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framework for identifying gene expres-
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lationships, as well as enabling collabo-

rative projects by generating an

interactive, web-based report for data

exploration that can be shared among

colleagues.
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MOTIVATION Technologies enabling investigators to simultaneously profile the lineage and transcriptional
states of single cells hold great promise for profiling dynamic processes such as tumor growth or organ
development. Yet the analysis of these data requires the deployment of sophisticated computational tools
that might preclude users without computational training from deriving insights. Here, we have developed
an integrated analysis pipeline and user interface, PhyloVision, that performs fundamental analyses for
these multimodal lineage-tracing assays and creates a web-based report to explore the cells’ lineage rela-
tionships, transcriptomes, and association. The report can be shared online to better enable collaborative
projects.
SUMMARY
Recent advances in CRISPR-Cas9 engineering and single-cell assays have enabled the simultaneous
measurement of single-cell transcriptomic and phylogenetic profiles. However, there are few computational
tools enabling users to integrate and derive insight from a joint analysis of these two modalities. Here, we
describe ‘‘PhyloVision’’: an open-source software for interactively exploring data from both modalities and
for identifying and interpreting heritable gene modules whose concerted expression are associated with
phylogenetic relationships. PhyloVision provides a feature-rich, interactive, and shareable web-based report
for investigating these modules while also supporting several other data and meta-data exploration capabil-
ities. We demonstrate the utility of PhyloVision using a published dataset of metastatic lung adenocarcinoma
cells, whose phylogeny was resolved using a CRISPR-Cas9-based lineage-tracing system. Together, we
anticipate that PhyloVision and the methods it implements will be a useful resource for scalable and intuitive
data exploration for any assay that simultaneously measures cell state and lineage.
INTRODUCTION

Cellular lineages underlie several important biological phenom-

ena—from embryogenesis to differentiation to cancer progres-

sion—and understanding the nature and dynamics of these

lineages remains a central focus of research. Indeed, the piecing

together of the developmental lineage ofCaenorhabditis elegans

by Sulston and colleagues via visual observations (Sulston et al.,

1983) has facilitated decades of critical work using the

deterministic development of C. elegans as a model system to

study development (Packer, 2019), aging (Kenyon, 2010), and

even human diseases like neurodegeneration (Lu et al., 2014).
Cell R
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Yet, many higher-order organisms cannot be studied by visual

observation alone, and thus, a robust understanding of cell line-

ages underlying these organisms remains elusive. To this end,

several technologies have emerged to track cellular lineages

over varying timescales, as reviewed in previous work (Kester

and van Oudenaarden, 2018; McKenna and Gagnon, 2019).

Recently, the integration of CRISPR-Cas9-based engineering

and single-cell sequencing has enabled the synthetic tracing of

cellular lineages at unprecedented resolution (Frieda et al.,

2017; McKenna et al., 2016; Kalhor et al., 2017; Raj et al.,

2018; Chan et al., 2019; Bowling et al., 2020). Several of these

technologies enable the simultaneous measurement of cell
eports Methods 2, 100200, April 25, 2022 ª 2022 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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lineage and transcriptomic state via single-cell RNA sequencing

(scRNA-seq), thus creating exciting opportunities to study the

transcriptional evolution of dynamic processes and motivating

innovative approaches for integrating these two critical modal-

ities (Wagner and Klein, 2020). As with high-dimensional mea-

surements like those from scRNA-seq, it is clear that specialized,

interactive tools for data exploration, visualization, and analysis

are necessary for realizing the full potential of these lineage-

tracing assays.

There exist several useful software tools for visualization of

phylogenetic or lineage-tracing data. For example, the interac-

tive Tree of Life (iTOL; Letunic and Bork, 2021) is a scalable

web-server-based tool that allows users to upload tree

structures and various annotation files for interactive viewing.

However, to indefinitely host and share these reports requires

a paid subscription. More recently, CeLaVi was introduced as

a publicly available software tool for generating interactive,

web-based reports expressly for cell-lineage viewing

(Salvador-Martı́nez et al., 2021). Although both tools are scalable

to up to thousands of cells and are versatile for integrating

various data modalities (e.g., gene expression measurements

and spatial location) with phylogenies for visualization, they do

not offer capabilities for joint analysis and automated interpreta-

tion of information on lineages and gene expression.

Here, we introduce PhyloVision: an open-source, interactive

analysis and visualization tool that is expressly built for inte-

grating single-cell gene expression and lineage data.

PhyloVision builds on useful existing work, like iTOL and

CeLaVi, for interactively visualizing phylogenies while possibly

overlaying the expression of individual genes. In addition to

this, however, PhyloVision also employs other analysis frame-

works developed by our group for automated interpretation of

the variation in gene expression across the lineage structure.

Specifically, PhyloVision supports features that identify heritable

gene expression programs and interprets these programs using

gene signature enrichment analysis.

To demonstrate the utility of PhyloVision, we apply it to a clone

of 1,127 cells from a recent CRISPR-Cas9 lineage-tracing

dataset investigating metastatic spread in a mouse model of

lung adenocarcinoma. In doing so, we show that the derived

statistics and web-based user interface can be used to effec-

tively characterize subpopulations within this aggressive tumor

population. These molecular characterizations, not discussed

in the original study, can be used to generate hypotheses about

how metastatic ability evolves within a tumor subpopulation.

PhyloVision is distributed publicly on Github at https://github.

com/YosefLab/VISION. Along with the software, we include

several tutorials and example reports of published datasets

allowing users to explore the user-interface. Additionally, we

include a detailed manual and description of the user-interface

in the supplemental information.

RESULTS

PhyloVision is an integrated pipeline for interactive
analysis of single-cell expression and lineage profiles
PhyloVision is simultaneously a tool for interactive exploration of

multimodal single-cell lineage-tracing data using our web-based
2 Cell Reports Methods 2, 100200, April 25, 2022
front end and for analysis of the evolutionary dynamics of

expression data. Our interactive web-based report is built on

our VISION front-end (DeTomaso et al., 2019). Here, we have

developed an interactive phylogeny viewer and have integrated

it into the default interface, enabling the user to select cells (for

visualization on a low-dimensional embedding of the respective

scRNA-seq data or for differential expression analysis), perform

various manipulations on the observed tree (e.g., node

collapsing), and overlay gene expression, signature scores, or

other data onto the leaves of the tree (Figures 1 and S1–S4;

Video S1). The dynamic phylogeny viewer is scalable, allowing

low-latency selections and subtree collapsing for large trees

(we tested trees of up to �4,000 leaves). Importantly, a web

report generated by a user can be viewed locally, shared

privately among colleagues, or staged publicly on a web server;

moreover, users can download the state of any report for

reproducing visualizations separately.

While the interactive web report is a useful tool for data

exploration, the PhyloVision pipeline additionally supports

statistical analysis for deriving joint insight from the expression

and lineage data (Figure 2). In this, PhyloVision takes as input

(at a minimum) an expression data matrix, a phylogeny, and a

collection of gene signatures, each representing a certain

pathway or a transcriptional response to a certain change in

conditions (as publicly available from resources like MSigDB;

Subramanian et al., 2005). In one mode of analysis,

PhyloVision will conduct a phylogenetic autocorrelation analysis

with the user-defined gene signatures. Here, for a given

signature, a score will be computed for each cell with VISION

(DeTomaso et al., 2019), indicating the cumulative activity of

the respective genes (note that the score also accounts for

‘‘signed’’ transcriptional response signatures, in which one

subset of genes is marked as up-regulated and another as

down-regulated). An autocorrelation statistic will be then

computed by evaluating the consistency of the signature scores

between nearby cells on the phylogeny, using Geary’s C statistic

(Geary, 1954) as in DeTomaso et al., 2019 (STARMethods). With

this analysis, a user can identify gene signatures that are

significantly associated with the tree structure, suggesting

evolutionary patterns of interest. Our PhyloVision pipeline also

includes modules to analyze user-provided meta-data, (e.g.,

the tissue of origin, extent of somatic mutations, or cell-level fit-

nesses inferred with external models; Neher et al., 2014), quan-

tify cell-level plasticities with respect to categorical data (Yang et

al., 2021), and interactively visualize these cell-level data (STAR

Methods). Together, these ‘‘signature-level’’ analyses enable

users to identify cell-level properties whose variation is consis-

tent with the tree structure and to highlight phenotypes that

represent subclonal, heritable phenotypes.

In another mode of analysis, users can identify de novo gene

modules (i.e., not guided by pre-defined signatures) that are

learned from the intersection of phylogeny and expression

data using our Hotspot algorithm (DeTomaso and Yosef,

2021). Briefly, this analysis uses autocorrelation to identify

individual genes whose expression is consistent with the phy-

logeny—namely, genes that are expressed at a more similar

level in phylogenetically adjacent cells than in cells that are

distant. It then uses a pairwise extension of the autocorrelation

https://github.com/YosefLab/VISION
https://github.com/YosefLab/VISION


Figure 1. Overview of the PhyloVision interactive UI

PhyloVision’s user interface (UI) is a web-based, feature-rich report that can be hosted locally or externally. PhyloVision incorporates four main panels into

viewing. First is a panel for visualization of two-dimensional single-cell RNA-seq projections (e.g., a UMAP projection) or, alternatively, coordinates (e.g., from

spatial transcriptomics datasets; inset 1). Second is a panel for interactive visualization of a phylogeny relating all cells (inset 2) that enables selection, collapsing,

and variable layouts (radial or linear). Third is a control panel for selecting values to be overlaid onto the phylogeny and two-dimensional visualization panel, eval-

uating statistics associated with each signature or module, plotting a gene’s expression, or performing differential expression analysis, with each signature or

module, plotting a gene’s expression, or performing differential expression analysis. In the default ‘‘Signature Autocorrelation’’ mode, signatures are clustered

using aGaussianmixturemodel to group together signatures with similar distributions (STARMethods; inset 3). Note that here the Hotspot mode is shown, which

operates ‘‘bottom up’’: first finding heritable genemodules and then analyzing their over-representation (enrichment) in user-provided signatures. The alternative

mode, ‘‘Signature Autocorrelation,’’ that operates directly on the user signatures is described in DeTomaso et al., 2019. Users can control the analysis mode by

toggling between ‘‘Signature Autocorrelation’’ and ‘‘Hotspot’’ (inset 5). Fourth is an exploration panel for inspecting the value distribution, gene membership, and

expression heatmaps of each user-provided gene signature or automatically identified Hotspot module (inset 4). See also Figures S1–S4 and Video S1.
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statistic to arrange these genes into modules whose expression

patterns on the phylogeny are similar, thus representing

conserved transcriptomic modules that each operate in a

concerted fashion. The PhyloVision pipeline adds interp-

retability to the Hotspot modules by assessing the overlap

between their respective gene sets and the user-provided

gene signatures. PhyloVision provides a quantification of

this overlap with an enrichment statistic and an assessment

of statistical significance. Together, these two analyses enable

a user to identify important sources of transcriptomic variation
on the phylogeny, as well as discover new and interpretable

gene sets.
Case study: Analysis of a metastatic lung
adenocarcinoma tumor with PhyloVision
To demonstrate PhyloVision’s usefulness in interrogating data

from multimodal single-cell lineage-tracing technologies, we

applied the pipeline to a clone from our recently published data-

set in which we studied the metastatic behavior of an aggressive
Cell Reports Methods 2, 100200, April 25, 2022 3



Figure 2. The PhyloVision analysis pipeline

A simplified schematic representation of the PhyloVision pipeline. PhyloVision takes as input a gene expression matrix, a phylogeny, gene signature sets, and

optionally meta-data associated with each cell. Signature scores are computed for each cell in the dataset and evaluated with phylogenetic autocorrelation

(STAR Methods). Additionally, plasticity indices are computed for each categorical meta-data (STAR Methods). Upon user specification, PhyloVision performs

Hotspot gene module identification using the phylogeny as a latent space. Modules can be interpreted by assessing the enrichment score between signature

gene sets and module gene sets.
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human lung adenocarcinoma cell line in a xenograft mouse

model (Quinn et al., 2021).

As previously described, we used our CRISPR-Cas9 lineage-

tracing technology (Chan et al., 2019) to trace approximately 100

clones over the course of 2.5 months as each clone metasta-

sized between tissues in a mouse model of lung adenocarci-

noma. In this analysis, we used the reconstructed single-cell

phylogenies from the original study, which were inferred with

the Cassiopeia package (Jones et al., 2020). In these phylog-

enies, each leaf corresponds to a cell, with data corresponding

to the single-cell expression profile and the tissue from which

it was sampled. In the original study, we described howmetasta-

tic rates of single cells could be inferred directly from these

phylogenies and combined with expression profiles to identify

transcriptional regulators of this process.

In the present analysis, we evaluated a clone of 1,127 cells

using the PhyloVision pipeline (see Data and code availability).

In this case study, we used signatures downloaded from

MSigDB (Subramanian et al., 2005) and focused on the results

from the Hotspot analysis. Hotspot identifies three non-overlap-

ping modules of genes (Figure 3A). To evaluate the cumulative

activity of each module at each cell in the dataset, we computed

module scores for every cell using the signature-scoring proced-

ure in VISION (DeTomaso et al., 2019; STAR Methods). Interest-

ingly, when compared with the metastatic rate inferred from the

phylogeny (which is provided as meta-data to this session), we

observed that one module is negatively correlated (module 1;

Pearson’s r = �0.30; Figure 3B [left]), whereas one is positively

correlated with this metastatic rate (module 2; Pearson’s

r = 0.26; Figure 3B [middle]); module 3 does not correlate with

the metastatic rate in either direction (Pearson’s r = 0.07;

Figure 3B [right]). These results, therefore, point to candidate

transcriptional programs (each represented by a module) that

are heritable and are associated with different metastatic

abilities.
4 Cell Reports Methods 2, 100200, April 25, 2022
To interpret the biological signal intrinsic to these Hotspot mod-

ules, we first projected the single-cell transcriptomic profiles onto

two dimensions using Uni-formMani-fold Approximation and Pro-

jection (UMAP;McInnesetal., 2018) andoverlaid theHotspotmod-

ules scores (Figures 3C–3E). Upon inspection, we observed that

theHotspotmodules localized todistinct regionsof the two-dimen-

sional projection and thereforemarked different cellular states.We

observed a similar pattern, on the phylogenies themselves, with

each Hotspot module marking a specific set of subclades.

Next, we examined which gene signatures had significant

overlap with each module. In the module negatively correlated

with metastatic rate (module 1), we found significant enrich-

ments corresponding to the innate immune response, mainte-

nance of the gastrointestinal epithelium, and the endosomal

vacuolar pathway, among others (all FDR < 1e�3, hypergeomet-

ric test; Figure 3C). Together, these gene sets indicate that fewer

metastatic cells in this clone are characterized by antigen pre-

sentation and maintenance of an epithelial-like state, supporting

the hypothesis that tumor progression is required for metastatic

competency in lung adenocarcinoma (Caswell et al., 2014).

On the other hand, the module positively correlated with

metastatic rate (module 2) had significant enrichments in gene

signatures associated with fibrinolysis, UV response, smooth-

muscle adhesion, inflammatory response, and other metastatic

signatures (e.g., liver cancer metastasis; all FDR <0.05, hyper-

geometric test; Figure 3D). These gene signatures therefore

point to several mechanisms of enhancing metastatic rates in

this clone, such as fibrinolysis and up-regulation of adhesion

molecules. The diversity of these signatures underscores the

importance of inflammatory signaling, ECM remodeling, and

cell adhesion discussed in our previous work (Quinn et al., 2021).

Module 3 was characterized by a set of gene signatures asso-

ciated with tumor progression but distinct from the metastatic

rate. Intriguingly, the gene sets that significantly overlapped

with module 3 included those that regulated apoptosis and
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WNT-signaling, as well as those indicating sensitivity to serum

and rapamycin treatment (all FDR < 1e�3, hypergeometric

test; Figure 3E). These observations suggest that module 3

distinguishes cells in an altogether different metabolic state

uncorrelated with metastatic ability but appearing to be associ-

ated with increased survival ability and cell proliferation, perhaps

due to relatively high amounts of KRAS signaling. These results

also support the finding that combination therapies involving

inhibitors of the mammalian target of rapamycin (mTOR), which

sits downstream of RAS signaling, is a viable therapeutic oppor-

tunity in KRAS-driven non-small-cell lung cancer (Vasan et al.,

2014). Future work may investigate whether this therapy-sensi-

tive population is mainly characterized by differential metabolic

signaling, perhaps leveraging recent work modeling metabolic

profiles from scRNA-seq data (Wagner et al., 2021).

Overall, these results indicate that the PhyloVision joint

analysis of single-cell expression and lineage provides an

efficient approach for dissecting phylogeny-based transcrip-

tional heterogeneity. In the case study above, we demonstrate

that the analysis pipeline and web-based user interface were

able to identify gene programs associated with increased or

decreased metastatic ability and altogether new programs not

previously described in the original study. As a whole, this

analysis provides testable hypotheses and intricate molecular

characterizations for subpopulations in a single clone.

DISCUSSION

We introduced PhyloVision, a tool for the integrated analysis of

scRNA-seq and single-cell lineage-tracing data. PhyloVision of-

fers a feature-rich, user-friendly, and interactive web report for

exploring the evolutionary underpinnings of scRNA-seq profiles.

Moreover, PhyloVision is embedded within useful analysis pipe-

lines, thus enabling rapid characterization of interesting structure

in the high-dimensional data. In this way, to the best of our knowl-

edge, PhyloVision is the first interactive tool of its kind to provide a

bridge between single-cell analysis tools and single-cell lineage-

tracing data. We show the effectiveness of this approach in a

case study of a single clone from our recent work, illustrating

rich heterogeneity in this dataset previously unexplored.

In addition to theHotspot analysis presented here, PhyloVision

includes other analysis features such as identification of heritable

meta-data (e.g., metastatic rate) and its transcriptional correlates

(using gene signatures and Hotspot modules), identification of

differentially expressed genes (e.g., by manually choosing sub-

clones to be compared), and visualization of gene expression

andmeta-data while stratifying the cells according to the phylog-

eny (e.g., with histograms corresponding to different clades).
Figure 3. PhyloVision analysis identifies gene modules associated wit

(A) Heatmap of Z-normalized pairwise autocorrelations between Hotspot-selected

a Hotspot gene module do not have a bar annotation). Note that pairwise autocor

dard pairwise correlation (DeTomaso and Yosef, 2021).

(B) Hotspotmodule scores and the single-cell metastasis rate (scMetRate) are plot

each scatterplot.

(C–E) Interpretation of Hotspot genemodules for module 1 (C), module 2 (D), andm

phylogenies. The enrichment score between gene signature and module gene s

Methods) is shown for the top 50 signatures. Selected gene signatures are highl
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While the case study presented in this work focused on

CRISPR-Cas9-based lineage tracing, we expect that this tool

will also be useful for any type of data that jointly measure cell

lineage and transcriptomic state such as those from B cell

phylogenies (inferred from their antigen receptor) or single-cell

phylogenies built from whole-genome sequencing of tumor

samples. Moreover, the shareability of generated web-based re-

ports allows collaborators without computational experience to

smoothly explore high-dimensional datasets. All of that taken

together, we anticipate that PhyloVision will be useful across ap-

plications and technologies and will provide critical support for

the interpretation of these multimodal datasets.

Limitations of the study
Our implementation of PhyloVision provides several opportunities

for futuredevelopment.First, therearemanyuseful approaches for

quantifying additional cellular characteristics from phylogenies,

such as relative fitness, that are not directly supported within our

software. Future efforts to incorporate these approaches into the

PhyloVision pipeline would be useful. Second, our analysis of the

metastasis dataset presented in this study still lacks experimental

validation to support the generated hypotheses. Finally, our imple-

mentation ofPhyloVision in theRprogramming languagemaypro-

vide challenges for utilizing separate software available in Python,

like Cassiopeia (Jones et al., 2020), and future efforts might focus

on facilitating interoperability across these ecosystems.
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Supplemental information can be found online at https://doi.org/10.1016/j.
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Embyrogenesis PhyloVision report Chan et al. 2019 (GEO

Accession GSE117542)

Zenodo: https://doi.org/10.5281/
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Metastasis PhyloVision report Quinn et al. 2021 (GEO

Accession GSE161363)

Zenodo: https://doi.org/10.5281/

zenodo.6354746

Software and algorithms

PhyloVision This study Zenodo: https://doi.org/10.5281/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact Nir Yosef (niryosef@

berkeley.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table. Interactive PhyloVision reports are deposited on Zenodo and are publicly available as the date of publication. DOIs are

listed in the key resources table.

d All original code is available on Github (https://github.com/Yoseflab/VISION) and on Zenodo and is publicly available as of date

of the publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

The PhyloVision pipeline
PhyloVision builds on the VISION analysis toolkit for signature autocorrelation analysis (DeTomaso et al., 2019). As input, PhyloVision

requires a gene expression matrix (typically count-normalized, but not log-normalized), a set of signature gene sets (e.g., publicly

available from sources like MSigDB), and a phylogeny (stored as a tree structure in the ape R package (Paradis and Schliep,

2019)). Amongst other data that can be optionally passed into PhyloVision are numerical and categorical metadata, as well as a

two-dimensional projections of the cells for visualization purposes (e.g. from t-distributed stochastic neighbor embedding [tSNE]

(van der Maaten, 2008) of the main principal components or of an embedding learned by methods such as scVI (Lopez et al.,

2018; Gayoso et al., 2022). In the original VISION pipeline, cell-level clustering and consistency evaluation was performed on a

user-specified ‘‘latent space’’ (a low-dimensional embedding such as the top principal components or an embedding inferred

with tools like scVI). In the PhyloVision pipeline the phylogeny over all cells is treated as this latent space, and all clustering and

consistency analysis is performed using the cell-cell similarities encoded by the phylogeny (to see how cell clusters are utilized,

see section ‘‘Analysis of metadata’’). Optionally, a user can still specify an additional latent space that will be used for inferring

additional single-cell visualizations using algorithms like tSNE and UMAP. Finally, users can also specify additional pre-computed

Hotspot objects that can be used for the Hotspot analysis (as described below).

The signature-centric (VISION) part of the analysis pipeline in PhyloVision (invoked by default when running PhyloVision) begins by

clustering cells according to substructure on the tree (see below, section ‘‘Generating stratification (clustering) of the cells according

to the phylogeny’’) and computing scores for each user-provided signature and for every cell (computed using cell-level Z-scores as

in (DeTomaso et al., 2019)). It then assesses the agreement between the signature scores and the phylogeny with a phylogenetic

autocorrelation statistic (see section entitled ‘‘Phylogenetic autocorrelation analysis’’). Signatures that are significantly auto-corre-

lated (i.e., cells that are nearby in the phylogeny havemore similar scores than expected by chance) are clustered using the previously

described VISION pipeline (DeTomaso et al., 2019) and displayed in the web-based report in a collapsable table for each cluster
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(Figure 1, inset 3). The user can explore the scores of these gene signatures by overlaying their scores on the two-dimensional

representation of the gene expression data (Figure 1, inset 1) and the phylogeny (Figure 1 inset 2), viewing histograms of these scores

possibly subsetted according to the phylogeny (Figure 1, inset 4), and browsing through the respective genes (Figure 1 panel 4; where

genes are ranked their covariance with the signature score).

As with VISION, cell-level metadata is handled similarly to signature scores computed within PhyloVision. Specifically, separate

methodology is used to infer autocorrelation of numerical and categorical metadata. However, PhyloVision builds on this autocorre-

lation analysis by providing utilities for quantifying cell-level plasticity scores for each categorical metadata item. Intuitively, these

scores represent how often a categorical variable transitioned between states along the phylogeny (for example, the scMetRate

from Quinn et al., 2021). For more details, refer to the sections below ‘‘Analysis of metadata’’ and ‘‘Single-cell plasticity analysis’’.

PhyloVision additionally supports a phylogenetic analysis with Hotspot, which can be invoked with the runHotspot function. This

function interfaces with the Hotspot tool, implemented in Python, using the reticulate R package. Using the previously described

-Hotspot pipeline (DeTomaso and Yosef, 2021), PhyloVision first identifies individual genes whose expression is coherent with the

tree structure (i.e., nearby cells in the tree express the gene at a similar level, as compared to random chance). It then performs a

two-dimensional autocorrelation analysis to group the identified genes into modules. Finally, PhyloVision computes an enrichment

statistic between user-defined gene signatures and the identified Hotspot modules (see section entitled ‘‘Assessment of statistical

significance of the overlap between Hotspot modules and user-provided gene signature’’). Gene signatures with significant overlap

are included in the web-based report in a collapsable table for each Hotspot module (Figure 1, inset 3). The user can explore the

scores of these gene signatures or the score of entire hotspot modules by overlaying their cumulative expression (computed

identically to user-specified signatures, as in (DeTomaso et al., 2019)) on the 2-dimensional representation of the gene expression

data (Figure 1, inset 1) and the phylogeny (Figure 1, inset 2), viewing histograms of these scores possibly subsetted according to

the phylogeny (Figure 1, inset 4), and browsing through the respective genes (Figure 1, panel 4; where genes are ranked by

covariance as with user-specified signatures).

Visualization of phylogenies
PhyloVision’s web-based user interface displays the provided phylogeny using a custom Plotly Javascript package (PhyloPlot.js) in

either a radial or linear layout. Users are able to select individual cells and clades on the phylogeny for use in Differential Expression

and to view on the UMAP. Leaves reflect the same cell-coloring as the UMAP. Users are able to collapse clades to summary nodes,

using the mode, arithmetic mean, geometric mean or median of the numerical values selected for the node’s leaves. Users can also

collapse nodes by depth from the root of the tree. The phylogeny in both radial and linear layouts is converted to ultrametric edge

lengths using the following formula:

depthðnodeÞ = f1 if node is leaf ; else maxðdepthðchildÞÞ = 1 cchildrenðnodeÞg
Generating stratification (clustering) of the cells according to the phylogeny
In many cases, a phylogeny can be used to stratify groups of cells into specific groups by ‘‘cutting’’ the tree at a specific depth and

assigning cells to subclonal lineages. For example, if a phylogeny describes a differentiation process between several cell types, a

clustering of cells into subclades might yield cell-type specific clusters. PhyloVision performs not only a clustering of the phylogeny

but also an assessment of how meaningful the clustering is on the tree via an autocorrelation statistic (representing how similar the

cluster assignment is of neighboring cells).

PhyloVision clusters cells on a phylogeny by performing a breadth-first search over internal nodes. Specifically, the algorithmmain-

tains a queue of internal nodes and updates the queue by popping off the internal node with the largest child clade size, and adding

it’s immediate children to the queue. This algorithm begins with the root node, and terminates once the queue has reached a target

length (defaulted to 10) at which point PhyloVision merges the smallest clade with its neighbor until the exact target number is

reached. The algorithmic pseudocode is detailed as follows:

Cluster-Phylogeny (target := 10)

Queue := Priority Queue {Node : Maximum size of Node’s child clades}

Insert the root into the queue

While length(queue) <= target do:

Node := queue.pop(1)

Insert Node’s children to Queue

Clusters := {[Children]} Nodes Queue

While length(Clusters) > target do:

Select smallest cluster from Clusters

Merge that cluster with its phylogenetically nearest cluster

Return Clusters

While these clusters can be accessed via the metadata variable ‘‘VISION_Clusters_Tree’’, additional clusterings derived from the

phylogeny may be computed and stored as metadata (see PhyloVision vignette available with the package (https://yoseflab.github.

io/VISION/articles/phyloVision.html)).
e2 Cell Reports Methods 2, 100200, April 25, 2022
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QUANTIFICATION AND STATISTICAL ANALYSIS

Phylogenetic autocorrelation analysis for gene sets (signature-centric analysis)
To compute the extent to which a value (e.g., signature score,module score, or continuous covariate) can explain the cellular relation-

ships on the phylogeny, we make use of the Geary’s C statistic for local autocorrelation. This statistic is defined as

C=
ðN� 1ÞPi

P
jwijðxi � xjÞ2

2W
P

iðxi � xÞ2

where wij represents the cophenetic distance (i.e., distance between cells using the branch lengths of the user-specified phylogeny)

between cells i and j, xi is a value of interest, N is the total number of cells, and W is the sum of all weights. (A small amount of

random noise is introduced to the cophenetic distances to break ties.) In our case, the value of interest (i.e. x) are the ranks of the

normalized signature score in each cell, as defined previously (DeTomaso et al., 2019). We report C’ = 1 - C such that a score of

1 indicates perfect autocorrelation and 0 means no autocorrelation. While the C0 statistic provides an effect size, we evaluate the

significance of gene signature scores with an empirical p-value (FDR corrected with the Benjamini-Hochberg procedure

(Benjamini and Hochberg, 1995)), comparing the signature score to a background of randomly generated signatures as described

in our previous work (DeTomaso et al., 2019). In the collapsable tables displayed on the UI (Figure 1, inset 3), we retain only gene

signatures with an FDR <0.05 and report both C0 statistics and the FDR.

In the phylogenetic autocorrelation analysis, we utilize a K-nearest neighbor (KNN) graphwhereweights are only non-zero between

a cell i and it’s closest k neighbors. Specifically, if cell j is not a k-nearest neighbor of cell i, then wij is taken to be 0. K-nearest neigh-

bors of cell i are found using the distances on the phylogeny, where the distance between cells i and j is defined as the sumof the edge

lengths on the path between the two cells. If edge lengths for the dendrogram are not provided, every edge is defaulted to length 1.

Ties are randomly broken.

Phylogenetic autocorrelation analysis for individual genes and the identification of modules (HotSpot analysis)
PhyloVision employs a gene-level clustering into modules using the Hotspot autocorrelation analysis (DeTomaso and Yosef,

2021) on the user-defined phylogeny. (Here we describe how the algorithm is applied in the PhyloVision pipeline, for mathemat-

ical details please refer to our previous work (DeTomaso and Yosef, 2021).) First, using the cophenetic distances on the tree

(defined as the phylogenetic distance separating cells), a K-nearest neighbor (KNN) graph is constructed (using a default

K = sqrt(N), where N is the number of cells). Then, genes are selected that are significantly autocorrelated with the phylogenetic

KNN graph using the ‘‘compute_autocorrelations’’ function in Hotspot. By default, the depth-adjusted negative binomial

(‘‘danb’’) model is used and the top 1000 genes are selected (as measured by Hotspot’s Z-transformed Geary’s C) that pass

an 0.05 FDR threshold, though both these parameters can be controlled by the user. Then, genes are grouped into modules

by clustering the pairwise autocorrelation matrix computed with Hotspot’s ‘‘compute_local_correlations’’ function. By

default, we use a minimum gene threshold of 20 and a clustering FDR of 0.5, though both parameters are controllable by

the user. Gene signatures corresponding to the genes in a module are added to the PhyloVision object. Additionally, for

each module and user-specified gene-signature pair, a new signature is created by computing the gene overlap and added

to the PhyloVision object.

Assessment of statistical significance of the overlap between Hotspot modules and user-provided gene signature
Given a full set of N genes, PhyloVision’s compares the genes in module set M identified by Hotspot and the genes in an existing

signature set S by first computing an enrichment statistic:

OverlapðM; SÞ = jMXSj
E½OverlapðM; SÞ� = jMj � jSj
N

EnrichmentðM; SÞ = log

�
OverlapðM;SÞ

E½OverlapðM;SÞ�
�

Then, we assess significance using a hypergeometric test with R:

m = MaxðjMj; jSjÞ
k = MinðjMj; jSjÞ
Cell Reports Methods 2, 100200, April 25, 2022 e3
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n = N�m
PðM;SÞ = 1� phyperðOverlapðM;SÞ� 1; m; n; kÞ
where P(M,S) indicates the p-value of the overlap. P-values are then FDR-corrected using the Benjamini-Hochberg procedure

(Benjamini and Hochberg, 1995).

Analysis of metadata
PhyloVision utilizes the tools in VISION to conduct autocorrelation analysis on metadata. In this, PhyloVision analyzes metadata

differently depending on if is numerical (i.e., continuous covariates like the number of genes detected in a cell) or categorical (i.e.,

discrete covariates like the batch in which a cell profile was sampled). While most metadata is specified by the user, PhyloVision

additionally clusters the cells into subclades using a tree-based clustering method (see section below entitled ‘‘Generating

stratification (clustering) of the cells according to the phylogeny’’).

In the context of numerical metadata, PhyloVision utilizes an approach to assess autocorrelation and significance identical to that

of gene-signatures (see above, ‘‘Phylogenetic autocorrelation analysis for gene sets (signature-centric analysis), with the exception

that scores need to be computed as they are provided as precomputed scores by the user.

In the context of categorical data, PhyloVision uses the Cramer’s V statistic as an autocorrelation statistic. As described in our

previous work (DeTomaso et al., 2019), the Cramer’s V statistic is a transformation of a chi-squared test statistic, computed on

the local neighborhood of each cell. Specifically, for each cell i, we compute a local proportion of each variable value m across its

K phylogenetic neighbors (indexed by j):

ccim =
X
j

wi;j ImðcjÞ

where wij are computed as above in the gene-centric analysis (see section ‘‘Phylogenetic autocorrelation analysis for gene sets

(signature-centric analysis)’’), cj represents the value of the discrete variable of interest in cell j and Im(x) is an indicator function

that takes on the value of 1 if x == m and 0 otherwise. From these values, a contingency table X is computed as

Xlm =
X
i

ccim IlðciÞ

The chi-squared test is then performed on this contingency table X to estimate a p-value. From the chi-squared test statistic, t, the

Cramer’s V statistic is computed as

V = sqrt

�
t

n 3minðN� 1; M� 1Þ
�

where n is the sum of all the values in the contingency table X,N is the number of rows in the contingency table andM is the number of

columns.

Single-cell plasticity analysis
PhyloVision enables users to quantify the plasticity of a particular categorical metadata for each leaf on the tree using previously

described methodology (Quinn et al., 2021; Yang et al., 2021). In this, plasticity indicates how often a given cell’s ancestors changed

between categories (e.g., cellular states). Specifically, this plasticity analysis begins with computing the small parsimony of a partic-

ular categorical metadata using the Fitch-Hartigan algorithm (Fitch, 1971; Hartigan, 1973) for each subtree contained within a tree

(where a subtree is defined as the set of nodes downstream from a particular internal node). Each of these parsimony scores is

normalized to the number of edges in the subtree. Then, the single-cell plasticity score for each cell is defined as the average of these

normalized parsimony scores for all the subtrees that contain this particular leaf. This is accomplished by performing a depth-first-

traversal from the root to a leaf, averaging the normalized parsimony scores of each internal node along the way.

Differential expression analysis
Differential Expression is performed using one of several tests on the gene-level expression between two groups of cells chosen by

the user. By default, a Wilcoxon Rank Sums test is used, though PhyloVision also supports other tests implemented in the Seurat

package such t-test and logistic regression (Satija et al., 2015). The cell groups can be chosen from user-provided metadata factors

such as sample, tissue or cluster, or UI selections on the UMAP or phylogeny. Users can select cells on the UMAP using a box select

or lasso select. Users can select cells on the phylogeny using a lasso select, or by choosing the parent internal node of the cells they

wish to include. Users can comparemetadata groups or selections to the remaining unselected cells, or to other groups or selections.

The log fold change, AUC and FDR-adjusted p value are reported for each gene in the dataset.
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Analysis of the lung cancer data
The tumor phylogeny for CP004was reconstructed using theCassiopeia-Hybrid (Jones et al., 2020) algorithm fromprocessed single-

cell lineage tracing data, as described in the original study (Quinn et al., 2021). Cells present in both the expression matrix and the

lineage for CP004 were used; otherwise, cells were pruned from the lineage using the ape R package (Paradis and Schliep, 2019) or

removed from the expression matrix. All unifurcations (i.e., nodes containing exactly one child) were collapsed using the

collapse.singles function in the R package ape. Before analysis with PhyloVision, the cells of expression matrix of raw UMI counts

were library-size-normalized to the median number of UMIs in CP004. Informative genes were found using the filterGenesFano

function in VISION with default parameters and passed to PhyloVision via the projection_genes parameter. Signatures were

downloaded from the MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/) and the Hallmark, C2, and C5 (BP)

collections were used for analysis. Meta data corresponding to each cell was downloaded from NCBI GEO, series GSE161363

and dataset GSM4905334. PhyloVision was run with default parameters, except for setting num_neighbors = 30 and projection_

methods = c(‘‘UMAP’’, ‘‘tSNE30’’). AfterPhyloVision analysis,Hotspotwas invoked using the runHotspot commandwith the following

parameters: model = ‘‘normal’’, tree=TRUE, min_gene_threshold=70, n_neighbors = 30, number_top_genes = 1000. Reported

pairwise gene autocorrelations, gene modules, and enrichment results were generated from the PhyloVision pipeline as described

above.
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Figure S1: Elements of the PhyloPlot interface, related to Figure 1. A tutorial over the features of the 

PhyloPlot.js interface used in the PhyloVision web-based report. Screenshots indicate how to interact with 

the object, including how to select, collapse, and expand clades. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 





Figure S2: Elements of the Hotspot mode control panel, related to Figure 1. Users can toggle between 

signature autocorrelation and Hotspot modes in the top-right corner of the web-based report. In Hotspot 

mode, each module is presented in a collapsable table. Elements in the table are gene signatures that 

significantly overlap with the Hotspot module (see Methods). Users can also view the Hotspot summary 

statistics with the “Modules” tab, where the Geary’s C, p-values, and FDR of each module are displayed. 

Users can also select specific genes for displaying on the phylogeny and scatter plot, as well as perform 

differential expression tests. Multiple differential expression tests are supported under “Advanced 

Options”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 





Figure S3: Elements of the Hotspot mode signature exploration panel, related to Figure 1. Users can 

view the distribution of scores in the Hotspot mode on both normal and log scales. If the Hotspot module 

is selected, scores are the VISION-computed score for the genes in the Hotspot module.  If a signature is 

selected, the distribution displayed is the signature score of only the genes overlapping between the Hotspot 

module and the gene signature. Users can also view the genes in a Hotspot module, or in the overlap 

between a gene signature and Hotspot module.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 





Figure S4: Investigating cell selections, related to Figure 1. Users can investigate a selection with respect 

to its distribution of the plotted value as compared to the background (i.e., non-selected cells). PhyloVision’s 

UI also provides a breakdown of metadata within a given selection, including summary statistics over 

numerical metadata as well as measures of entropy and composition of categorical metadata. 
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