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A.1 Additional countries

In figures A.1 and A.2 we provide the same analysis shown in figures 1 and 2 respectively, for the case
of Israel and Italy. It can be observed that the same phenomenon described in the main text takes place
in these countries. Namely, a first period where the mobility successfully fits and predicts the reproductive
number Rt, and after the effect of the vaccination starts to complement the immunity from natural infection,
a period where the Rt decouples from the mobility.

Figure A.1: Viral effective reproduction number Rt and its estimation R̂t using mobility information. Back-
ground colors indicate the following time periods: in blue, the time period used to fit the linear model (see
Section 4.2), in yellow, the period after the fitting, but before the decoupling point, and in red after the
decoupling point. The black dot corresponds to the last time the reproductive number was above one. The
correlation corresponds to the period used to fit the model. The delay indicated is the time-shift between
the mobility time series and Rt in order to maximize the correlation in the linear regression.
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Figure A.2: Coupling ratio R̂t/Rt plotted with respect to the percentage of immune population. During
the first months of 2021 the coupling ratio varies around 1, which corresponds to the periods where the Rt
and R̂t are in concordance in Figure A.1. Immune population includes immunity achieved by vaccination
(taking into account its effectiveness), and natural infection (see subsection 4.3). The percentage of people
fully vaccinated is described as well.

A.2 Further methodological details and validation

A.2.1 Estimating the reproduction rate

For the analysis in this paper we considered several possible estimations of the time-varying reproduction
rate Rt of the epidemic. We now briefly review the available approaches and explain our decision to settle
on a given estimator for Rt.

A first approach, proposed in [3], consists on estimating Rt directly from incidence data It, the number
of observed new cases. The estimation proceeds as follows: assume that when a person becomes infected, it
can start spawning new infections from its contacts. These new infections will be reflected in the number of
cases (become detected) after a random period of time, which can be modeled by a probability distribution
ws on s > 0. This is called the serial interval of the disease, and for SARS-CoV-2 it has been estimated
by [4] as having a mean of 3.95 days and a standard deviation of 4.75 days. For definiteness we assume a
discrete Gamma distribution for {ws} with these mean and variance.

Assuming that the number of contagions generated by an individual is Poisson and independent across
individuals, the number of new infections at time t follows also a Poisson distribution given by:

It ∼ Poisson (RtΛt) , (1)

where Rt is the current reproduction rate that we wish to estimate, and Λt is given by:

Λt =
∑
s>0

wsIt−s. (2)

The intuition behind Λt is that this should be the average number of new infections reported at time t for
a reproduction rate of 1.

The authors of [3] then propose to use a Bayesian approach. Assuming Rt is approximately constant over
a window of length τ , and that a priori is distributed as a Gamma random variable with shape parameter a
and scale parameter b, the a posteriori distribution of Rt can be computed and a suitable estimation of Rt
is obtained as:

Rt =
a+

∑t
k=t−τ+1 Ik

1
b +

∑t
k=t−τ+1 Λk

(3)

Eq. (3) has a simple intuitive explanation: besides a small bias from the a priori parameters, it is the ratio
between the new observed cases in a given time window to the number of expected cases for a reproduction
rate of 1.
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The main advantage of this method is that it makes little assumptions on the dynamics of the epidemic,
only dealing with disease specific parameters and the reasonable Poisson assumption on contacts. The main
disadvantage is that, in order to be robust against the noise in observations and cope with weekly seasonal
effects observed in the data, we have to employ a pretty large estimating window τ (typically between 7 and
14 days). This introduces a significant lag in the estimation. With data up to time t, we are estimating the
value of Rt with a delay of up to 1 week. Since we are interested in the time correlations between mobility
and the current value of the reproduction rate, this lag precludes us from using this robust estimator.

A second approach is proposed in [5], and is currently computed in real time for a list of countries in [1].
The authors assume a simple SIR model for the dynamics of currently active cases, which we denote by At
to avoid using the standard name I since we reserve I for incidence or new infections.

The dynamics of the active cases follow the evolution equation:

At = At−1 + γ (Rt−1 − 1)At. (4)

Here 1/γ is the recovery rate, i.e. the average time a person stops spreading the disease. In the typical SIR
model, Rt = βtSt(N), where βt is the current level of social interaction and St/N the ratio of susceptible
population. However, since we are interested in quantifying only the reproduction rate, we can employ
directly eq. (4).

A simple transformation of (4) expresses the growth rate of the active cases as a function of Rt:

gr(At) :=
At −At−1

At−1
= γ(Rt−1 − 1). (5)

Moreover, for small relative increments this can be further simplified using the approximation log(1+x) ≈ x
to write:

∇ log(At) = γ(Rt−1 − 1), (6)

where ∇ is the usual difference operator.
Since most of the data available is for incidence of new cases It, in order to construct the time series At

one resorts again to the SIR model equations to write:

At = (1− γ)At−1 + It. (7)

The complete procedure is as follows: given a time series data from case counts It, construct the series of
active cases using (7). Then model the growth rate evolution of At by using a simple local level model [6]
for the trend in the reproduction rate Rt given by:

∇ logAt = γ(Rt−1 − 1) + εt, (8a)

Rt = Rt−1 + ηt. (8b)

where εt, ηt are measurement noises assumed Gaussian. A suitable estimation of Rt can be directly obtained
from eqs. (8) by applying the Kalman filtering technique [6]. The main advantages of this approach are
two-fold: first they are extremely robust to noise in the measurements It and consequently At. The second
advantage is that the estimate is real-time, i.e. it introduces no lag on the trend. This is perfectly suited for
our purposes where we want to characterize the time correlation with the mobility estimation.

During preparation of this manuscript, we enhanced the model in eqs. (8) to include cyclic components
in order to model systematic weekly trends in the data. However, inclusion of these trends did not change
significantly the estimated trend of the Rt trajectory, so for all our analysis, we settled on the local level
model approach and Kalman filtering of (8).

A.2.2 Backtesting/Validation of regression

Although the regression of the mobility features to the Rt is fitted in the period with blue background in
Figure 1, and therefore period with yellow background serves as a validation of this regression up to the
decoupling time, in this section we provide further details and validation.
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For all five countries, we took the period prior to the decoupling time, and divided it into two sections
of approximately the same length. The first period is used to fit the regression parameters, and the second
period is used to validate the fitting. Additionally, we compute the variance of the regression parameters
in the standard way, and use them to draw Monte Carlo trajectories in order to build error bands around
the regression curves. The results are shown in Figure A.3, where the correlation in both the training and
validation period are also reported. The results tend to reasonably validate the obtained the regression.

Figure A.3: Backtesting/validation of regression. The period with blue bakcgound is used to compute the
regression, and the period with yellow background is used to validate the fitting. Error bands computed
by Monte Carlo simulations, using the covariance of the regression parameters. The correlation in both the
training an validation periods are reported in each panel.

A.2.3 Sensitivity to the threshold

As described in the main text, the decoupling time TD was defined as the moment when the coupling ratio
R̂t/Rt definitely exceeds the threshold 1.10. In order to study the sensitivity to the value of this threshold,
as well as to validate the methodology, we expose two additional experiments.

First, we present the decoupling time TD and the corresponding immunity cHIT for several values of the
threshold. It can be observed in Table 1 that the obtained cHIT values fall inside the confidence intervals in
Table 1, and actually they are are very close to the central cHIT values presented.

Second, we present a decoupling time detection by means of an alternative method. Figure A.4 shows
the coupling ratio R̂t/Rt, as well as the detected decoupling time Dt detected by the threshold (in dashed
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Country CPD Threshold TD cHIT
Argentina May. 29 1.05 May. 30 29 %

1.10 Jun. 02 29 %
1.15 Jun. 03 30 %
1.20 Jun. 06 33 %

Brazil Jun. 22 1.05 Jun. 19 44 %
1.10 Jun. 23 45 %
1.15 Jun. 24 45 %
1.20 Jun. 25 46 %

Chile May. 28 1.05 May. 18 42 %
1.10 May. 22 43 %
1.15 May. 26 44 %
1.20 May. 30 45 %

Paraguay Jun. 12 1.05 Jun. 09 33 %
1.10 Jun. 11 36 %
1.15 Jun. 18 37 %
1.20 Jun. 26 38 %

Uruguay Jun. 10 1.05 May. 27 33 %
1.10 May. 29 33 %
1.15 Jun. 01 34 %
1.20 Jun. 13 36 %

Table 1: Decoupling time (TD) and cHIT (conditional herd immunity threshold) for different threshold
values. The decoupling time detected by the Change Point Detection method (CPD) is also reported for
comparison.

red), and the result of a standard Change Point Detection (CPD) algorithm [2] (in blue). It can be observed
that both methods yield compatible results in all five countries.
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Figure A.4: Comparison of decoupling time detection as described in the main text (threshold), and by using
a standard Change Point Detection method. Observe that the larger difference is only 12 days.
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