Supplementary Information

Modulation of the doping level of PEDOT:PSS film by treatment with hydrazine to improve the Seebeck coefficeint

Temesgen Atnafu Yemata, ^{a, b, d} Zheng Yun^a, Aung Ko Ko Kyaw, ^{a, c} Xizu Wang, ^a Song Jing ^a, Wee Shong Chin ^{b*} and Jian Wei Xu ^{a, b*}

^aInstitute of Materials Research and Engineering; Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore

^bDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

^c Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China

^d Chemical Engineering Department, Bahirdar University, Bahirdar P.O.Box 26, Ethiopia

*Corresponding author: jw-xu@imre.a-star.edu.sg , chmcws@nus.edu.sg

Figure S1. (a) Average σ and S and **(b)** PF of the PEDOT:PSS films treated with different concentrations of formic acid with error bars. The formic acid concentration at 0 refers to the films without formic acid treatment i.e. pristine film. TE properties of the EG treated PEDOT:PSS films as a function of hydrazine weight concentration **(c)** S and σ , and **(d)** *PF*. The hydrazine concentration at 0 refer to the films without hydrazine treatment, i.e. treated by EG only.

ure S2. AFM height images: **(a)** pristine, **(b)** formic acid/ 0.2 wt % hydrazine treated and **(c)** formic acid/ 1 wt % hydrazine treated. AFM Phase images: **(d)** pristine, **(e)** formic acid/ 0.2 wt % hydrazine treated and **(f)** formic acid/ 1 wt % hydrazine treated. AII images captured with an area of $1 \times 1 \mu m^2$.

Figure S3. XPS spectra of (a) 0.05 wt% hydrazine, (b) 0.1 wt% hydrazine and (c) 0.2 wt% hydrazine treated PEDOT: PSS films.

Figure S4. SEM images: (a) pristine, (b) formic acid 1 time treated (c) formic acid three times treated (d) formic acid-0.15wt% hydrazine pristine, (e) formic acid/ 2 wt % HZ treated and (f) EG/ 0.15 wt % HZ treated. All images captured an area of $1 \times 1 \ \mu m^2$.

Figure S5. (a) The pristine and **(b)** treated PEDOT:PSS films normalized thermalreflectacne signals. The films coated with 100 nm-thick-Al after the nanosecond-pulse heating. The solid red lines represent the fitted temperature response curve that is used to extract the thermal effusivity of the PEDOT:PSS films and **(c)** The front heating, front detecting configuration used in the measurement text of the article should appear here with headings as appropriate.

Table S1. Treatment methods of some of PEDOT:PSS TE materials and their corresponding TE properties reported in the literature.

Reference	Treatment methods	σ	S	PF	k	ZT
		(S/ cm)	(μV/ K)	(µW/mK²)	(W/mK)	
1	Post-treatment with DMSO/EG mixture	952.8	19.0	37.1	0.17	0.065
2	Dipping post-treatment H2SO4	1,167	12.1	17.0	-	-
3	N,N-Dimethylformamide solution of Zinc chloride post treatment	1400	26.1	98.2	-	-
4	D-sorbitol addition , then vapor posttreatment with TDAE	295	27.5	22.3		0.01
5	Urea addition	63.1	20.7	2.7	-	-
6	Formic acid post treatment	1,900	20.6	80.6	-	-
7	Treated with hydrazine	578	67.0	112.0	0.37	0.093
This work	Treated with formic acid and hydrazine	513	42.7	93.5	0.30	0.10

References

- 1. S. Liu, H. Deng, Y. Zhao, S. Ren and Q. Fu, *RSC Advances*, 2015, **5**, 1910-1917.
- 2. J. Kim, J. G. Jang, J.-I. Hong, S. H. Kim, and J. Kwak, *Journal of Materials Science: Materials in Electronics*, 2016, **27**, 6122-6127.
- 3. Z. Fan, D. Du, Z. Yu, P. Li, Y. Xia and J. Ouyang, *ACS Appl. Mater. Interfaces*, 2016, **8**, 23204-23211.
- 4. E. Yang, J. Kim, B. J. Jung, and J. Kwak, *Journal of Materials Science: Materials in Electronics*, 2015, **26**, 2838-2843.
- 5. F.-F. Kong, C.-C. Liu, J.-K. Xu, F.-X. Jiang, B.-Y. Lu, R.-R. Yue, G.-D. Liu and J.-M. Wang, *Chinese Physics Letters*, 2011, **28**, 037201.
- 6. D. A. Mengistie, C.-H. Chen, K. M. Boopathi, F. W. Pranoto, L.-J. Li and C.-W. Chu, *ACS Appl. Mater. Interfaces*, 2015, **7**, 94-100.
- 7. H. Park, S. H. Lee, F. S. Kim, H. H. Choi, I. W. Cheong, and J. H. Kim, *J. Mater. Chem. A*, 2014, **2**, 6532-6539.