline exploratory results 
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Normalised CSF – volume 
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Lateral ventricle R – volume 
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Superior fronto-occipital fasciculus R – ICVF 
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Brain volume without ventricles (surface model estimate) 
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Rostral anterior cingulate cortex L – thickness (Desikan atlas) 
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Brain volume without ventricles 

 
 

 

  

85

90

95

100

105

110

115



44 
 

Supratentorial volume without ventricles 
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Cerebellum crus II – volume 
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Supplementary Analyses 

 

Supplementary Analysis 1. Are nIDPs group-different at baseline, when clustering nIDPs using PCA?  

 

Summary 

 

When testing for case-vs-control differences in nIDPs at baseline, to reduce the sensitivity loss 

associated with multiple comparison correction across thousands of nIDPs, we first reduced the set 

of 6,301 nIDPs with PCA, testing a wide range of dimensionalities (1 to 700). No PCA components 

showed significant baseline effects. From 10 cognitive-only PCA components, 2 were significant. 

 

Methods 

 

We applied the same PCA-based reduction of the 6,301 nIDPs as described in Supplemental Analysis 

1. We reduced the set of nIDPs to the top Dmax components, from which the top D<=Dmax can be 

then considered. Setting Dmax high (700, from a maximum rank of 785), allows for investigation of 

the eigenspectrum, which has a knee around D=10 (see Supplementary Figure 5 below). We 

therefore applied the below evaluations with both Dmax=10 and (separately) Dmax=700. For all D 

from 1 to Dmax, we tested all components for between-group baseline difference, applying false 

discovery rate (FDR) and family-wise error (FWE) across components for a given D (while also 

considering the QQ plot to show potential uncorrected-P divergence from the null). To increase the 

chance of finding any between-group differences at baseline, no multiple comparison correction was 

applied across different dimensionalities D and different Dmax. We also reduced cognitive-only 

variables as described above, with Dmax=10 and D from 1 to 10. 

 

Results 

 

No nIDP-derived PCA components pass FDR or FWE at any D, for either Dmax (10 or 700). From the 

maximal set of tests, Dmax=700, D=700, the proportion of uncorrected P-values under 5% is 4.86%, 

consistent with the null; consistent with this, Supplementary Figure 5 below shows the respective 

QQ plots for these uncorrected p-values. Also, when using a binary (non-age-modulated) two-group 

regressor and rerunning these tests, nothing passes FDR or FWE correction. 
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Supplementary Figure 5. PCA eigenspectra and QQ Plots for Puncorrected against the theoretical null 

distribution. Top: Dmax=700. Bottom: Dmax=10. Left: Eigenspectra from PCA with missing-data soft-

imputation using an internal dimensionality of Dmax. Right: QQ plots of sorted uncorrected P-values, 

consistent with the null. 

 

When applying PCA to the cognitive-only nIDPs, and testing for a group-difference at baseline, two 

PCs passed FDR thresholding. Within the PC, one cannot do a separate null-hypothesis statistical test 

(as the PCA is data-derived, and this would be circular), but we can report the nIDPs with the 

strongest weights in the PCA eigenvector. We thus normalised each PCA weight vector by subtracting 

the median and then normalising by the median absolute value, and report below the nIDPs with 

absolute normalised weight value greater than 5 for those two PCs. 

 

PCA, 10 components, uncorrected P-values: 

0.0028    0.6780    0.4811    0.0039    0.1830    0.1133    0.0981    0.2781    0.1456    0.9315 

FDR threshold: 0.0039. 

 

nIDP PC weights (first column), along with UK Biobank variable codes and names. 

 

PC 1 

-5.02 20016-1.0 Fluid intelligence score (1.0) 

 7.59 20156-0.0 Duration to complete numeric path (trail #1) (0.0) 

 7.67 20157-0.0 Duration to complete alphanumeric path (trail #2) (0.0) 

-7.10 20159-0.0 Number of symbol digit matches made correctly (0.0) 

-7.31 20195-0.0 Number of symbol digit matches attempted (0.0) 
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PC 4 

5.42 4254-2.2 Time first key touched (2.2) 

5.93 4254-2.3 Time first key touched (2.3) 

5.48 4254-2.4 Time first key touched (2.4) 

5.35 4255-2.2 Time last key touched (2.2) 

5.91 4255-2.4 Time last key touched (2.4) 

5.91 4255-2.7 Time last key touched (2.7) 

6.32 4255-2.9 Time last key touched (2.9) 

5.55 4256-2.2 Time elapsed (2.2) 

6.10 4256-2.4 Time elapsed (2.4) 

5.01 4256-2.6 Time elapsed (2.6) 

6.80 4256-2.7 Time elapsed (2.7) 

6.28 4256-2.9 Time elapsed (2.9) 

5.45 4285-2.0 Time to complete test (2.0) 

5.19 4291-1.0 Number of attempts (1.0) 

5.78 20198-0.24 Test array presented (0.24) 

5.82 20200-0.9 Values wanted (0.9) 

5.69 20229-0.9 Values entered (0.9) 
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Supplementary Analysis 2. Cognitive tests sensitive to cognitive impairment in people at risk for 

dementia 

 

Summary 

 

We selected the top 10 cognitive variables that were the most sensitive to differences between 778 

out-of-sample UK Biobank participants at risk of developing dementia and 778 out-of-sample 

matched controls. 

 

Methods 

 

We first identified all dementia cases and their diagnosis dates based on the most recently updated 

UK Biobank hospital inpatient records, GP records, and self-reports. Of the dementia cases identified, 

we selected a subgroup of 778 subjects who undertook a comprehensive set of cognitive tests, most 

before they were diagnosed for dementia: both the cognitive function tests at their initial assessment 

centre visit (2006-2010) and the online assessment (2014-2015). The types of cognitive function tests 

taken by the subjects are shown in the table below: 

 

Initial assessment centre visit (2006-2010): 

Cognitive Function Test UKB Category ID 

Reaction time 100032 

Numeric memory 100029 

Fluid intelligence 100027 

Prospective memory 100031 

Pairs matching 100030 

 

Online (2014-2015): 

Cognitive Function Test UKB Category ID 

Numeric memory 120 

Fluid intelligence 118 

Trail making 121 

Symbol digit substitution 122 

Pairs matching 117 

 

At the time of initial assessment centre visit (2006-2010) (“Visit 0”), 15 (1.9%) out of the 778 subjects 

had been diagnosed with dementia. At the time of online cognitive tests, 83 (10.7%) out of the 778 

subjects had been diagnosed with dementia. All the remaining cases (89.3%) were diagnosed after 

their cognitive testing. The median time difference between dementia diagnosis and cognitive tests 

was 6.6 years, i.e., there was a span of more than 6 years and a half between the participants 

undergoing their cognitive testing and their future diagnosis. 

 

We then matched these participants with current or future dementia diagnoses with controls 

(Supplementary Table 6). 
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Supplementary Table 6. Main demographics of the dementia cases and controls. Non-parametric 

tests were used whenever a variable for each group was not normally distributed (Lilliefors P < 0.05). 

Two-sample Kolmogorov-Smirnov test was used for Age when the cognitive tests were taken, Years 

between diagnosis and cognitive test dates, Alcohol intake frequency, and Past tobacco smoking. Chi-

square test was used for Sex, Ethnicity, and Diagnosed diabetes. Mann-Whitney U-test was used for 

the Systolic and Diastolic blood pressures, Weight, Waist/Hip ratio, BMI, Education, and Townsend 

deprivation index. 

 

 Dementia Controls P 

Number of subjects 778 778 - 

Age at cognitive test, mean±SD (range) 64.0 ± 4.9 (42.2–70.3) 63.9 ± 4.9 (42.0–70.2) 1.00 

Age at online cognitive test, mean±SD (range) 69.8 ± 4.9 (48.5–77.5) 69.8 ± 4.9 (48.8–77.8) 1.00 

Sex, male/female 429 (55.1%) / 349 (44.9%) 429 (55.1%) / 349 (44.9%) 1.00 

Ethnicity, white/non-white* 775 (97.0%) / 23 (3.0%) 775 (97.0%) / 23 (3.0%) 1.00 

Systolic blood pressure [mmHg] 141.3 ± 18.4 141.2 ± 15.2 0.61 

Diastolic blood pressure [mmHg]** 81.0 ± 10.0 81.7 ± 8.2 0.08 

Diagnosed diabetes 69 (8.9%) 69 (8.9%) 1.00 

Weight [kg] 77.1 ± 15.1 77.2 ± 13.9 0.63 

Waist/Hip ratio 0.88 ± 0.09 0.88 ± 0.08 0.45 

BMI [kg/m2] 26.9 ± 4.5 26.7 ± 3.9 0.81 

Alcohol intake frequency** 3.2 ± 1.6 3.4 ± 1.5 0.06 

Tobacco smoking 0.88 ± 0.96 0.79 ± 0.94 0.19 

Education 2.9 ± 1.2 2.8 ± 1.2 0.74 

Townsend deprivation index -1.6 ± 2.9 -2.0 ± 2.4 0.12 

*The white/non-white distinction was made as numbers were unfortunately too low to allow for a finer distinction 

**The controls show a trend towards consuming more alcohol, and having slightly higher diastolic blood pressure (rather than the other way around) 

 

Results 

 

We found some significant differences across the 514 cognitive variables explored, and ranked them 

according to their uncorrected P values. When the same cognitive score for multiple visits was 

available, we selected the one with the lowest uncorrected P values. The top 10 cognitive variables 

are presented in Supplementary Table 7. 
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Supplementary Table 7. Most different cognitive variables between 778 participants at risk for 

dementia and 778 matched controls. 

 

Puncorr N Cognitive variable Main test 

1.10E-34 1509 Number of symbol digit matches made correctly (0.0) Symbol digit substitution (online) 

3.10E-25 1212 Duration to complete alphanumeric path (trail #2) (0.0) Trail making (online) 

1.12E-21 1544 Fluid intelligence score (0.0) Fluid intelligence (online) 

1.43E-08 1212 Duration to complete numeric path (trail #1) (0.0) Trail making (online) 

3.32E-05 1546 Time to complete round (0.1) Pairs matching 

8.71E-05 1546 Number of incorrect matches in round (0.1) Pairs matching 

0.000815 639 Total errors traversing alphanumeric path (trail #2) (0.0) Trail making (online) 

0.003801 1506 Number of correct matches in round (0.1) Pairs matching (online) 

0.004171 1547 Mean time to correctly identify matches (0.0) Reaction time 

0.007522 176 Maximum digits remembered correctly (0.0) Numeric memory 
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Supplementary Analysis 3. Does pneumonia show pre-post IDP changes? 

 

Summary 

 

Analogous to our main analysis contrasting SARS-CoV-2 cases and controls, we identified 11 UK 

Biobank participants who are recorded as having contracted pneumonia not related to COVID-19 

between their two imaging scans. Comparing these against 261 well-matched controls, we found 

some significant effects associated with pneumonia, but none of those overlapped with the main 

SARS-CoV-2 results. 

 

Methods 

 

We identified 11 UK Biobank participants who have a record of pneumonia not related to COVID-19 

occurring between their two imaging visits. Four of these participants were hospitalised due to 

pneumonia; the others were identified on the basis of GP records (n=5) and self-reported illness 

conditions (n=2). We identified a set of 261 matched controls (see Supplementary Table 8 below) 

who have had two imaging visits. We then carried out identical group-difference IDP-change analyses 

to those we carried out for the SARS-CoV-2 cases vs controls. 

 

Supplementary Table 8. Main demographics of the pneumonia patients and controls. Non-

parametric tests were used whenever a variable for each group was not normally distributed 

(Lilliefors P < 0.05). Two-sample Kolmogorov-Smirnov test was used for Age at Scan 1 or Scan 2, Years 

between Scans 1 and 2, Alcohol intake frequency, and Past tobacco smoking. Chi-square test was 

used for Sex, Ethnicity, and Diagnosed diabetes. Mann-Whitney U-test was used for the Systolic and 

Diastolic blood pressures, Weight, Waist/Hip ratio, BMI, and Townsend deprivation index. 

 

 Pneumonia patients Controls P 

Number of subjects 11 261 - 

Age at Scan 1, mean±SD (range) 68.6 ± 6.6 (57.2–79.1) 67.6 ± 5.1 (56.4–79.5) 0.78 

Age at Scan 2, mean±SD (range) 70.8 ± 6.7 (59.5–81.4) 69.9 ± 5.1 (58.6–81.6) 0.83 

Sex, male/female 6 (54.5%) / 5 (45.5%) 120 (46%) / 141 (54.0%) 0.58 

Ethnicity, white/non-white* 11 (100%) / 0 (0%) 261 (100%) / 0 (0%) 1.00 

Years between Scans 1 and 2, mean±SD (range) 2.3 ± 0.1 (2.1–2.5) 2.3 ± 0.1 (2.0–2.9) 0.25 

Systolic blood pressure [mmHg] 134.7 ± 11.9 134.9 ± 16.6 0.96 

Diastolic blood pressure [mmHg] 78.1 ± 8.5 76.9 ± 10.5 0.65 

Diagnosed diabetes 1 (9.1%) 12 (4.6%) 0.49 

Weight [kg] 73.3 ± 14.8 73.0 ± 13.9 0.82 

Waist/Hip ratio 0.74 ± 0.14 0.73 ± 0.11 0.82 

BMI [kg/m2] 26.0 ± 4.0 26.3 ± 4.2 0.85 

Alcohol intake frequency 3.2 ± 1.3 3.2 ± 1.4 1.00 

Tobacco smoking 0.82 ± 0.98 0.72 ± 0.94 1.00 

Townsend deprivation index -3.0 ± 1.6 -2.2 ± 2.6 0.54 

*The white/non-white distinction was made as numbers were unfortunately too low to allow for a finer distinction 
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Results 

 

With the full (“Exploratory”) sets of IDPs, some FDR-significant differences between pneumonia cases 

and controls were found in the longitudinal IDP change of: the total white matter volume, cerebellar 

volume of lobe V, white matter lesions, and fractional anisotropy changes in the corona radiata 

(Supplementary Table 9). These results do not overlap with the main longitudinal IDP differences 

found with SARS-CoV-2 (Tables 4 and 5). Asking a similar question, but more liberally (i.e., looking at 

weaker associations than those passing FDR), no IDPs have |Z|>3 for both pneumonia and SARS-CoV-

2. Correlation between all IDPs’ Z-statistics from pneumonia and SARS-CoV-2 is very low (r=0.057). 

 

No significant pneumonia associations were found when restricting the IDPs to the hypothesis-driven 
IDP set used in the main SARS-CoV-2 analyses (minimum Puncorrected = 0.005, no FDR significant 
associations). 
 
Supplementary Table 9. Significant longitudinal group comparison results between pneumonia 
cases and controls. Significant results, surviving false discovery rate (FDR) correction (FDR threshold 
was 0.00017), showing where the 11 pneumonia cases and 261 controls differed over time. We 
report % change between the two groups, standard error (SE) on these % changes, and uncorrected 
and family-wise error (FWE) corrected P values. Note: the Z-statistics reflect the statistical strength 
of the longitudinal group-difference modelling, and are not raw data effect sizes. L is left. 
 

 % SE z p_raw fdr p_corr fwe n IDP 

2.96 0.63 4.6 0.000004 * 0.0472 * 269 IDP_T1_SIENAX_white_unnormalised_volume 

2.89 0.62 4.5 0.000006 * 0.0639  269 IDP_T1_SIENAX_white_normalised_volume 

-1.34 0.32 -4.1 0.000037 * 0.2029  265 IDP_dMRI_TBSS_FA_Superior_corona_radiata_L 

-4.28 1.07 -3.9 0.000080 * 0.3041  272 IDP_T1_FAST_ROIs_L_cerebellum_V 

-1.42 0.36 -3.9 0.000100 * 0.3454  266 IDP_dMRI_TBSS_FA_Posterior_corona_radiata_R 

53.18 13.58 3.8 0.000121 * 0.3766  226 IDP_T2_FLAIR_BIANCA_deepWMH_volume 

-1.36 0.35 -3.8 0.000133 * 0.3965  265 IDP_dMRI_TBSS_FA_Anterior_corona_radiata_R 

-4.03 1.05 -3.8 0.000156 * 0.4255  272 IDP_T1_FAST_ROIs_R_cerebellum_V 
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Supplementary Analysis 4. Does influenza show pre-post IDP changes? 

 

As carried out for pneumonia, we also tested influenza in the UK Biobank. We identified 5 cases (3 

hospitalised) who had contracted influenza (either self-reported, or reported in hospital or primary 

care records) between their two scans and 127 matched controls (Supplementary Table 10), finding 

no significant effects, in the main two-group test. Correlation of Z-statistics between influenza and 

SARS-CoV-2 was low (r=0.077). There were no common results where any IDPs had Z>3 or Z<-3 for 

both conditions. For the hypothesis-driven set of IDPs, there were no FDR or FWE significant results. 

A few significant results in the 3 hospitalised cases vs controls were found, with one IDP (volume of the 

brainstem) overlapping with our main longitudinal results in SARS-CoV-2 (Supplementary Table 11). 

 

Supplementary Table 10. Main demographics of the influenza cases and controls. Non-parametric 

tests were used whenever a variable for each group was not normally distributed (Lilliefors P < 0.05). 

Chi-square test was used for Sex, Ethnicity, and Diagnosed diabetes. Mann-Whitney U-test was used 

for all other variables. 

 

 Influenza patients Controls P 

Number of subjects 5 127 - 

Age at Scan 1, mean±SD (range) 65.3 ± 8.7 (52.4–75.5) 65.6 ± 5.6 (52.1–75.5) 0.89 

Age at Scan 2, mean±SD (range) 67.4 ± 8.7 (54.6–77.5) 67.9 ± 5.6 (54.4–77.9) 0.81 

Sex, male/female 2 (40%) / 3 (60%) 39 (30.7%) / 88 (69.3%) 0.66 

Ethnicity, white/non-white* 5 (100%) / 0 (0%) 127 (100%) / 0 (0%) 1.00 

Years between Scans 1 and 2, mean±SD (range) 2.2 ± 0.1 (2.0–2.4) 2.2 ± 0.1 (2.0–2.7) 0.25 

Systolic blood pressure [mmHg] 138.4 ± 14.6 132.9 ± 16.1 0.35 

Diastolic blood pressure [mmHg] 82.0 ± 8.9 76.7 ± 10.9 0.29 

Diagnosed diabetes 0 (0%) 6 (4.7%) 0.62 

Weight [kg] 75.8 ± 15.6 71.7 ± 13.7 0.53 

Waist/Hip ratio 0.74 ± 0.13 0.70 ± 0.10 0.47 

BMI [kg/m2] 27.1 ± 4.9 26.6 ± 4.8 0.73 

Alcohol intake frequency 2.8 ± 2.3 2.9 ± 1.5 0.98 

Tobacco smoking 1.0 ± 1.4 0.60 ± 0.95 0.52 

Townsend deprivation index -3.3 ± 1.5 -1.8 ± 2.7 0.18 

*The white/non-white distinction was made as numbers were unfortunately too low to allow for a finer distinction 
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Supplementary Table 11. Significant longitudinal group comparison results between hospitalised 

influenza cases and controls. A few significant results, only surviving false discovery rate (FDR) 

correction (FDR threshold was 0.00014), were found between the 3 hospitalised influenza cases and 

127 controls. We report % change between the two groups, standard error (SE) on these % changes, 

and uncorrected and family-wise error (FWE) corrected P values. Note: the Z-statistics reflect the 

statistical strength of the longitudinal group-difference modelling, and are not raw data effect sizes. 

R is right. 

 

% SE z p_raw fdr p_corr n IDP 

3.44 0.81 4.1 0.000046 * 0.3975 124 aseg_global_volume_Brain-Stem 

-11.21 2.58 -4.2 0.000028 * 0.3231 126 aseg_lh_volume_Cerebellum-White-Matter 

4.48 1.09 4 0.000073 * 0.4767 125 aseg_lh_volume_Cerebellum-Cortex 

-4.66 1.13 -4 0.000063 * 0.4529 130 IDP_dMRI_TBSS_FA_Inferior_cerebellar_peduncle_R 

-3.06 0.75 -3.9 0.000081 * 0.498 130 
IDP_dMRI_TBSS_ICVF_Retrolenticular_part_of_
internal_capsule_R 

27.52 6.79 3.9 0.000089 * 0.5142 130 rfMRI amplitudes (ICA25 node 5) 
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Supplementary Analysis 5. The form of the case-control group-difference regressor 

 

The age-modulation factor (see main Methods) accounts for more pronounced effects in older 

people. We chose to focus on an “objective” age model given the strong prior knowledge of a highly 

increased detrimental effect, at older ages, of SARS-CoV-2 infection, and a greater vulnerability of 

the brain with age. We therefore used an already-published data-driven curve of age-effect in SARS-

CoV-2 infection2, with no free or subjectively-chosen parameters—hence having the same degrees-

of-freedom fitting power as a binary model. This dependence is 10age×0.0524-3.27, where the constant 

0.0524 has units years-1 and determines the exact strength of the age dependence, while the constant 

3.27 results in a fixed multiplicative factor which therefore has no effect on our modelling. 

 

We have recently identified a separate set of data for age-dependent mortality rates, from the UK 

Office of National Statistics. This gives an almost identical exponential age dependence: males: 

0.0451± 0.0008, females: 0.0475±0.0005, very close to the value of 0.0524 in the Levin study2. 

 

In another analysis, of hospitalisations (not mortality) due to COVID-19, the function of age has also 

been found to be exponential in form, with exponent dependence ~0.023. If we use this age 

modulation instead, extremely similar results are found for the hypothesis-driven Z-statistics; 

correlating the Z-statistics between the two modellings gives corr(Z)=0.96, with the strongest original 

results (|Z|>3.5) increasing in strength by an average of Z=0.16. 

 

We also tested—as a secondary analysis—the binary modelling between control and SARS-CoV-2 

groups, with all other factors held the same. These two (age-modulated and non-modulated) models 

do not give very different primary results (hypothesis-driven results presented in Table 1 and 

Supplementary Table 1). The findings are highly similar, if a little weaker, consistent with our 

expectation of increased effects at higher ages. For instance, from the 10 most significant results 

reported in Table 1, 10 associations had passed FDR correction, and 6 passed FWE correction. When 

switching to the binary (non-modulated) group modelling, 9 out of 10 continue to pass FDR correction 

and 4 out of 6 pass FWE correction. The correlation between the Z-statistics from all 297 hypothesis-

driven IDPs is high (r=0.88), and the mean change in |Z| across the 10 top associations was a 

reduction of just 0.33. Results obtained with the binary regressor in all four Models are shown in 

Supplementary Table 5.  

 

 

 

  

https://coronavirus.data.gov.uk/details/deaths?areaType=nation&areaName=England
https://coronavirus.data.gov.uk/details/deaths?areaType=nation&areaName=England
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Supplementary Analysis 6. Further model-fitting validity/robustness evaluations 

 

We created diagnostic plots from the 19 IDPs obtained by combining the top 10 IDPs from the 

hypothesis-driven set, and the top 10 IDPs from the exploratory set (one IDP belongs to both 

sets)(Supplementary Figure 6). These show scatterplots of residuals (y axis) against model-predicted 

values (x axis), with one plot per IDP. There is no obvious evidence of model misspecification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 6. Scatterplots showing the model-fit IDP residuals (y axis) against model-

predicted IDP values (x axis) for all top IDPs from both hypothesis-driven and exploratory 

approaches. 

 

 

 

 

 

 

 

 

 

 



58 
 

Similarly, we created QQ plots from the model residuals for each of these top IDPs (Supplementary 

Figure 7). These show the ordered residuals (y axis) plotted against the standard normal quantiles, 

and again show no evidence of worrying violations of normality assumptions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 7. QQ Plots of model-fit IDP residuals for all top IDPs from both hypothesis-

driven and exploratory approaches. 

 

Finally, we assessed sensitivity by evaluating model robustness, with respect to a set of additional 

higher-order potentially confounding effects. While the primary model considered as nuisance the 

main effects of age, sex, ethnicity and Townsend, there might be interactions among these variables 

that could alter the results. Therefore, we added an additional 15 confound variables corresponding 

to up-to 3-way interactions among age, age2, sex, townsend and ethnicity: 

age × sex, age2 × sex, age × ethnicity, age2 × ethnicity, age × townsend, age2 × townsend, 

sex × ethnicity, sex × townsend, ethnicity × townsend,   

age × sex × ethnicity, age × sex × townsend, age × townsend × ethnicity, 

age2 × sex × ethnicity, age2 × sex × townsend, age2 × townsend × ethnicity.  

 

We then reran the main case-vs-control model and compared Z-statistics, across the full 

(“exploratory”) set of IDPs. The results are almost unchanged; comparing this Z against the original 

values, the correlation is r=0.98, the mean absolute difference is 0.19, and the mean absolute 

difference for the top 10 IDPs from Table 4 is 0.15. 



59 
 

Supplementary Analysis 7. Do nIDPs explain the main (group-difference, longitudinal effect) 

results? 

 

Summary 

 

We took 6,301 nIDPs (non-imaging-derived phenotypes and demographic measures), measured 

before, or at the time of, Scan1. We added them as confound variables in our main modelling, and 

found that none of these new confounds reduced any of the top main results (Z-statistics) by more 

than 25%. Of more potential interest, we also took the top 100 PCA components from these 6,301 

nIDPs, and even when using all as 100 additional confounds in a single regression, found that none 

of the main results were reduced by more than 25%. 

 

Methods 

 

We considered all nIDPs that were measured at the time of, or before, Scan1. We excluded nIDPs 

having too little variability in their values, judged according to whether the largest group of subjects 

that had an identical value (to each other) was more than 97% of the total number of subjects with 

valid data. This resulted in 6,301 nIDPs, across all nIDP categories. We then considered, one at a time, 

each of the  top-10 IDPs from the hypothesis-driven analyses, and the top-10 from the exploratory 

analyses (Tables 4 and 5), and for each, evaluated whether this set of 6,301 “baseline” nIDPs might 

reduce the strength of the main results when added as additional confounds into the longitudinal 

group-difference modelling. 

 

Hence, for each imaging-derived phenotype (IDP), we initially evaluated nIDPs one at a time, 

considering nIDPs with <50% joint-missing-data (that is, subjects with data missing in nIDP or IDP). 

For each nIDP, we then estimated the (regression-based) association Z-statistic (“Z”) for association 

of delta-IDP with the age-modulated group-difference regressor, as done for the main longitudinal 

analyses, but with the nIDP as an additional confound. To take into account the effect of missing data, 

we also estimated the association (“Z0”), without using the additional confound, but applying the 

same pattern of missing data. We then tested for Z/Z0<0.75 (first inverting the sign of both if Z0 was 

negative). This is therefore a reasonably aggressive test that only allows for 25% reduction in Z. If Z 

is reduced by more than this, we report the result as the nIDP potentially “explaining” the main result. 

 

In addition, as a more powerful (aggressive) test, instead of applying nIDPs as confounds one at a 

time, we first estimated the top 100 components from a PCA (principal components analysis) across 

the 6,301 nIDPs, and then applied this entire matrix of potential confounds as a 100-variable 

confound matrix in the main longitudinal modelling for each of the IDPs. This therefore can 

potentially remove a lot more variance from the IDPs than when considering individual nIDPs, one at 

a time, as carried out above. Because of missing data in the nIDPs, we first removed nIDPs with more 

than ⅞ subjects missing, leaving 4,449, applied the same deconfounding as carried out in our main 

IDP modelling, normalised each nIDP, and then estimated the top 100 principal components using a 
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soft imputation approach that iterates between imputing missing data using PCA bases, and re-

estimating the PCA; this is implemented in FSLNets, and is similar to the approached described in1. 

Each IDP was then tested using the 100 additional confounds simultaneously, again testing for 

whether Z/Z0<0.75. We also tested each of the 100 PCA components on its own to see if Z was 

reduced for any IDPs by more than 25%. 

 

Finally, we took the set of 516 nIDPs derived from cognitive testing carried out at the time of, or 

before, Scan1, and reduced these to the top 10 PCA components (in order to focus this variable-

clustering to find latent variables from just this one, important, class of nIDPs, the cognitive scores). 

We then used these to test for any reductions >25% in Z for each IDP. 

 

Results 

 

None of these tests (all combinations of IDPs, nIDPs and PCA components derived from nIDPs) 

showed any cases of Z being reduced by more than 25%. Additionally, when using the binary (instead 

of age-modulated) group-difference regressor, again no reductions >25%were found. These 

evaluations are more directly relevant than separately asking whether baseline nIDPs correlated with 

IDPs, or are different between the groups; here we are in effect asking about both factors combined, 

which is the most direct test of whether baseline measures might account for (i.e., explain away) the 

main results.  

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
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