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SUPPLEMENTARY METHODS 
 
Expert Plaque Measurements from CCTA   
 
In axial and multiplanar views, the expert reader placed a region of interest in the ascending aorta to define normal 
blood pool contrast attenuation and control points in the coronary artery lumen to define the centreline. Atherosclerotic 
lesions were defined as any tissue ≥1mm2 within or adjacent to the lumen that could be discriminated from surrounding 
pericardial tissue, epicardial fat, or lumen, and identified in ≥2 planes. In coronary segments ≥1·5 mm within the 18-
segment SCCT model of the coronary tree1, the expert reader visually identified all lesions and manually defined their 
proximal and distal limits. Adaptive scan-specific Hounsfield Unit (HU) thresholds for plaque components were then 
automatically generated. Segmentation of the vessel wall and lumen were performed by a previously described 
algorithm2, with manual adjustment as required. Plaque volume (mm3) was calculated on a per-lesion level for the 
following components: total plaque, calcified plaque, noncalcified plaque, and low-attenuation plaque (fixed 
attenuation threshold <30 HU). The respective plaque burdens (%) were calculated as: plaque volume / analysed vessel 
segment volume × 100. Quantitative diameter stenosis (%) was calculated as the ratio of minimal lumen diameter to 
the mean of 2 (proximal and distal) non-diseased reference points3.   
 
IVUS Image Analysis   
 
Vessel (external elastic membrane) and lumen contours were manually traced at every 1-mm cross-section. Minimal 
luminal area was measured at the site of the smallest lumen. Total plaque volume was calculated as the vessel volume 
minus lumen volume4. Matching of lesions between IVUS and CCTA was performed by an independent observer 
blinded to the results of the CCTA analysis. Stretched multiplanar reformatted CCTA images were compared with 
longitudinal reconstructed IVUS datasets using at least two orthogonal catheter angiography views. The proximal and 
distal limits of plaques were matched using anatomical landmarks, such as distance from the aorto-coronary ostium, 
target lesions, side branches, or calcifications4.   
 
Training the Deep Learning Model 
 
CCTA image data were normalized using minmax normalization. We used a pre-trained DenseNet and Xavier 
initialization5 as the initial weights of the model. Optimization was performed using the Adam method6 to minimize 
the Dice Loss and implemented with the Monai library. The learning rate started at 1e-3 and was dynamically reduced 
as the validation loss plateaued. Early stopping was utilized to reduce overfitting. The performance of the DL model 
was evaluated in the internal validation dataset using the Dice coefficient which measures the overlap between the 
ground truth and predicted output image, with values ranging from 0 (no overlap) to 1 (complete overlap). The model 
configuration providing the best Dice coefficient for internal validation was then applied to the test set.  
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Supplementary Table 1. Clinical characteristics of the overall study population (n=1,196) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Data are n (%) or mean ± standard deviation.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Age (years) 65·2±9·8 

Male sex 780 (65·2) 

Diabetes mellitus 221 (18·5) 

Hypertension 650 (54·3) 

Dyslipidaemia 746 (62·3) 

Smoking (current or former) 448 (37·4) 

Family history of coronary artery disease 194 (16·2) 

Prior coronary artery disease 393 (32·8) 
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Supplementary Table 2. CT scan parameters for each study site 
 

 

 
CTA = computed tomography angiography. DIAMOND = Dual Antiplatelet Therapy to Reduce Myocardial Injury. ICA = invasive coronary angiography.  

PREFFIR = Prediction of Recurrent Events with 18F-Fluoride. SCOT-HEART = Scottish Computed Tomography of the Heart. 

 
 
 
 

Cohort & Site CT scanner Detector rows Voltage (kVp) Matrix Size (pixels) Pixel Size (mm) Slice Thickness (mm) Reconstruction 

Training 

Cedars-Sinai I Siemens Definition & Definition Flash Dual source 128 100, 120 512 × 512 0·35 
0·39 

0·3 Filtered back projection  
Iterative reconstruction 

MonashHeart Canon Aquilion ONE  320 100, 120 512 × 512 0·37 0·25 Iterative reconstruction 

Kusatsu Heart Center I GE Lightspeed 64 120 512 × 512 0·39 0·6 Filtered back projection  

Erlangen Siemens Definition  Dual source 128 120 512 × 512 0·30 0·4 Filtered back projection  

DIAMOND Siemens Biograph mCT 128 120 512 × 512 0·36 0·5 Filtered back projection  

PREFFIR - Aberdeen GE Discovery 710 128 100, 120 512 × 512 0·40 0·6 Filtered back projection  

PREFFIR - Manchester Siemens Definition AS 64 100, 120 512 × 512 0·40 0·4 Filtered back projection  

PREFFIR - Edinburgh Siemens Biograph mCT 128 100, 120 512 × 512 0·32 0·5 Filtered back projection  

Testing 

SCOT-HEART - Site 1 Phillips Brilliance 64 100, 120 512 × 512 0·40 0·4 Filtered back projection  

SCOT-HEART - Site 2 Toshiba Aquilion ONE  320 100, 120 512 × 512 0·35 0·25 Filtered back projection  
Iterative reconstruction 

SCOT-HEART - Site 3 Siemens Biograph mCT 128 100, 120 512 × 512 0·36 0·5 Filtered back projection  

Cedars-Sinai II Siemens Definition & Definition Flash Dual source 128 100, 120 512 × 512 0·35 
0·39 

0·5 Filtered back projection 
Iterative reconstruction 

Kusatsu Heart Center II GE Lightspeed 64 120 512 × 512 0·39 0·6 Filtered back projection  
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Supplementary Table 3. Performance of deep learning versus expert plaque measurements in the external 
validation cohort (1,081 lesions) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

CI = confidence interval. ICC = intraclass correlation coefficient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plaque measurement           ICC (95% CI)   Spearman correlation 

Total plaque volume (mm3) 0·953 (0·946-0·959) 0·910 

Noncalcified plaque volume (mm3) 0·914 (0·901-0·926) 0·855 

Calcified plaque volume (mm3) 0·947 (0·939-0·954) 0·917 

Low-attenuation plaque volume (mm3) 0·827 (0·803-0·848) 0·808 

Vessel volume (mm3) 0·991 (0·990-0·992) 0·984 

Diameter stenosis (%) 0·882 (0·861-0·901) 0·856 

Total plaque burden (%) 0·813 (0·759-0·822) 0·787 

Noncalcified plaque burden (%) 0·811 (0·772-0·829) 0·783 

Calcified plaque burden (%) 0·936 (0·926-0·944) 0·883 

Low-attenuation plaque burden (%) 0·808 (0·762-0·805) 0·779 
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Supplementary Table 4. Interobserver variability for expert reader plaque measurements  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CI = confidence interval. ICC = intraclass correlation coefficient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Plaque measurement          ICC (95% CI) Spearman correlation 

Total plaque volume (mm3) 0.973 (0.963-0.981) 0.949 

Noncalcified plaque volume (mm3) 0.969 (0.957-0.978) 0.940 

Calcified plaque volume (mm3) 0.953 (0.935-0.967) 0.919 

Low-attenuation plaque volume (mm3) 0.915 (0.888-0.939) 0.843 

Vessel volume (mm3) 0.994 (0.993-0.995) 0.987 

Diameter stenosis (%) 0.919 (0.885-0.942) 0.870 

Total plaque burden (%) 0.835 (0.768-0.883) 0.795 

Noncalcified plaque burden (%) 0.831 (0.762-0.880) 0.789 

Calcified plaque burden (%) 0.955 (0.936-0.968) 0.914 

Low-attenuation plaque burden (%) 0.824 (0.691-0.918) 0.791 
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Supplementary Table 5. Reproducibility of deep learning plaque measurements using coronary centrelines 
derived from different expert readers 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

CI = confidence interval. ICC = intraclass correlation coefficient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Plaque measurement ICC (95% CI) Spearman correlation 

Total plaque volume (mm3) 1 (1-1) 1 

Noncalcified plaque volume (mm3) 0·998(0·997-0·998) 0.992 

Calcified plaque volume (mm3) 0·997 (0·995-0·998) 0.979 

Low-attenuation plaque volume (mm3) 0·990 (0·986-0·993) 0.976 

Vessel volume (mm3) 1 (0·999-1) 0.998 

Diameter stenosis (%) 0·975 (0·965-0·982) 0.953 

Total plaque burden (%) 0·979 (0·971-0·985) 0.946 

Noncalcified plaque burden (%) 0·979 (0·970-0·985) 0.948 

Calcified plaque burden (%) 0·984 (0·978-0·988) 0.964 

Low-attenuation plaque burden (%) 0·986 (0·980-0·990) 0.973 
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Supplementary Table 6. Diagnostic performance of deep learning for detection of significant stenosis 
 
 

   Sensitivity Specificity PPV NPV Accuracy 

 
Deep Learning 

vs 
Expert CCTA Interpretation 

 

≥50% 
Per-vessel 95·4 (84·2-99·4) 95·3 (89·4-98·5) 89·1 (77·7-95·1) 98·1 (92·9-99·5) 95·3 (90·6-98·1) 

Per-patient 100·0 (85·8-100·0) 88·5 (69·9-97·6) 88·9 (73·4-95.9) 100·0 94·0 (83·5-98·8) 

≥70% 
Per-vessel 94·4 (72·7-99·9) 99·2 (95·9-99·9) 94·4 (70·6-99·2) 99·2 (95·1-99·9) 98·7 (95·3-99·8) 

Per-patient 100·0 (69·2-100·0) 97·5 (86·8-99·9) 90·9 (59·1-98·6) 100·0 98·0 (89·4-99·9) 

 

 
Deep Learning 

vs 
Invasive Coronary Angiography 

 

≥50% 
Per-vessel 97·9 (88·9-99·9) 91·2 (83·9-95·9) 83·9 (73·7-90·7) 98·9 (93·0-99·9) 93·3 (88·1-96·8) 

Per-patient 100·0 (89·7-100·0) 68·8 (41·3-90·0) 87·2 (76·7-93·4) 100.0 90·0 (78·2-96·7) 

≥70% 
Per-vessel 90·5 (69·6-98·8) 97·7 (93·4-99·5) 86·4 (67·2-95·1) 98·4 (94·4-99·6) 96·7 (92·4-98·9) 

Per-patient 90·0 (68·3-98·8) 96·7 (82·8-99·9) 94·7 (72·3-99·2) 93·6 (79·5-98·2) 94·0 (83·5-98·8) 
 

 

Data are percentage (95% confidence interval).  
CCTA = coronary computed tomography angiography. NPV = negative predictive value. PPV = positive predictive value. 
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Supplementary Figure 1. Deep learning workflow for coronary segmentation  
The Hierarchical convolutional long short-term memory (ConvLSTM) Network performed segmentation of coronary computed tomography angiography (CCTA) images in a 
multitask approach for: 1) vessel wall; and 2) lumen and calcified plaque (blue and yellow overlay, respectively). All remaining voxels between the vessel wall and lumen were 
defined as noncalcified plaque (red overlay).  
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Supplementary Figure 2. Architecture of the Hierarchical ConvLSTM Network  
The Hierarchical ConvLSTM Network had two branches, each containing a feature extractor and segmentation head. The first branch used a ConvLSTM to 
extract features from the current cross-section as well as five adjacent sections on either side. The second branch used a DenseNet block to extract features from 
the current vessel cross-section. The segmentation head in both branches performed semantic segmentation using convolutional layers (Conv), batch 
normalization (Batch Norm), and a Leaky Rectified Linear Unit (ReLU). An attention head combined the outputs of both branches. 
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Supplementary Figure 3. Noncalcified and calcified plaque volume measured by deep learning versus expert readers in the test set 
Bland-Altman plots of (A) noncalcified and (B) calcified plaque volume measured by deep learning (DL) versus expert readers in 1,901 lesions from the overall test set. 
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Supplementary Figure 4. Total plaque volume measured by deep learning versus expert readers in the external validation cohort  
(A) Correlation and (B) Bland-Altman plots comparing total plaque volume measured by deep learning (DL) versus expert readers in 1,081 lesions from the external 
validation cohort.  
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Supplementary Figure 5. Per-patient CAD-RADS categorization by deep learning versus expert readers and 
invasive coronary angiography  
Confusion matrices of deep learning versus (A) expert readers and (B) invasive coronary angiography (ICA) for the 
categorization of stenosis severity according to the Coronary Artery Disease Reporting and Data System (CAD-RADS).   
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Supplementary Figure 6. Prognostic value of deep learning-based low-attenuation plaque burden for myocardial infarction 
Kaplan-Meier cumulative incidence curves of fatal or nonfatal myocardial infarction (MI) in patients from the SCOT-HEART trial stratified by low-attenuation 
plaque burden above or below 4%, the optimal cut-off determined by receiver operating characteristic curve analysis.  
  

 
 
 
 


