Supple	Supplemental Table 1. Detailed search strategy						
Search	terms	Search date	Database	Dates	Additional filters	Number of articles returned	
1.	((natural language processing) OR (nlp)) AND ((cardiology) OR (cardiac) OR (cardiovascular))	4/10/2020	PubMed	1/1/2015 – 4/10/2020	English	200	
2.	((natural language processing) OR (nlp)) AND ((cardiology) OR (cardiac) OR (cardiovascular))	4/10/2020	Embase	1/1/2015 – 4/10/2020	English	159	
3.	((natural language processing) OR (nlp)) AND ((cardiology) OR (cardiac) OR (cardiovascular))	4/10/2020	Scopus	1/1/2015 – 4/10/2020	English	161	
4.	((natural language processing) OR (nlp)) AND ((cardiology) OR (cardiac) OR (cardiovascular))	4/10/2020	ACM Digital Library	1/1/2015 – 4/10/2020	None	109	
5.	natural language processing) OR (nlp)) AND ((cardiology) OR (cardiac) OR (cardiovascular))	4/10/2020	IEEE Explore	1/1/2015 – 4/10/2020	None	20	
6.	natural language processing) OR (nlp)) AND ((cardiology) OR (cardiac) OR (cardiovascular))	4/10/2020	Arxiv	1/1/2015 – 4/10/2020	None	4	
7.	((natural language processing) OR (nlp)) AND ((cardiology) OR (cardiac) OR (cardiovascular))	8/1/2021	PubMed	4/1/2020 - 12/31/2020	English	56	
8.	((natural language processing) OR (nlp)) AND ((cardiology) OR (cardiac) OR (cardiovascular))	8/1/2021	Embase	4/1/2020 - 12/31/2020	English	67	
9.	((natural language processing) OR (nlp)) AND ((cardiology) OR (cardiac) OR (cardiovascular))	8/1/2021	Scopus	4/1/2020 - 12/31/2020	English	52	
10.	((natural language processing) OR (nlp)) AND ((cardiology) OR (cardiac) OR (cardiovascular))	8/1/2021	ACM Digital Library	4/1/2020 - 12/31/2020	None	23	
11.	natural language processing) OR (nlp)) AND ((cardiology) OR (cardiac) OR (cardiovascular))	8/1/2021	IEEE Explore	4/1/2020 - 12/31/2020	None	0	
12.	natural language processing) OR (nlp)) AND ((cardiology) OR (cardiac) OR (cardiovascular))	8/1/2021	Arxiv	4/1/2020 - 12/31/2020	None	0	
13.	(electronic health record* OR electronic medical record*) AND (information extraction OR named entity extraction OR named entity recognition OR coreference resolution OR relation extraction OR text mining) AND (cardiology OR cardiac OR cardiovascular) NOT (natural language processing OR nlp)	8/2/2021	PubMed	1/1/2015 – 12/31/2020	English	92	

14. (electronic health record* OR electronic medical record*) AND (information extraction OR named entity extraction OR named entity recognition OR coreference resolution OR relation extraction OR text mining) AND (cardiology OR cardiac OR cardiovascular) NOT (natural language processing OR nlp)	8/2/2021	Embase	1/1/2015 – 12/31/2020	English	14
15. (electronic health record* OR electronic medical record*) AND (information extraction OR named entity extraction OR named entity recognition OR coreference resolution OR relation extraction OR text mining) AND (cardiology OR cardiac OR cardiovascular) NOT (natural language processing OR nlp)	8/2/2021	Scopus	1/1/2015 – 12/31/2020	English	12
 16. (electronic health record* OR electronic medical record*) AND (information extraction OR named entity extraction OR named entity recognition OR coreference resolution OR relation extraction OR text mining) AND (cardiology OR cardiac OR cardiovascular) NOT (natural language processing OR nlp) 	8/2/2021	ACM Digital Library	1/1/2015 – 12/31/2020	None	77
17. (electronic health record* OR electronic medical record*) AND (information extraction OR named entity extraction OR named entity recognition OR coreference resolution OR relation extraction OR text mining) AND (cardiology OR cardiac OR cardiovascular) NOT (natural language processing OR nlp)	8/2/2021	IEEE Explore	1/1/2015 – 12/31/2020	None	41
 18. (electronic health record* OR electronic medical record*) AND (information extraction OR named entity extraction OR named entity recognition OR coreference resolution OR relation extraction OR text mining) AND (cardiology OR cardiac OR cardiovascular) NOT (natural language processing OR nlp) 	8/2/2021	Arxiv	1/1/2015 – 12/31/2020	None	0

Supplemental Table 2. Detailed exclusion cascade			
	Round 1: April 2020	Round 2: August 2021	Total
Retrieved	654	434	1,088
Pubmed	200	148	348
Scopus	161	64	225
Embase	159	81	240
ACM Digital Library	109	100	209
IEEE Explore	21	41	62
Arxiv	4	0	4
Duplicates excluded	192	69	261
Title/ abstract: excluded	268	339	607
Non-cardiology focus	148	178	326
No NLP focus/details	87	94	181
Duplicate	31	19	50
Non-English	2	0	2
Review/perspective article	0	22	22
Abstract only	0	25	25
Outside of date range	0	1	1
Full-text: excluded	161	22	183
Non-cardiology focus	59	6	65
No NLP focus/details	42	10	52
Similar research study	13	0	13
Abstract only	35	4	39
Review/perspective article	12	0	12
Outside of date range	0	2	2
Records included	33	4	37

Supplemental Table 3. Patient populations, datasets, and NLP methods of included studies

			Patient					NLP
		Patient	demographic		No. of		NLP Tools and	Evaluation
	Patient population	sample size	characteristics	Setting or dataset	documents	Document types	Methods	Methods
Adekkanattu et al, 2019 ⁴⁴	Patients undergoing echocardiogram	600	Not reported	3 academic medical centers in the US and the MIMIC III database	600	Echocardiogram	Information extraction using <i>EchoExtractor</i> tool, implemented through <i>Leo</i> NLP system	Manual annotation by 2 clinicians and 1 researcher
Alnazzawi et al, 2016 ²⁹	Heart failure patients	Not reported	Not reported	PhenoCHF corpus: discharge summaries (a subset of the documents from the i2b2 recognizing obesity challenge) and scientific articles	310	Discharge notes (n=300); scientific articles (n=10)	Named entity recognition with normalization methods (novel tool: <i>PhenoNorm</i>)	Previously annotated gold standard corpora linking entity mentions to other terminological resources
Bean et al, 2019 ²²	Hospitalized AF patients	10,030	Mean age 75.3 (SD 12.3); 56.6% male	Single hospital in the United Kingdom	17,387	Discharge summaries	Named entity recognition (previously developed tool: <i>SemEHR</i>)	Manual annotation by two expert clinicians
Bielinski et al, 2015 ³⁰	Heart Failure patients	110,110	MayoGC: mean age 65 (SD 12); Group Health: mean age 90 (SD 10); sex and race reported separately by HFpEF/HFrEF	eMERGE Cohort and multiple Mayo Clinic cohorts	110,110	Genomic data; inpatient and outpatient notes	Sectionizer to detect note sections and rule-based methods to identify concepts and assign status modifiers (positive, negative, probable) (previously developed tool: <i>MedTagger</i>)	Manual annotation by trained medical chart abstractors and nurse abstractors
Eggerth et al, 2020 ⁴²	Heart failure patients	106	Mean age 71.1 (SD 12.1), 30% male	Austrian HF disease management network HerzMobil Tirol	3,952	Outpatient collaborative care notes	Classification: Bag- of-words model; tokenization: spaCy; classification: binary classifier trained using stochastic gradient descent learning with the machine- learning framework scikit-learn	Manual annotation (number of annotators not reported)
Esteban et al, 2017 ¹⁵	Cardiovascular and cerebrovascular disease patients	1,106	Not reported	Single hospital in Argentina	1,106	Inpatient, outpatient, emergency room notes	Named entity recognition and rule-based methods	Manual annotation by 3 family physicians
Evans et al, 2016 ³⁶	Hospitalized HF patients	16,971	Not reported	system in the US	Not specified	Inpatient notes	Key term search	The entire risk prediction model

								(but not NLP
								alone) was
								compared with
								and without
								unstructured
								data.
				FDA's MAUDE				
				system for post-			Named entity	
				market surveillance			recognition, word	
				and Transcatheter			embeddings (Novel	
	Patients receiving TAVR	Not		Valve Therapy		Registry reports	tool · Boomerang	Manual
Galper et al. 2018 ⁵¹	or Mitraclin	reported	Not reported	Registry	4 951	post-market reports	NLP)	annotation
	<u></u>	Teponted	riorieponea	Itogioti j	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	post manet reports	1(24)	Manual
								annotation by 2
							Key term search	independent
							rule-based and	reviewers:
							machine learning	cardiologist
							methods (novel	resolved
Garvin et al. 2018 ³⁹	Hospitalized HE patients	1.083	Not reported	8 VA medical centers	45 703	Innatient notes	tool: CHIEF)	conflicts
Sarvin et al, 2010	noopiumzee m panems	1,005			13,103	Inputent notes	Rule-based methods	connets
							and machine	
	Hospitalized acute		Mean age 62 3 (SD				learning	Manual
	coronary syndrome		12 1) years: 71%	Single hospital in		Innatient admission	(conditional random	annotation by 3
Hu et al. 2016 ¹⁹	patients	2 930	male	China	2 930	notes	fields)	nhysicians
11u ct al, 2010	patients	2,750	maie	China	2,750	liotes	neids)	Held-out testing
								set to evaluate
								entire machine
			Mean age 71.6 (SD	Partners Healthcare			Word embeddings	learning
	Patients who received		11.8) 78.1% male	Research Patient Data	Not		and hag-of-words	algorithm (not
Hu et al. 2019 ²⁷	CRT	990	87 2% White	Registry	specified	Innatient notes	models	NI P alone)
11u et al, 2019	CKI	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	07.270 Winte	Registry	speemed	Inputient notes	models	Manual
								annotation by
								experienced
Ionnalagadda et al				Academic medical			Named entity	clinical research
2017 ⁴⁰	HEnEE natients	3 200	Not reported	center in the US	1 934 640	Inpatient notes	recognition	coordinator
	Far Partonio	-,_00	Age 26% <65 years		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			28% 65-74 years					Manual
Kaspar et al			50% > 74 years: 59%	Single tertiary care				annotation by 1
2018^{31}	HF natients	71 625	male	facility in Germany	71 625	Innatient notes	Key term search	nhysician
2010		71,025	maie		71,025	inpatient notes	Deep NLP	physician
							algorithm for	
							information	
							extraction Graph	
							IF using local	
							sequential and	
							nonlocal	Manual
			Mean age 71.2 (SD	Partners HealthCare			coreferential	annotation by
	HErEE nationts		12 2) years \$0.0%	Research Patient Data			dependencies	three study team
Leiter et al. 2020 ⁴³	undergoing CRT	990	male 86 1% White	Registry	10.870	Discharge notes	between the words	members
Loner et al, 2020		Not		it gibti y	10,070	2 isonarge notes	Machine learning	Basic random
Liu et al. 2019 ³⁷	Hospitalized HF patients	reported	Not reported	MIMIC III database	13.746	Discharge notes	methods	forest machine
2017 Liu (Cui, 2017	respirances in patients	reported	1.5t Topontou		10,710	~ 100100 50 1101005		101000 machine

							(convolutional	learning
							neural networks)	algorithm
								Held out
								validation set;
								compared to
								structured
								predictors alone
							General information	and combined
							extraction methods	structured/
Mahajan et al.							(details not	unstructured
201938	Hospitalized HF patients	1.629	Not reported	6 VA medical centers	136.963	Inpatient notes	provided)	model
	▲ ▲	,			, , , , , , , , , , , , , , , , , , ,		Rule-based methods	
							and named entity	Manual
							recognition	annotation by 2
				Mayo Hypertrophic			(previously	reviewers.
	Hypertrophic		Mean age 61, 55%	Cardiomyopathy			developed tool:	billing codes.
Moon et al. 2019 ²⁶	cardiomyopathy patients	200	male, 89% White	Registry	16.270	Inpatient notes	MedTagger)	patient surveys
,	, , , , , , , , , , , , , , , , , , ,		,			ICD interrogation	Rule-based methods	1
						reports and	(previously	Manual
	Hypertrophic			Academic medical		electrophysiology	developed tool:	annotation by 2
Moon et al. 2020 ²⁵	cardiomyopathy patients	1.127	Not reported	center in the US	687	notes	MedTagger)	reviewers
		-,					Rule-based methods	
							to identify key	Manual
							terms and	annotation by 2
							relationships	reviewers.
							between concepts	conflicts
			Mean age 67.9 (SD	Academic medical		Echocardiogram	(novel tool:	resolved by third
Nath et al. 2016 ⁴⁵	Cardiomyopathy patients	1 683	13.9) 67.6% male	center in the US	15 116	reports	EchoInfer)	reviewer
1 (uui 00 ui, 2010		1,000	1019), 0110/0 11410		10,110	10ponto	Named entity	Chex validation
				Veterans Health			recognition and	tool and eHOST
				Administration (VA)			rule-based methods	applications
			Mean age 66.6 (SD	clinical and			(previously	applied to held-
	Patients with stable		9.8) years: 99%	administrative		Innatient and	developed tool	out validation
Owlia et al. 2019^{16}	angina	6 556 919	male: 81% White	database	1 856 340	outpatient notes	Leo)	dataset
Owna et al, 2017	unginu	0,550,717	indic, 0170 winte	database	1,050,540		Named entity	Gutuber
							recognition and	
							rule-based methods	
			Mean age 72 years				(previously	Manual
			96% male: 88%	National VA	Not	Innatient and	developed tool:	annotation by 3
Patel et al. 2018 ³²	HEnEE natients	80 248	White	healthcare database	specified	outpatient notes	Leo)	reviewers
		00,240	White		specified	outpatient notes	Named entity	Tevie wers
							recognition and	
	HIV infected and					Outpatient notes	rule-based methods	
	uninfected patients					echocardiogram	(previously	
Patterson at al	undergoing			National VA	1	reports radiology	developed tool:	Manual
2017 ⁴⁸	echocardiogram	54 747	Not reported	healthcare database	445 487	reports	Leo	annotation
2017	conocaruiografii	54,747	Thor reported	nearmeare uatabase	++,,+07	Inpatient and		annotation
						outpatient notes lab		Manual
				Academic medical	1	reports radiology		annotation by 2
Posier et al 201624	AE patients	60	Not reported	conter in France	1 783	reports, radiology	Kay tarm saarch	nhysicians
1000000000000000000000000000000000000	Ai patients	00	rior reported	conter in rance	1,705	reports	Key term search	physicialis

							Named entity	
							recognition	
	Patients with elevated		Mean age 64.7 (SD	Mayo Employee and			(previously	Manual
Safarova et al,	low-density lipoprotein		14.7) years; 45%	Community Health			developed tool:	annotation by 1
201617	(≥190)	6,547	male; 94% White	(ECH) system	6,547	Outpatient notes	MedTagger)	physician
				Clinical Practice				
				Research Datalink			Key term search	
				(CPRD), a			and rule-based	
				population-based			methods (novel	
			Median age 75 (IQR	source of longitudinal			tool: Freetext	Manual
	Patients with myocardial		63-83) years; 61%	clinical information in			Matching	annotation by 2
Shah et al, 2019 ¹⁸	infarction	2,000	male	the United Kingdom.	31,913	Outpatient notes	Algorithm)	physicians
			Patients identified					
			with AF: mean age			Inpatient and	Key term search	
			69.0 (SD 14.2) years,			outpatient notes, lab	(previously	Manual
			60.6% male, 89.1%	Academic medical		reports, radiology	developed tool:	annotation by 3
Shah et al, 2020a ²³	AF patients	786	White	center in the US	22,000	reports	pyConText)	clinicians
			Site 1: Mean age 67.7					
			(SD 15.0); 43%			Patient, visit,		
			female; 83-84%			clinical,		
			White			operational,	Model built using	
			Site 2: Mean age 70.0			financial, and	logistic regression,	
			(SD 15.1); 38%	Two academic		research data from	extra trees, and	
			female; 61-84%	medical centers in the		clinical data	naive Bayes	Manual
Shah et al, 2020b ²¹	AF patients	561	White	US	1,800,000	warehouses	classifiers	annotation
				Open-source forum				Manual
	Congenital heart disease	Not		associated with a		Echocardiogram	Named entity	annotation by 5
Shi et al, 2015 ⁴⁶	patients	reported	Not reported	hospital in China	3,464	reports	recognition	reviewers
								The entire
								forecasting
								algorithm (but
								not NLP alone)
							Key term search	was validated
Toerper et al,	Patients undergoing		32% age 70 years	Single urban hospital	Not	Inpatient and	and rule-based	using 10-fold
2016 ²⁰	cardiac catheterization	13,932	and older; 64% male	in the US	specified	outpatient notes	methods	cross-validation.
							Named entity	
							recognition,	
							semantic analysis,	
							and rule-based	
			Mean age 72.5 (SD				methods (previously	Manual
			14.3) years; 57.2%	Academic medical		Discharge	developed tool:	annotation by 2
Topaz et al, 2017 ⁴¹	Hospitalized HF patients	8,901	male; 82.7% White	center in the US	8,901	summaries	MTERMS)	reviewers
						÷ .• . •	Expert-derived	
						Inpatient and	system, QPID, and	
						outpatient notes,	ontology-derived	
						radiology reports,	rule-based methods	
						procedure notes,	(previously	Manual
Valtchinov et al,	Patients with cardiac	Not		Academic medical		microbiology	developed tool:	annotation by 1
202049	implantable devices	reported	Not reported	center in the US	240,854	reports	cTakes)	researcher

						Notes describing		
						clinical and family		
				Molecular cardiology		history, tests,		Manual
	General cardiology	Not		lab at a hospital in		medications, and	Recurrent neural	annotation by 2
Viani et al, 2019 ²⁸	patients	reported	Not reported	Italy	75	diagnoses	networks (RNNs)	researchers
								Manual
Wagholikar et al,				Academic medical		Echocardiogram		annotation by
2018 ³³	HFrEF patients	57,158	Not reported	center in the US	46,634	reports	Key term search	clinical experts
							Machine learning	
							methods (random	Manual
				Health Information		Inpatient and	forest/decision tree	annotations by 2
Wang et al, 2015 ³⁴	Hospitalized HF patients	18,295	Not reported	Exchange in the US	2,139,299	outpatient notes	models)	physicians
							Key term search	Manual
	Patients undergoing		51.2% age \geq 65;	Large regional health		Echocardiogram	and normalization	annotation by 1
Xie et al, 2017 ⁴⁷	echocardiogram	621,856	49.5% male	system in the US	621,856	reports	methods	cardiologist
							Rule-based and	
							multiple machine-	
							learning methods	
							(bag-of-words,	
							support vector	
							machine, logistical	Structured
	HF patients with a CRT			Academic medical		Inpatient and	regression, and	documentation
Zhang et al, 201835	device	36,276	Not reported	center in the US	6,174	outpatient notes	random forest)	of NYHA class
	Patients presenting to the							
	emergency department						Rule-based methods	Manual review
	who had a troponin						to identify key	by one
	laboratory test and		Mean age 56 years,				terms and	emergency
	underwent an ETT within		49.6% male, 48.1%	Large regional health		Exercise treadmill	relationships	physician and
Zheng et al, 202050	30 days of their ED visits	5,214	white	system in the US	5,214	test reports	between concepts	one cardiologist
AF: atrial fibrillation	; CRT: cardiac resynchroniza	tion therapy; E	HR: electronic health rec	cord; HF: Heart failure; H	FrEF: Heart fail	ure with reduced ejection	on fraction; HFpEF: He	art failure with
preserved ejection fra	action; NLP: natural language	e processing				Ū.	-	

Supplemental Table 4. Purpose and findings of included studies by cardiac disease focus

	Study purpose	of NLP algorithm	Study outcomes	
Coronary Artery	7 Disease			
Esteban et al, 2017 ¹⁵	To assess the sensitivity, specificity, and agreement level of a rule- based algorithm for the detection of cardiovascular and cerebrovascular disease.	Sensitivity: 96 Specificity: 86	-99% -97%	The developed algorithm used only standardized and non- standardized coded terms within an EHR to properly detect clinically relevant events and symptoms of cardiovascular and cerebrovascular disease.
Hu et al, 2016 ¹⁹	To explore major adverse cardiovascular event (MACE) prediction in a proactive manner using inpatient admission records.	AUC: 72%		NLP algorithm predicted MACE for acute coronary syndrome patients at the early stage of their hospitalizations significantly better than two well-known acute coronary syndrome risk score tools.
Owlia et al, 2019 ¹⁶	To use NLP to extract Canadian Cardiovascular Society (CCS) angina severity classifications from clinical notes and determine associations between CCS and all-cause mortality and healthcare utilization.	PPV: 93% Sensitivity: 76%		NLP–extracted CCS classification was positively associated with all-cause mortality and healthcare utilization, demonstrating the prognostic importance of anginal symptom assessment and documentation.
Safarova et al, 2016 ¹⁷	To develop an ePhenotyping algorithm for rapid identification of familial hypercholesterolemia.	PPV and NPV	≥85%	The algorithm identified patient with familial hypercholesterolemia, many of whom had not been previously identified.
Shah et al, 2019 ¹⁸	To describe the contribution of outpatient notes in the 90 days prior to a myocardial infarction to the recording of information about myocardial infarction (subtype, left ventricular function, laboratory results and symptoms) and cause of death.	PPV: 83-92% Sensitivity: 17-41% Specificity: 96-97%		Outpatient notes contained information such as symptoms, results and specific diagnoses that could be useful in characterizing a myocardial infarction.
Toerper et al, 2016 ²⁰	To develop and prospectively evaluate a web-based tool that forecasts the daily bed need for admissions from the cardiac catheterization laboratory using structured and unstructured EHR data.	AUC: 72%		The forecast model identified older age, male gender, invasive procedures, coronary artery bypass grafts, and a history of congestive heart failure as qualities indicating a patient was at increased risk for admission following catheterization.
Electrophysiolog	y .			
Bean et al, 2019 ²²	To develop and validate an NLP risk scoring pipeline, explore trends in antithrombotic medication use for AF, and quantify the association between antithrombotic medication use and relevant clinical patient- level variables.	PPV: 95% Sensitivity: 97% F-score: 96% Accuracy: 98%		Automatic risk scores were in strong agreement with the two independent experts for CHA2DS2-VASc. Agreement was lower for HAS-BLED.
Hu et al, 2019 ²⁷	To apply machine learning to create an algorithm that predicts CRT outcomes using EHR data.	PPV: 79% Sensitivity: 26% F-score: 77% Accuracy: 65% AUIC: 75%		A machine learning model that leveraged readily available EHR data and clinical notes identified a subset of CRT patients who may not benefit from CRT before the procedure.
Moon et al, 2019 ²⁶	To develop and deploy NLP algorithms for automated extraction of syncope, family history of sudden cardiac death, and family history of hypertrophic cardiomyopathy from clinical narratives.	NPV: 90-97% Sensitivity: 91-95% Specificity: 90-98%		Automated extraction of the desired data elements using NLP is feasible and has promise to increase efficiency of workflow for providers managing hypertrophic cardiomyopathy patients.
Moon et al, 2020 ²⁵	To compare the performance of unstructured notes to structured device data in determining heart rhythm from implantable cardioverter defibrillators (ICDs) and whether patients with hypertrophic cardiomyopathy received appropriate therapy from their ICD.	NLP only model F-score: 0.92-0.98	Structured data only model F-score: 0.45- 0.78	The NLP methods on unstructured data performed significantly better in identifying rhythm and therapy delivered from ICDs than the methods using structured data only.
Rosier et al, 2016 ²⁴	To design a prototype mechanism for AF alerts in remote monitoring of CIEDs, and to evaluate the efficacy and safety of this prototype.	Accuracy: 98%	ó	The alert classification system including the NLP classifier had high agreement (kappa= 0.93) with the manual annotation of alerts.
Shah et al, 2020a ²³	To compare the samples and characteristics from each model, and oral anticoagulant treatment rates in each sample, of various models using structured and unstructured data to identify AF patients in EHRs.	<u>NLP only</u> <u>model</u> Sensitivity: 97%	<u>Combined NLP/</u> <u>structured data</u> <u>model</u> Sensitivity: 90% Specificity: 87%	Models that included unstructured combined with structured data were the most accurate at identifying patients with AF.

		Specificity: AUC: 89%	
		63%	
		AUC: 80%	
		Sensitivity: 90-93%	
01 1 1 1		Specificity: /1-89%	The NLP algorithm was able to identify patients with AF using
Shah et al, $2020h^{21}$	To create a portable NLP algorithm to identify patients with atrial	<u>AUC: 80-91%</u>	text alone with >90% F-score at 2 separate sites, creating
2020621	fibrillation (AF) using text alone.	<u>F-score: 93-94%</u>	opportunities for precise, nign-throughput conort identification.
General cardiolo	gy		
		RININ classifier alone:	
		PPV: 88%	
		<u>Sensitivity: 89%</u>	
		PNN and distionary lookup:	
		DDV- 87%	Integrating a wall performing PNN based classifier with a
Viani et al	To apply novel recurrent neural networks (PNNs) for event extraction	<u>11 V. 0770</u> Sensitivity: 92%	standard knowledge-based approach can be a good strategy to
2019^{28}	from medical reports in the cardiology domain written in Italian	E-score: 90%	extract information from clinical text in non-English languages
Hoort Failura	nom medical reports in the cardiology domain written in italian.	<u>1-30010. 7070</u>	extract information from ennical text in non-English languages.
neart ranure	To develop a povel method PhenoNorm, which integrates similarity		
	measures to allow automatic linking of phenotype concept mentions to		
Alnazzawi et al	known concepts in the UMIS Metathesaurus, a biomedical	F-score: 76-83%	PhenoNorm outperforms a number of alternative methods applied
2016^{29}	terminological resource	Accuracy: 77-86%	to the same task and has wider utility
2010		PPV: 80-94%	to the same task and has when utility.
		NPV: 98-100%	The developed algorithm was expanded to include definite
Bielinski et al.	To develop and validate an EHR-based algorithm to accurately	Sensitivity: 71-100%	probable, and possible HF based on the degree of confidence of
2015^{30}	identify HF patients with characterization of HFpEF and HFrEF.	Specificity: 97-99%	the classification to capture HF cases.
		PPV: 75-99%	The classifier achieved high accuracy and could be used to
Eggerth et al.	To develop classifiers for automated categorization of collaboration	Sensitivity: 44-82%	evaluate medication adherence and other aspects of management
202042	notes documenting medication management using NLP.	F-score: 55-90%	among HF patients.
		PPV: 98%	
Evans et al,	To develop and evaluate an automated identification and predictive	Sensitivity: 95%	The addition of NLP-identified HF patients significantly improved
2016 ³⁶	hospitalized HF patients' risk of 30-day readmissions and mortality.	Specificity: 98%	model performance in identification and prediction activities.
		PPV: 89-99%	
Garvin et al,	To accurately automate a United States Department of Veterans	Sensitivity: 27-100%	The NLP methods provided accurately classified patients with HF
2018 ³⁹	Affairs quality measure for inpatients with HF.	F-score: 42-100%	with high performance for meeting care metrics.
Jonnalagadda et	To develop a high recall prescreening algorithm for recruiting patients	PPV: 86%	Automated identification of HFpEF patients who are appropriate
al, 2017 ⁴⁰	into a multicenter, randomized controlled study.	Sensitivity: 95%	candidates for a clinical trial is feasible and time efficient.
		PPV: 71-96%	
Kaspar et al,	To approximate the "true number" of patients suffering from HF at a	Sensitivity: 60-92%	The NLP-based search algorithm markedly improved diagnostic
2018 ³¹	tertiary care center.	F-score: 74-86%	accuracy compared to ICD codes alone.
		PPV: 78%	
	To develop, train, and evaluate a deep NLP algorithm to identify	Sensitivity: 67%	The deep NLP algorithm trained to capture symptoms in patients
Leiter et al,	documented symptoms from unprocessed EHR notes in a cohort of	Accuracy: 99%	with CHF who received CRT showed promising precision (PPV)
202043	patients with HFrEF who would subsequently undergo CRT.	F-score: 72%	and recall.
	To evaluate a deep learning approach to predict heart failure		Deep learning models outperformed the regular models in
Liu et al, 2019 ³⁷	readmission from clinical notes.	F-score: 73-76%	prediction tasks.
			Predictive models using both structured and unstructured EHR
Mahajan et al,	To use machine learning methods such as statistical NLP for		data best predicted HF readmissions compared to models using
201938	predicting the risk of readmission for heart failure.	AUC: 51-65%	only structured and only unstructured data.
	To use NLP extraction of LVEF values and algorithm development	PPV: 96%	
Patel et al,	and validation to derive an algorithm that is able to curate a cohort of	NPV: 87%	An algorithm using structured and unstructured EHR data led to
201852	HFpEF from a large national database.	Sensitivity: 88%	the creation of a HFpEF cohort within the health system.

		Specificity: 96	5%	
				NLP successfully identified HF self-management behaviors in
Topaz et al.	To identify HF patients with ineffective self-management by using	PPV: 95%		discharge notes. Specific types of self-management deficits were
201741	NLP on a subsample of discharge.	Sensitivity: 79	%	significantly associated with readmissions.
	To use a regular expression-based NLP system to extract LVEF from	-		The regular expression-based approach accurately extracted LVEF
Wagholikar et	echocardiogram reports to identify patients presenting with HFrEF for			from echocardiograms and was useful for identifying HFrEF
al, 2018 ³³	driving a population-based therapeutic intervention program.	Accuracy: 100	9%	patients.
		-		A HF case finding algorithm including NLP was developed,
Wang et al,				tested, prospectively validated, and integrated into the Health
2015 ³⁴	To identify HF cases from both EHR codified and NLP found cases.	PPV: 91%		Information Exchange live system.
		Rule-based	Machine-	
		methods	learning	
		PPV: 95%	methods	
		Sensitivity:	PPV: 85-95%	
		92%	Sensitivity: 81-	Machine learning-based methods outperformed a rule-based
Zhang et al,	To extract NYHA class for patients with a CRT device from electronic	F-score:	93%	method. The best machine-learning method was a random forest
2018 ³⁵	health records.	94%	F-score: 83-94%	with n-gram features.
Imaging				
		PPV: 6-100%		
Adekkanattu et	To investigate the portability of an NLP system to extract 27 key	Sensitivity: 25	-100%	The performance of the NLP methods varied widely based on the
al, 2019 ⁴⁴	cardiac concepts from echocardiogram reports.	F-score: 11-10	00	cardiac concept of interest.
	To explore the feasibility and reliability of using NLP for large-scale	PPV: 94%		
Nath et al,	and targeted extraction of multiple data elements from echocardiogram	Sensitivity: 92	%	The NLP methods reliably extracted relevant data elements from
201645	reports.	F-score: 93		echocardiography reports.
	To develop a robust and efficient clinical information extraction			
Patterson et al,	system utilizing both coded and unstructured data towards the goal of	PPV: 94-98%		The NLP methods that were developed feasibly and effectively
2017 ⁴⁸	refining heart failure phenotypes.	Sensitivity: 74	-82%	extracted HF-related information.
			Machine	
		Rule-based	<u>learning</u>	
		methods	methods	
		PPV: 51%	PPV: 47%	
		Sensitivity:	Sensitivity: 42%	
	To extract anatomic site-related features in echocardiogram reports	43%	F-score: 43	The machine learning methods slightly outperformed rule-based
Shi et al, 2015 ⁴⁶	and predict risk level.	F-score: 44	AUC: 61%	methods, but performance varied by risk level.
		Expert-		
		derived NLP		
		Sensitivity:		
		88%	Ontology-	
		Specificity:	derived NLP	
37.1.1	To assess two NLP approaches (expert-derived and ontology-derived)	82%	Sensitivity: 96%	Both expert- and ontology-derived NLP approaches have similar
Valtchinov et	to identify patients with implantable devices that pose safety risks for	Accuracy:	Specificity: 92%	accuracy in identifying patients with implantable devices that pose
al, 2020 ⁴⁵		83%	Accuracy: 91%	high safety risks for MRI.
Xie et al, 201747	To develop a computerized NLP algorithm to extract EF from	PPV: 9/%	0/	
201/*/	ecnocardiogram reports.	Sensitivity: 95	%	The NLP algorithm achieved high performance.
	10 develop and validate an automated method to interpret exercise			NLP effectively extracted relevant information from exercise
771 1	treadmin test results and test the associations between exercise	a	0/	treadmill tests. Most patients were at low risk of severe 30-day
\angle heng et al,	treadmin test results with 30-day patient outcomes in a large	Sensitivity: 96	1% 10/	outcomes (myocardial infarction, death) and had normal ETT
202055	population.	specificity: 95	9%0	results.
Valvular Disease				

	To analyze reported adverse events and device problems for both						
	TAVR and Mitraclip and compared rates between unstructured data in	NLP methods (vs structured	NLP enabled identification of the most common events associated				
Galper et al,	FDA's MAUDE system for post-market surveillance and structured	data)	with TAVR and Mitraclip procedures. Event rates derived from				
201851	data the Transcatheter Valve Therapy Registry.	R ² : 0.86	the two data sources were not significantly different.				
AF: atrial fibrillation; CRT: cardiac resynchronization therapy; EHR: electronic health record; HF: Heart failure; HFrEF: Heart failure with reduced ejection fraction; HFpEF: Heart failure with							
preserved ejection fraction; NLP: natural language processing							