
1 

 

Supplementary Information for 

Data-driven capacity estimation of commercial lithium-ion batteries from 

voltage relaxation 

Jiangong Zhu 1, 2, #, Yixiu Wang 3, #, Yuan Huang 1, 2, R. Bhushan Gopaluni 3, Yankai 

Cao 3, Michael Heere 2, 4, Martin J. Mühlbauer 2, Liuda Mereacre 2 , Haifeng Dai 1 *, 

Xinhua Liu 5, Anatoliy Senyshyn 6, Xuezhe Wei 1, Michael Knapp 2 *, Helmut 

Ehrenberg 2 
1 Clean Energy Automotive Engineering Center, School of Automotive Engineering, 

Tongji University, 201804 Shanghai, China 
2 Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), 76344 

Eggenstein-Leopoldshafen, Germany 
3 Department of Chemical and Biological Engineering, University of British Columbia, 

BC V6T 1Z3, Canada 
4 Technische Universität Braunschweig, Institute of Internal Combustion Engines, 

Hermann-Blenk-Straße 42, 38108 Braunschweig, Germany 
5 School of Transportation Science and Engineering, 100083, Beihang University, 

Beijing, China 
6 Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, 

Lichtenbergstr. 1, 85748 Garching b. München, Germany 
#
 These authors contribute equally;  

* Corresponding authors. Haifeng Dai (tongjidai@tongji.edu.cn), Michael Knapp 

(michael.knapp@kit.edu). 

 

Supplementary Note 1: Analysis of real-time electric vehicle (EV) charging  

A list of some EV charging strategies is summarized in Supplementary Table 2. 

The multistage current charge dividing the entire charging period into several charging 

stages is mainly applied in the EVs. As most of these charging data are held by some 

large private EV charging operators and EV manufacturers, it is hard to access from the 

public 1. Thus, in-house real-time EV battery charging data from the China Automobile 

Academy of Engineering Co., Ltd. are collected and analyzed. Ten real-world EVs are 

randomly selected as shown in Supplementary Table 3. Six vehicles load the 

Li(TM)O2/C (TM = transition metal, Li(TM)O2 is the positive electrode) batteries, and 

the other four vehicles use LiFePO4/C (LiFePO4 is the positive electrode) batteries. 

Nine vehicles (1 ~ 9) use the multistage current charge method. Only Vehicle 10 is in 

constant current charge mode. The summary of the charging information is given in 

Supplementary Figure 1 and Figure 2. Three representative charging curves from 

vehicle 1, vehicle 9, and vehicle 10 are shown in Supplementary Figure 1 to illustrate 

the difference in charging protocols. We have counted the charging data of vehicle 1 

and vehicle 10. The depth of charge during the vehicle operation is compared in 

Supplementary Figure 2. By ranking the charging start and end positions in ascending 

order, we find that the charging start position has no obvious distribution characteristics 

showing certain randomness, but the probability of being fully charged is high from the 

comparison of Supplementary Figure 2b (2e) and Supplementary Figure 2c (2f). 
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Supplementary Note 2: Discussion of data splitting methods on the base model 

Four splitting strategies (A, B, C, and D) are compared, and the results are 

exhibited as follows. The training dataset and test dataset are in a 4:1 ratio, and 5-fold 

cross-validation is used to determine the hyperparameters of the model in the training 

process. 

A. Temperature dependence splitting: The train and test results using the temperature-

based data splitting method is shown in Supplementary Table 6, only the training on 

cells cycled at 25 oC and 45 oC, test on cells cycled 35 oC show a better estimation result.  

B. Splitting on the time-series data: We use the former 80% data to train the model and 

use the later 20% data for the model test. The test accuracy is above 2.3% RMSE, 

indicating that it is difficult to estimate the model if the capacity decay is missing during 

the training process. The method cannot predict the battery future because battery 

degradation shows a nonlinear trend. 

C. Random splitting method: All data are put together for random sampling without 

distinguishing the working conditions. Considering the variation of the data units under 

different cycling conditions, the weighted average method achieves similar estimation 

accuracy, presenting the effectiveness of the random data splitting method without data 

balance. 

D. Cell stratified sampling on the working conditions: A stratified sampling method is used 

to select the cells in each working condition, meaning that the data from the same cell 

is either in the training set or in the test set. The cell splitting is approx. 4:1 for training 

and testing as presented in Supplementary Table 9. The result is quite good reaching 

1.1% for the XGBoost and SVR methods. 

By comparing the above data splitting methods, we find that the random splitting 

and the cell stratified sampling methods show similar and good test RMSEs. The 

temperature dependence splitting method is the worst. One possible reason is the 

unreasonable splitting of data amount between train and test data, for example, the ratio 

of data amount is 2:5 around (25 oC and 35 oC for training and 45 oC for testing). Another 

reason is that the machine learning algorithm is highly affected by working conditions, 

i.e., the model does not have the ability of “zero-shot learning” in the absence of the 

working condition in the training process. The time-series-based splitting method is 

also not ideal, meaning that a full range degradation dataset is necessary to train the 

model. This is due to the nonlinear attenuation of the battery and the strong influence 

of the working condition on battery degradation factors. 

Supplementary Note 3: Description of benchmarking methods in Table 2 

(1) Rest voltage based – Linear model: 

The presented method in Ref. 2 is to study the change of Urelax with battery 

degradation. Urelax is defined as the open-circuit voltage of the battery after 30 min of 



3 

 

rest after full charging. The relationship between Urelax and capacity in dataset 1 is 

shown in Supplementary Figure 4. A linear model is trained based on a randomly 

selected 80% of the target dataset, and the remaining 20% of the data are used to test 

the model performance. The result shows that the proposed linear model achieves a 

RMSE of 2.5%. 

(2) CC charge voltage based – RFR: 

The presented method is based on the dependency of the battery capacity on the features 

extracted from the partial CC charge curve. The selected voltage range from 3.6 V to 

3.8 V is selected according to Ref. 3, which is also corresponding to the middle SOC 

range in our work. For each charge curve from 3.6 V to 3.8 V in dataset 1, an interval 

of 2 mV is used to discretize it into 101 data points (V0, V1, …, Vk …, V100). The features 

extracted as input are the relative capacity values Qk (k = 0, 1, …, 100) at each voltage 

point, where Qk is calculated based on coulomb counting by integrating the current with 

the time that the battery charged from V0 to Vk. The initial capacity Q0 is defined as 0. 

An example of feature extraction for one voltage curve is shown in Supplementary 

Figure 5. A random forest regressor is trained to map the sequence of the relative 

capacity values Qk and battery capacity based on the randomly selected 80% dataset. 

For the hyperparameters of the random forest regression, the number of trees is chosen 

as 6 to be consistent with XGBoost and the number of random features for each split is 

chosen to be one-third of the number of variables. The prediction result on the 

remaining 20% dataset shows that the proposed method achieves a RMSE of 1.0%. 

(3) ICA transformation – Linear model: 

The method in Ref. 4 is to estimate the battery capacity based on remaining charge 

electricity (RCE), which is obtained by incremental capacity analysis (ICA) on battery 

charging voltage. A threshold is set according to the ICA value. Specifically, An ICA 

curve of one cell in dataset 1 is illustrated in Supplementary Figure 6a, in which the 

dashed line (dQ/dV = 2.5 mAh/mV) is defined as the threshold. The partial charged 

capacity from the threshold till to the end of the charge is counted as RCE. The 

relationship between RCE and battery capacity for all cells in dataset 1 is shown in 

Supplementary Figure 6b. A linear model is trained on the randomly selected 80% data 

samples, and the prediction performance on the remaining 20% samples shows that the 

proposed model achieves a RMSE of 1.3%. 

(4) CC-CV charge voltage based – GPR: 

The presented method in Ref. 5 estimates battery capacity using four specific features 

(F1, F2, F3, and F4) extracted from the CC-CV charge curve as shown in 

Supplementary Figure 7. F1 is the time of CC model duration, F2 is the time of CV 

mode duration, F3 is the slope of the curve at the end of CC charge mode and F4 is the 

vertical slope at the corner of the cc charge curve. A Gaussian process regression model 

with radial basis function (RBF) kernel and white noise kernel is trained based on the 

80% dataset in dataset 1 and the remaining 20% dataset is used for model testing. The 

result shows that the proposed model achieves a RMSE of 1.1%. 

 

Supplementary Note 4: Discussion of data selection strategies for the transfer 

learning retraining 



4 

 

For the transfer learning on dataset 2 and dataset 3, several data selection strategies 

(A, B, C, and D) on the TL2 are used and the results are compared in Supplementary 

Table 13.  

A. Data selection according to the time-series data: 1% data are used in A1, and 10% data 

are used in A2. The RMSEs for the TL2 are quite large, illustrating the 

inappropriateness of the time-series-based splitting method in our study. 

B. 1% random data: 1% of the target dataset from dataset 2 and dataset 3 are randomly set 

as the input variable to train the transfer learning model. 1.3% and 1.6% RMSE are 

obtained by SVR on dataset 2 and dataset 3 respectively. 

C. Random cells from each working condition: A cell is randomly selected from each 

cycling condition, meaning that the data of three random cells corresponding to 

temperatures from dataset 2 and the data of three random cells corresponding to 

discharge rates from dataset 3 are used. A 1.4% RSME is achieved on dataset 2, and 

1.6% RMSE is obtained on dataset 3. It is noted that the amount of input variable is 

approximately 7% for dataset 2 and 33% for dataset 3. Thus, a reduction of data volume 

is performed in Strategy D for a fairer comparison. 

D. Reduction of data volume from the randomly selected cells. The data volume for the 

TL model re-training is reduced according to the battery cycle numbers. Data units are 

chosen from a randomly selected cell (as presented in Strategy C) with an interval of 

100 cycles as the input variables. The sizes of the selected data units are summarized 

in Supplementary Table 14. It can be seen that the TL2 shows 1.7% RMSE on dataset 

2, and 1.6% RMSE on dataset 3, respectively, proving the effectiveness of the transfer 

learning. 

In a summary, we find that the model using strategies B, C, and D achieves good 

estimation accuracy. We speculate that these data selection methods contain the effect 

of working conditions, meaning that the diversity of working conditions is important to 

improve the model generalization as more input of the working conditions projects to 

more battery degradation pathways. The discussion of data splitting methods on the 

base model and transfer learning model proves that the generalization of the model is 

highly related to the working conditions of the battery. 

Supplementary Note 5: Introduction of machine learning methods 

ElasticNet method  

The ElasticNet algorithm is proposed by Zou et al. 6, which is a regularized 

regression method that linearly combines the L1 and L2 penalties of the lasso and ridge 

methods. ElasticNet is an extension of ordinary least square (OLS) regression. In OLS 

regression, given d features, xi1, …, xid, the response yi is predicted by: 
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ŷi=β0+ ∑ βjxij

d

j=1

(1) 

A model fitting procedure produces the parameter vector β̂=(β̂
0
, …, β̂

d
). 

For the data set having n observations with p features, let y=(y
1
, …, y

n
)
T
, X = 

[

x11 … x1d

… xij …

xn1 … xnd

]. 

The ElasticNet loss function is defined as： 

L(λ1, λ2, β)=‖y − Xβ‖2
2+λ2‖β‖2

2+λ1‖β‖1 (2) 

If we set α=λ2/(λ1+λ2), the optimized parameters vector is obtained by: 

β̂=argminβL(α,β)=‖y − Xβ‖2
2+α‖β‖2

2+(1 − α)‖β‖1 (3) 

where 𝛼‖𝛽‖2
2 + (1 − 𝛼)‖𝛽‖1  is called the ElasticNet penalty, which is a convex 

combination of the lasso and ridge penalty. 

XGBoost method  

The XGBoost method 7 is a scalable end-to-end tree boosting system designed to 

be highly efficient, flexible, and portable. It implements machine learning algorithms 

in the Gradient Boosting framework. Compared with multiple linear regression, 

XGBoost has the advantage of being able to handle nonlinear relationships. The tree 

f(x) is defined as: 

f
t
(x)=ωq(x),(q: Rd→{1,2,…,T}, ω∈RT) (4) 

where t represents a tree, q represents the structure of each tree that maps an example 

to the corresponding leaf index. T is the number of leaves in the tree. Each ft corresponds 

to an independent tree structure q and leaf weights ω (output of a tree). 

The objective function is defined as: 

obj
(t)

= ∑ l(y
i
,ŷ

i

(t))

n

i=1

+ ∑ Ω(f
i
)

t

i=1

(5) 

where 𝑙 is a differentiable convex loss function that measures the difference between 

the prediction ŷ and the target yi. The second term Ω penalizes the complexity of the 

model, which helps to smooth the final learned weights to avoid over-fitting.  

Ω(f)=γT+
1

2
λ ∑ ωj

2

T

j=1

(6) 

where ωj is the weight of the jth leaf node. γ and λ are the coefficients for penalty term 

Ω. 

Using the second-order Taylor’s formula, the objective function can be given as: 
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obj
(t)

= ∑ l (y
i
,ŷ

i

(t−1)
+f

t
(xi))

n

i=1

+Ω(f
t
)+constant

≈ ∑ (l(y
i
,ŷ

i

(t−1)
)+g

i
f
t
(xi)+

1

2
hift

2(xi))

n

i=1

+Ω(f
t
)+constant

(7) 

where xi is the input of the sample, g
i
=∂

ŷ
(t−1)l(y

i
, ŷ

(t−1)
) and hi=∂

ŷ
(t−1)

2
l(y

i
, ŷ

(t−1)
) 

After removing the constant, the objective function at step t becomes 

obj
(t)

≈ ∑ (g
i
ωq(xi)+

1

2
hiωq(xi)

2 ) +γT+
1

2
λ ∑ ωj

2

T

j=1

n

i=1

= ∑ (Gjωj+
1

2
(Hj+λ)ωj

2) +γT

T

j=1

(8) 

where Gj= ∑ g
ii∈Ij
, Hj= ∑ hii∈Ij

, Ij={i|q(xi=j)} is instance set of leaf j. 

The optimal weight ωj
* of leaf j for a fixed structure q(x) can be computed by: 

ωj
*= −

Gj

Hj + λ
(9) 

The optimal loss is: 

obj
*
= −

1

2
∑  

T

j=1

(Gj)
2

Hj + λ
 + γT (10) 

obj
*
 is a function of marking tree structure and measuring the quality of tree structure 

q. The smaller the value of obj
*
, the better. 

SVR method 

SVR approach 8 is a kernel-based method that does not regress on the original input 

vector, but on its nonlinear expansion, which is mapped from a kernel function to a very 

high-dimensional feature space. Given a training set of data {(x1, y1),…, (xn, yn)}, where 

xi ⊂Rd  donates the input space of the sample, yi⊂R  is the target value. i=1, …, n, 
corresponds to the size of the training data. 

The generic SVR estimating function takes the form 

ŷ
i
=(ω∙Φ(xi)) + b (11) 

where ω⊂Rd, b⊂R,  and Φ(x)  is a nonlinear transformation from Rd  to a high-

dimensional space. The ω has the following expansion: 

ω= ∑(αi − αi
*)Φ(xi)

n

i=1

(12) 
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where αi and αi
* are the Lagrange multiplier. With the expression of the kernel function 

k(xi,x)=Φ(xi)∙Φ(x), the SVR estimating function can be expressed as: 

ŷ
i
= ∑(αi − αi

*)

n

i=1

k(xi,x) + b (13) 

The goal of SVR is to find the value of ω and b that minimizing the total loss 

min {
1

2
‖ω‖2

2 + C ∑ lϵ(ŷ
i

− y
i
)

l

i=1

} (14) 

where C is a constant, and vector lϵ is the loss function, the ϵ-insensitive loss function 

is used in this research: 

𝑙𝜖(𝑦̂𝑖 − 𝑦𝑖) = {
|𝑦̂𝑖 − 𝑦𝑖| − 𝜖, |𝑦̂𝑖 − 𝑦𝑖| ≥ 𝜖

0, |𝑦̂𝑖 − 𝑦𝑖| < 𝜖
(15) 

 

 

 
Supplementary Figure 1 Randomly selected battery charging data. Voltage profile (a) 

and current profile (d) from vehicle 1 with Li(TM)O2/C (TM = transition metal, 

Li(TM)O2 is the positive electrode) battery, Voltage profile (b) and current profile (e) 

from vehicle 9 with LiFePO4/C (LiFePO4 is the positive electrode) battery, Voltage 

profile (c) and current profile (f) from vehicles 10 (Li(TM)O2/C). 
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Supplementary Figure 2 The state of charge (SoC) according to the time sequence of 

vehicle 1 (a) and vehicle 10 (d). Start of charge point in ascending order of vehicle 1 

(b) and vehicle 10 (e). End of charge point in ascending order of vehicle 1 (c) and 

vehicle 10 (f). 

 

 

Supplementary Figure 3 The train and test root-mean-square error (RMSE) under 

different relaxation durations by the XGBoost method. The relaxation duration is 

divided into nine ranges, and it presents the RMSE decreases as the relaxation time 

increases, indicating that longer relaxation time improves the model accuracy. The 
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possible explanation is that the longer the relaxation time is, the relaxation voltage is 

close to the battery OCV (Open Circuit Voltage), which has been proved to be an 

important parameter to probe battery capacity. 

 

 

Supplementary Figure 4 Results of the Rest voltage based - Linear model. Features 

extraction (a) and test results of estimated capacity versus real capacity (b) 

 

 
Supplementary Figure 5 Results of the CC charge voltage based – RFR. Features 

extraction (a) and test results of estimated capacity versus real capacity (b) 
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Supplementary Figure 6 Results of the ICA transformation – Linear model. Features 

extraction (a), RCE versus capacity (b), and test results of estimated capacity versus 

real capacity (c) 

 

 

Supplementary Figure 7 Results of the CC-CV charge voltage-based method – GPR. 

Features extraction (a) and test results of estimated capacity versus real capacity (b) 
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Supplementary Figure 8 A schematic plot of impedance spectra during cycling (a) and 

the corresponding equivalent circuit model (ECM) (b). The impedance spectra in a are 

all tested results using a “line +scatter” plots for visualization. R0 is the real part of the 

impedance at zero crossing. R1//CPE1 in parallel denotes the migration of lithium ions 

through the solid electrolyte interphase in the high frequency range. The semi-circle in 

the medium frequency range is accounted for the charge transfer process, and modeled 

as R2 in parallel with CPE2 (R2//CPE2). The low frequency slope is associated with 

Warburg impedance (W). The fitting coefficient of determination (R2) between the raw 

and fitted impedance data is summarized in Supplementary Table 12. All the raw 

impedance data and fitted data are shared in the data availability 

(https://doi.org/10.5281/zenodo.6379165). 

 

 

Supplementary Figure 9 Illustration of the implemented transfer learning process. 

TL1 (a) and TL2 (b). Variance (Var), skewness (Ske), and maxima (Max) are the input 

features. SVR means Support Vectors Regression. 

 

https://doi.org/10.5281/zenodo.6379165
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Supplementary Figure 10 Test results of estimated capacity versus real capacity by 

transfer learning. Results of ZSL embedding XGBoost method (a) and embedding SVR 

method (b) on dataset 2. Results of ZSL embedding XGBoost method (c) and 

embedding SVR method (d) on dataset 3.  
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Supplementary Figure 11 Test results of estimated capacity versus real capacity by 

transfer learning. Results of No TL embedding XGBoost method (a) and embedding 

SVR method (b) on dataset 2. Results of No TL embedding XGBoost method (c) and 

embedding SVR method (d) on dataset 3. The poor performance of SVR on No TL is 

limited using the “radial based function” kernel in the SVR model. The performance of 

using a “linear” kernel instead of the “radial based function” kernel in the SVR model 

is better as shown in Supplementary Table 15, achieving a better estimation accuracy. 
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Supplementary Figure 12 Test results of estimated capacity versus real capacity by 

transfer learning. Results of TL1 embedding XGBoost method (a) and embedding SVR 

method (b) on dataset 2. Results of TL1 embedding XGBoost method (c) and 

embedding SVR method (d) on dataset 3. 

 

 

Supplementary Figure 13 The schematic connection of the potentiostat, chamber, and 

cells. For the NCA and NCM batteries, the metal taps are spot-welded to the cells, and 

the contact is soldered to the metal taps. A four-wire holder is used for the NCM+NCA 

battery. 

 

Supplementary Table 1 A summary of the typical capacity estimation methods. It is 

noted that the table only lists the estimation accuracy of these methods on their specific 
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data (as marked as the “battery dataset” column). Because the performance of the 

machine learning model is dependent on the quality and quantity of input data, they 

cannot be compared directly unless using the same data. 

Features from Applied methods Battery dataset Estimation precision in 

each study 

(I) CC 

(Constant 

Current) 

charge 

voltage-based 

PSO (particle swarm 

Optimization) 9 

Designed experiments at 

various temperatures, current 

rates, and SoC ranges on nine 

NCM+LMO/C cells, two NCM 

/C cells, and one LMO/C cell 

Root-

mean-

square 

error 

(RMSE) 

1.91% 

LSTM (long short-term 

memory network) +TL 

(transfer learning) 10 

Laboratory NCM batteries 

cycled at room temperature 

CALCE data* 

LFP data* 

RMSE 0.59% 

GPR (Gaussian process 

regression) 11 

NASA data* 

Oxford data* 

RMSE 2%-3% 

LSTM-RNN (Recurrent 

neural network) 12 

In-house experiments on 48 

NCM batteries using one 

specific cycling profile 

Mean 

absolute 

percenta

ge error 

(MAPE) 

0.76% 

RFR (random forest 

regression) 3 

17 NCM batteries are cycled at 

different DoD and temperatures 

RMSE 0.48%-1.3% 

dNNe (deep neural network 

ensemble) 13 

Oxford data* RMSE 0.39% 

dNNe13 LFP data* RMSE 0.45% 

 ICA 

(Incremental 

Capacity 

Analysis) 

transformation 

14 

SVR 

(support 

vectors 

regression

) 15 

Two type NCM batteries (two 

NCM cells and three LiFePO4 

cells) are cycled at 24 oC using 

3C and 4C discharge rates 

respectively 

RMSE <1.80% 

GPPF 

(Gaussian 

Process 

Particle 

Filter) 16 

CALCE data* RMSE 0.82%-

1.24%  

GPR17 RMSE 1.64%-

4.73%  

Linear 

model4 

NASA data* RMSE 0.56%-

1.25%  

BPNN 

(back-

Eight battery modules (13 cells 

in parallel in one module) in 

RMSE 0.535% 
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propagatio

n neural 

network) 

18 

series are cycled by 1C 

charge/discharge at 25±1oC 

Power law 

and linear 

fitting 19 

Calendar aging of six 

LMO+NCM batteries at various 

SoC and temperatures 

RMSE 2.99% 

(II) CC-CV 

(Constant 

Current 

Constant 

Voltage) 

charge 

voltage-based 

GPR 5 NASA data* RMSE 0.78%-

3.45%  

RVM (Relevance 

Vector Machine) 20 

NASA data* RMSE 1.37%-

4.22%  

DNNe 13 NASA data* RMSE 4.26% 

(III) Rest 

voltage-based  

Linear model 2 LMO+NMC/C, NCM, and LFP 

batteries are tested at different 

temperatures with calendar and 

cycling aging mode 

percenta

ge error  

0.7%-3.3% 

(for 

LMO+NMC

/C battery)  

Other: Current 

in CV charge  

Exponential law model 21 NCA cells are stored under 

different temperatures and So 

(three cells in each condition)  

R2 0.9931 

The data marked by the asterisk (*) are the publicly available datasets.  

CALCE data*: https://web.calce.umd.edu/batteries/data.htm;  

LFP data*: https://data.matr.io/1/projects/5c48dd2bc625d700019f3204;  

NASA data*: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/; 

Oxford data*: https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac; 

 

Supplementary Table 2 A list of some EV charging strategies  

EV type/ 

company 

name 

Charging information Charging type/ Power 

rate 

Reference or link  

*SAE 

J1772 

4h to 14h (e.g. home 

charging) 

Slow: <3.7 kW 22,23 

Chevrolet 

Bolt EV 

11.5 kW level 2 

charging capability 

and standard DC fast 

charging capability 

Semi-fast: 11.5 kW https://www.chevrolet.com/ele

ctric/bolt-ev 

BEIJING 

EU7 

30%-80% SoC, 25 

degree, fast charge in 

30 minutes 

Fast: 50-150 kW https://eu7.beijingauto.com.cn/ 

 

Tesla 

Model S 

Supercharge up to 200 

miles in 15 minutes 

   

Fast: 50-150 kW  https://www.tesla.com/models 

https://data.matr.io/1/projects/5c48dd2bc625d700019f3204
https://eu7.beijingauto.com.cn/
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Porsche 

Taycan 

DC 50 kW, 5%-80% 

SoC in 93 minutes 

Fast: 50-150 kW  https://cc.porsche.cn/icc/ccCal

l.do?rt=1641797730&screen=

1280x720&userID=DE&lang=

de&PARAM=parameter_inter

net_de&ORDERTYPE=Y1A

AA1&CNR=C00&MODELY

EAR=2022&hookURL=https

%3a%2f%2fwww.porsche.co

m%2fgermany%2fmodelstart

%2fall%2f  

BMW i4 DC fast-charging 

capacity of ‘up to 205 

kW 

Fast: up to 205 kW https://electrek.co/2021/11/29/

bmw-starts-i4-electric-car-

deliveries-customers/ 

BMW iX 

xDrive50 

(expected 

to arrive in 

2022) 

Recoup up to 90 miles 

of range in 10 minutes 

of DC fast charging 

Fast: 50-150 kW 

probably 

https://electrek.co/2022/01/10/

22-of-the-most-anticipated-

electric-vehicles-coming-in-

2022/#h-bmw-ix-xdrive50 

Lotus 

‘Type 132’ 

SUV 

(expected 

to arrive in 

Spring of 

2022) 

Can charge to 80% 

charge in around 20 

minutes on an 800V 

charger 

Fast: 50-150 kW 

probably 

https://electrek.co/2022/01/10/

22-of-the-most-anticipated-

electric-vehicles-coming-in-

2022/#h-lotus-type-132-suv 

XPeng G9 

(aimed to 

start 

production 

in China in 

Q3 of 

2022 ) 

Can charge up to 200 

km of range in 5 

minutes 

Fast: 50-150 kW 

probably 

https://electrek.co/guides/gm/#

h-xpeng-g9 

Toyota 

bZ4X 

Can charge to 80% 

SOC in about 30 

minutes with 150 kW 

DC fast-charging 

capacity 

Fast: 50-150 kW 

probably 

https://electrek.co/2021/10/29/

toyota-unveils-first-all-

electric-car-bz4x-an-electric-

suv-packed-cool-features/ 

BYD Tang 

EV 

30%-80% SoC, fast 

charge in 0.5 hours 

 

Fast: 50-150 kW https://www.bydauto.com.cn/a

uto/carShow.html-

param=2021%E6%AC%BE%

E5%94%90EV 

Porsche Extreme fast charging Extreme fast: >350kW 24 

*SAE J1772: SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler, 

https://cc.porsche.cn/icc/ccCall.do?rt=1641797730&screen=1280x720&userID=DE&lang=de&PARAM=parameter_internet_de&ORDERTYPE=Y1AAA1&CNR=C00&MODELYEAR=2022&hookURL=https%3a%2f%2fwww.porsche.com%2fgermany%2fmodelstart%2fall%2f
https://cc.porsche.cn/icc/ccCall.do?rt=1641797730&screen=1280x720&userID=DE&lang=de&PARAM=parameter_internet_de&ORDERTYPE=Y1AAA1&CNR=C00&MODELYEAR=2022&hookURL=https%3a%2f%2fwww.porsche.com%2fgermany%2fmodelstart%2fall%2f
https://cc.porsche.cn/icc/ccCall.do?rt=1641797730&screen=1280x720&userID=DE&lang=de&PARAM=parameter_internet_de&ORDERTYPE=Y1AAA1&CNR=C00&MODELYEAR=2022&hookURL=https%3a%2f%2fwww.porsche.com%2fgermany%2fmodelstart%2fall%2f
https://cc.porsche.cn/icc/ccCall.do?rt=1641797730&screen=1280x720&userID=DE&lang=de&PARAM=parameter_internet_de&ORDERTYPE=Y1AAA1&CNR=C00&MODELYEAR=2022&hookURL=https%3a%2f%2fwww.porsche.com%2fgermany%2fmodelstart%2fall%2f
https://cc.porsche.cn/icc/ccCall.do?rt=1641797730&screen=1280x720&userID=DE&lang=de&PARAM=parameter_internet_de&ORDERTYPE=Y1AAA1&CNR=C00&MODELYEAR=2022&hookURL=https%3a%2f%2fwww.porsche.com%2fgermany%2fmodelstart%2fall%2f
https://cc.porsche.cn/icc/ccCall.do?rt=1641797730&screen=1280x720&userID=DE&lang=de&PARAM=parameter_internet_de&ORDERTYPE=Y1AAA1&CNR=C00&MODELYEAR=2022&hookURL=https%3a%2f%2fwww.porsche.com%2fgermany%2fmodelstart%2fall%2f
https://cc.porsche.cn/icc/ccCall.do?rt=1641797730&screen=1280x720&userID=DE&lang=de&PARAM=parameter_internet_de&ORDERTYPE=Y1AAA1&CNR=C00&MODELYEAR=2022&hookURL=https%3a%2f%2fwww.porsche.com%2fgermany%2fmodelstart%2fall%2f
https://cc.porsche.cn/icc/ccCall.do?rt=1641797730&screen=1280x720&userID=DE&lang=de&PARAM=parameter_internet_de&ORDERTYPE=Y1AAA1&CNR=C00&MODELYEAR=2022&hookURL=https%3a%2f%2fwww.porsche.com%2fgermany%2fmodelstart%2fall%2f
https://cc.porsche.cn/icc/ccCall.do?rt=1641797730&screen=1280x720&userID=DE&lang=de&PARAM=parameter_internet_de&ORDERTYPE=Y1AAA1&CNR=C00&MODELYEAR=2022&hookURL=https%3a%2f%2fwww.porsche.com%2fgermany%2fmodelstart%2fall%2f
https://cc.porsche.cn/icc/ccCall.do?rt=1641797730&screen=1280x720&userID=DE&lang=de&PARAM=parameter_internet_de&ORDERTYPE=Y1AAA1&CNR=C00&MODELYEAR=2022&hookURL=https%3a%2f%2fwww.porsche.com%2fgermany%2fmodelstart%2fall%2f
https://www.bydauto.com.cn/auto/carShow.html-param=2021%E6%AC%BE%E5%94%90EV
https://www.bydauto.com.cn/auto/carShow.html-param=2021%E6%AC%BE%E5%94%90EV
https://www.bydauto.com.cn/auto/carShow.html-param=2021%E6%AC%BE%E5%94%90EV
https://www.bydauto.com.cn/auto/carShow.html-param=2021%E6%AC%BE%E5%94%90EV
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Standard SAE J1772, Oct. 2017, p. 1. 

 

Supplementary Table 3 A summary of the charging mode of real-time EVs 

Vehicle Charging mode Battery type 

1 Multistage current charge Li(TM)O2/C, TM= transition metal, Li(TM)O2 is the 

positive electrode. 2 

3 

4 

5 

6 LiFePO4/C, LiFePO4 is the positive electrode. 

7 

8 

9 

10 Constant current charge Li(TM)O2/C, TM= transition metal, Li(TM)O2 is the 

positive electrode. 

 

Supplementary Table 4 Specifications of NCA, NCM, and NCM+NCA batteries 

Sample 

name 

NCA battery NCM battery NCM+NCA battery 

Battery type 18650 

Anode 

material 

Graphite/Si25 Graphite26 

Cathode 

material 

Li0.86Ni0.86Co0.11Al0.03

O2 (NCA) 25 

Li0.84(Ni0.83Co0.11Mn

0.07)O2 (NCM) 25 

42 (3) wt.% Li(NiCoMn)O2 

blended with 58 (3) wt.% 

Li(NiCoAl)O2 (NCM+NCA) 26 

Electrolyte Non-aqueous solution with lithium hexafluorophosphate (LiPF6) 

Nominal 

voltage 

3.6 V 

Cutoff  

voltage 

2.65 V - 4.2 V 2.5 V - 4.2 V 

Nominal 

capacity  

3.5 Ah 2.5 Ah 

Battery mass 45.0 g 

 

Supplementary Table 5 Statistical features extracted from one voltage relaxation curve, 

xi  is the battery terminal voltage, i=1, …, n,  n is the number of samples in one 

relaxation curve 

Maxima (Max) xmax= max{xi} 

Mean (Mean) 

x̅=
1

n
∑ xi

n

i=1

 

Minima (Min) xmin= min{xi} 



19 

 

Variance (Var) 

μ
2
=

1

n − 1
∑(xi − x̅)2

n

i=1

 

Skewness (Ske) 

μ
3
=

1

n
∑ (

x − x̅

√μ
2

)

3
n

i=1

 

Excess Kurtosis (Kur) 

μ
4
=

1

n
∑ (

x − x̅

√μ
2

)

4

− 3

n

i=1

 

 

Supplementary Table 6 Test results of temperature dependence splitting method 

Train Test Dataset 1 Train: test 

XGBoost Support Vectors 

Regression (SVR) 

25 oC, 35 oC 45 oC 0.025 0.031 2:5 

25 oC, 45 oC 35 oC 0.015 0.015 19:1 

35 oC, 45 oC 25 oC 0.044 0.038 3:1 

 

Supplementary Table 7 Test results of splitting on the time-series data 

Dataset 1 

XGBoost 0.023 

Support Vectors 

Regression (SVR) 

0.031 

 

Supplementary Table 8 Test results of splitting on random splitting method  
Dataset 1 

XGBoost Support Vectors 

Regression (SVR) 

Without data balance 0.011 0.011 

With data balance 

(weighted average) 

0.013 0.011 

 

Supplementary Table 9 Test results of cell stratified sampling method  
Train (cells) Test (cells) Dataset 1 

XGBoost Support Vectors 

Regression (SVR) 

CY25-0.25/1 6 1 0.011 0.011 

CY25-0.5/1 15 4 

CY25-1/1 7 2 

CY35-0.5/1 2 1 
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CY45-0.5/1 22 6 

 

Supplementary Table 10 The list of feature combinations (i, j) corresponding to Figure 

3 [0,1,2,3,4,5] = [Var, Ske, Max, Min, Mean, Kur] 

j 8 [1,3,5] [0,1,2,3] [0,1,2,4] [0,1,2,5] [0,1,2,3,4] [0,1,2,3,5] [1,2,3,4,5]  

7 [1,2,5] [1,3,4] [3,4,5] [0,1,3,4] [0,1,3,5] [2,3,4,5] [0,2,3,4,5] [0,1,2,3,4,5] 

6 [4,5] [1,2,3] [1,2,4] [2,4,5] [0,1,4,5] [0,2,3,4] [2,3,4,5] [0,1,3,4,5] 

5 [3,4] [3,5] [0,3,5] [0,4,5] [2,3,5] [0,2,3,5] [0,2,4,5] [0,1,2,4,5] 

4 [2,3] [2,4] [2,5] [0,2,5] [0,3,4] [2,3,4] [0,3,4,5] [1,3,4,5] 

3 [5] [1,3] [1,4] [1,5] [0,2,3] [0,2,4] [1,4,5] [1,2,3,5] 

2 [1] [3] [0,4] [0,5] [1,2] [0,1,4] [0,1,5] [1,3,4,5] 

1 [0] [2] [4] [0,1] [0,2] [0,3] [0,1,2] [0,1,3] 

  1 2 3 4 5 6 7 8 

  i 

 

Supplementary Table 11 Hyperparameters in ElasticNet, XGBoost, and Support Vector 

Regression (SVR) 

ElasticNet XGBoost SVR 

alphas {0.001+(1-

0.001)/19*i|i=0..19}5 

learning_rate 0.8 kernels  ‘rbf’ 

l1_ratio {0.001+(1-

0.001)/19*i|i=0..19} 

N_estimators 6 epsilons 20 

cv 5 Max_depth 6 Cs 20 

  Objective reg:squarederror gammas  ‘auto’ 

  Lambda 1   

  alpha 0   

  subsample 1   

 

Supplementary Table 12 The coefficient of determination (R2) between the raw and 

fitted impedance data. All the raw impedance data and fitted data are shared in the 

data availability (https://doi.org/10.5281/zenodo.6379165). The R2 marked with * 

means that no R1 and CPE1 (shown in Supplementary Figure 8b) are used for the data 

fitting. 

NCA battery 

Cycle CY25-

0.25/1 

CY25-

0.5/1 

CY25-1/1 CY35-

0.5/1 

CY45-

0.5/1 

0 0.99993*  0.99990*  0.99999*  0.99986*  0.99981*  

25 0.99990*  0.99997  0.99996*  0.99989*  0.99982*  

50 0.99996  0.99880  0.99997*  0.99711*  0.99975*  

75 0.99993  0.99997  0.99999  0.99998  0.99980  

100 0.99994  0.99997  

 

0.99988  0.99981  

125 0.99992  0.99997  

 

0.99988  0.99988  

150 0.99992  0.99998  

 

0.99988  0.99989  

https://doi.org/10.5281/zenodo.6379165
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175 0.99996  0.99999  

 

0.99989  0.99988  

200 0.99994  

  

0.99989  0.99982  

225 0.99996  

  

0.99989  0.99981  

250 0.99996  

  

0.99989  0.99982  

275 0.99996  

  

0.99990  0.99983  

300 0.99994  

  

0.99990  0.99987  

325 0.99992  

  

0.99990  0.99989  

350 0.99995  

  

0.99991  0.99988  

375 

   

0.99991  0.99990  

400 

   

0.99994  0.99989  

425 

   

0.99992  0.99990  

450 

   

0.99993  0.99989  

475 

   

0.99993  0.99989  

500 

   

0.99994  0.99991  

525 

   

0.99994  0.99991  

550 

   

0.99996  0.99991  

575 

   

0.99996  0.99993  

600 

    

0.99993  

NCM battery 

Cycle CY25-

0.5/1 

CY35-

0.5/1 

CY45-

0.5/1 

  

0 0.99973  0.99994*  0.99934*    

50 0.99970  0.99992  0.99953    

100 0.99981  0.99950  0.99951    

150 0.99982  0.99964  0.99953    

200 0.99987  0.99977  0.99969    

250 0.99989  0.99975  0.99971    

300 0.99989  0.99976  0.99984    

350 0.99989  0.99980  0.99983    

400 0.99999  0.99976  0.99985    

450 

 

0.99981  0.99987    

500 

 

0.99979  0.99984    

550 

 

0.99982  0.99985    

600 

 

0.99980  0.99991    

650 

 

0.99982  0.99989    

700 

 

0.99986  0.99990    

750 

 

0.99986  

 

  

800 

 

0.99986  

 

  

850 

 

0.99985  

 

  

900 

 

0.99986  

 

  

950 

 

0.99985  

 

  

1000 

 

0.99986  

 

  

1050 

 

0.99988  
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1100 

 

0.99987  

 

  

1150 

 

0.99989  

 

  

1200 

 

0.99989  

 

  

1250 

 

0.99985  

 

  

1300 

 

0.99989  

 

  

1350 

 

0.99990  

 

  

NCM+NCA battery 

Cycle CY25-

0.5/1 

CY25-

0.5/2 

CY25-

0.5/4 

  

0 0.99977  0.99967  0.99976    

100 0.99988  0.99985  0.99974    

200 0.99987  0.99990  0.99983    

300 0.99997  0.99997  0.99991    

400 0.99997  0.99996  0.99988    

500 0.99995  0.99994  0.99984    

600 0.99994  0.99992  0.99970    

700 0.99992  0.99988  0.99991    

800 0.99983  0.99990  0.99991    

900 0.99995  0.99994  0.99993    

1000 0.99986  0.99994  0.99994    

 

Supplementary Table 13 Test results of different data selection methods used in the 

transfer learning (TL2)  
Data for TL retraining Dataset 2 (TL2) Dataset 3 (TL2) 

XGBoost SVR XGBoost SVR 

A1 1% data on the time series data 0.041 0.050 0.038 0.070 

A2 10% data on the time series 

data 

0.028 0.037 0.073 0.070 

B 1% random data 0.015 0.013 0.026 0.016 

C Random cell from each 

working condition 

0.016 0.014 0.022 0.016 

D Reduced data volume (by 

cycles) from the random 

selected cells 

0.024 0.017 0.024 0.016 

 

Supplementary Table 14 Size comparison of data units in strategy D for transfer 

learning  

 
 

Source data units data units for 

retaining 

Dataset 2 CY25-0.5/1 5490 2 

CY35-0.5/1 4712 13 

CY45-0.5/1 17600 4 
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Dataset 3 CY25-0.5/1 2843 10 

CY25-0.5/2 2913 10 

CY25-0.5/4 2826 10 

 

Supplementary Table 15 Test result of a “linear” kernel for the SVR model in No 

TL 

Dataset 2 1.9% 

Dataset 3 2.0% 
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