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Terminology 
Intensity values vs. dimensions vs. channels
We first define our use of “dimensions” in describing mass 
spectrometry data because the distinction between what qualifies 
as a dimension and what does not is often ambiguous. For 
example, in the literature, “intensity” (or “abundance”) has been 
referred to as a dimension in addition to those dimensions readily 
characterized as such, e.g. m/z, retention time, or drift time. 
However, we assert that intensity/abundance represents measured 
signal at coordinates characterized by constituent dimensions and 
thus should not be considered as a distinct dimension. In other 
words, we define dimensionality as the number of indices needed 
to specify an individual element within a given array. For 
instance, to query LC-IMS-MS data, we must specify m/z, 
retention time, and drift time to return the value (intensity) of the 
corresponding array element indexed by that coordinate; thus, the 
data is defined by those 3 dimensions and should be considered 
3-dimensional, and not 4-dimensions as has been reported in other 
papers.

For instance, consider a monochromatic image. Each pixel of the 
image has an X dimension (width), a Y dimension (height), and 
an intensity value (for an 8-bit image, ranging from 0 to 255). 
Despite each pixel being characterized by three values—X, Y, and 
intensity—we refer to this image as two dimensional, with the 
intensity values queried through X and Y indices. 

Similarly, tandem MS (also known as MS/MS or MS2) has 
sometimes been referred to as an additional dimension. However, 
successive MS levels have the same indices as the accompanying 
MS1, and thus the same dimensionality applies. Just as MS1 can 
be queried by m/z, retention time, and drift time to yield an array 
element in LC-IMS-MS, so too can the MS2. We thus consider 
the MS2 (and, by extension, MSn) not as additional dimensions, 
but “channels” wherein array indices—and as it follows, array 
dimension—are shared. Distinction by channel then implies a 
parallel array structure containing the same dimensions; thus, our 
example of LC-IMS-MS/MS results in three-dimensional, two-
channel data.

To illustrate, we return to our image analogy. In a color image, 
each (X, Y) coordinate contains separate values for three separate 
image channels: red, green, and blue. While we could refer to the 
color channel as a separate index and store (X, Y, channel) 
coordinates, we instead query values in each channel by the same 
(X, Y) indices and consider a color image as two-dimensional 
overall. This convention applies because the channel does not 
represent a spatial, physical, or temporal dimension that separates 
array elements; rather, color reflects parallel acquisitions of equal 
dimensionality from the camera sensor, as in MS and MS/MS.

Methods
Internal standard composition
The internal standard mixture consisted of D4-malonic acid, D4-
succinic acid, D5-glycine, D4-citric acid, 13C6-fructose, D5-L-
tryptophan, D4-lysine, D7-alanine, D35-stearic acid, D5-benzoic 
acid, and D15-octanoic acid.

File input/output
For optimal use with DEIMoS, we recommend certain msconvert 
options to ensure input data replicate the vendor format as closely 
as possible (i.e. msconvert.exe {filename}.{ext} -32 -z -g -outfile 

{filename}.mzML.gz). Provided data in mzML format, DEIMoS 
parses the file contents to build a schema represented internally as 
a pandas45,46 data frame containing arrays for each separation 
dimension (e.g. for LC-IMS-MS/MS: retention time, drift time, 
and m/z) and intensity.

Kernel selection
Some instruments decrease m/z resolution with increasing m/z. 
Even kernels of constant size can thus yield a larger m/z footprint. 
To account for such variation, DEIMoS supports scaling of other, 
fixed-resolution dimensions based on another dimension with 
dynamic resolution. Scaling is achieved by defining a reference 
resolution by which remaining, selected dimensions are scaled. 
For instance, kernel width can be scaled in the drift time 
dimension by m/z resolution.

For our example data, we determined kernel size for each 
dimension in two steps. First, we used a single feature of high 
intensity and well-defined peak shape in each dimension to define 
parameters for initial feature detection. The footprint of the high-
intensity feature, approximately 3-sigma of a Gaussian 
distribution, was used to determine kernel size relative to the 
resolution of the underlying data. The kernel was then applied to 
the full dataset for rough feature coordinate extraction. Second, 
we sampled the features resulting from step (1) to span each 
dimension and produced peak statistics as a function of m/z. We 
found that peak width increases in both m/z and drift time 
dimensions with increasing m/z, but retention time remains 
largely invariant. Sampled peak statistics were used to inform 
final kernel size selection. See Figure S1 for visualization of peak 
size analysis.

For Bruker and Waters data, a less exhaustive approach was 
employed in that only a handful of representative features were 
sampled to determine adequate feature detection parameters. For 
Bruker, these were 20 ppm, 0.05 V•s/cm2, and 20 seconds for m/z, 
inverse reduced mobility, and retention time, respectively. For 
Waters, values were 20 ppm, 0.38 ms and 0.1 minutes for m/z, 
drift time, and retention time, respectively.

Agglomerative clustering
Agglomerative clustering is implemented via scikit-learn using a 
custom distance matrix to ensure the maximum linkage distance 
does not exceed the user-specified tolerance in any one 
dimension, i.e. Chebyshev distance. Cluster affinity is defined by 
complete linkage, which uses the maximum of the distances 
between all observations of two sets to qualify a merge. To ensure 
that features are merged into clusters across datasets, not within, 
a connectivity matrix is automatically generated to mask intra-
sample linkages. However, intra-dataset clustering can occur 
when parent nodes unconstrained by the connectivity matrix are 
merged, resulting in the clustering of distal, nonadjacent child 
nodes. We note that nodes are not merged if the maximum linkage 
distance is exceeded. Thus, to prevent erroneous feature merges, 
the user can simply reduce their selected tolerances.
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Extracted ion approach
The extracted ion approach was evaluated on deuterated internal 
standards with metabolites of known m/z. For each m/z of possible 
adducts, the data are sliced ±20 ppm to yield the extracted ion 
representations, and the coordinate of the most abundant feature 
is returned. Masses of probable adducts were calculated using the 
Mass Spectrometry Adduct Calculator (MSAC) for each parent 
molecule depending on instrument polarity: [M+H]+ and 
[M+Na]+ for positive mode, and [M-H]- for negative mode, 
though many more adduct types are available through MSAC.

Isotope detection
In DEIMoS, isotopes are detected in a similar fashion to 
alignment, wherein matching is determined within a dataset using 
an m/z offset corresponding to probable isotopic distance. Isotopic 
distance can be represented as the isotope mass difference (Δm) 
times the number of isotopic substitutions (N), divided by the 
formal charge (z), as shown in Equation S1. 

DEIMoS currently supports user supplied isotopic relationships 
through specification of the parameters defined in Equation S1, 
where N and z are singular values or arrays. When arrays are 
specified, DEIMoS enumerates isotopic distances. To evaluate 
the deisotoping module for singly charged analyte, we searched 
for 13C isotopic patterns (Δm = 1.0003 Da) with up to five isotopic 
substitutions (N = 5) and a nominal charge of 1 (z = 1), 
highlighting sample-level 13C isotope statistics and demonstrative 
features. A similar process was performed for a multiply charged 
analyte and an analyte with overlapping isotopic signatures, 
differing only in the search space of nominal charge (z ≤ 3). In 
each case, per-dimension tolerances were ±20 ppm in m/z, ±1.5% 
in drift time, and ±0.3 minutes in retention time.

Partitioning
Data acquisitions of high dimensionality result in greater memory 
and processing demands. The feature detection process is 
computationally efficient for N < 3, but memory-intensive for 
higher-dimensional data. The data are initially stored in 
coordinate format, a sparse representation of an N-dimensional 
array, but must be converted to a dense array to support 
processing by convolution. To ameliorate memory limitations, 
partitioning functionality was implemented.

For a typical LC-IMS-MS/MS dataset, the acquired signal 
contains on the order of several hundred million unique 
coordinates on sparse representation depending on LC separation 
length. However, the total space is defined by 197,504 unique m/z 
values, 416 unique drift times, and 568 unique retention times, 
resulting in a dense array with ~5x1010 cells. Thus, memory 
requirements increase from a few gigabytes in sparse format to 
~200 gigabytes in the dense representation.

To circumvent memory limitations, we slice the sparse 
representation by a selected dimension into partitions of user-
defined size. Iteratively, each partition is cast as a dense array and 

processed by the algorithm of interest, such as feature detection. 
Partitions can be configured to overlap in order to account for 
edge effects of the applied convolutions. As such, the regions 
proximal to an artificially imposed partition edge are ignored in 
favor of the overlapping, non-edge regions.

The partitioning utility may also be used in applications involving 
feature matching, such as alignment. For example, if partitioned 
in 10 m/z increments, features from 100 - 110 m/z would be 
matched without requiring evaluation against the 120 - 130 m/z 
range, dramatically increasing computational efficiency. 
Additionally, as with feature detection, we account for potential 
errors arising from partition edge effects through partition 
overlap. 

Plotting
Though data visualization is only a peripheral focus of this work, 
DEIMoS includes a plotting module with several convenience 
functions for common plots: stem plots for MS2 spectra, fill-
between plots for 1D representations, grid plots 2D 
representations, and a utility to combine each into a composite 
plot. The composite plot visualizes, in the case of LC-IMS-MS, a 
3D feature using a series of 1D and 2D plots, as shown in Figure 
2. 

Results and Discussion
Feature detection
Due to the iterative nature of lower-dimensionality approaches, 
computation time scales with number of features detected. For 
example, if N features are detected in the 2D projection of m/z and 
retention time, feature detection must be performed N times in the 
remaining drift time dimension. Because of resulting loop 
iterations, the computational load of such approaches is high 
despite dimensionality reduction, whereas the native 
dimensionality approach only requires the kernel to pass over the 
data once for feature detection. However, simultaneous use of all 
dimensions still creates the largest memory footprint, 
necessitating the use of a partitioning utility in cases of 
insufficient system memory.

Extracted ion approach
To demonstrate DEIMoS’s extracted ion approach, we targeted 
deuterated internal standards that were spiked into the human 
plasma samples. Each m/z of interest is used to isolate features in 
remaining dimensions (Figure S9). This operation is useful for 
processing data from analyses of authentic reference materials to 
build spectral libraries or confirm the presence of target 
compounds. The described approach yields a clear feature for 
each of the examples, confirming the presence of each internal 
standard based on adduct m/z and associated coordinates in drift 
and retention time. However, situations may arise in which no 
adducts for a given analyte are detected, or multiple features for a 
given adduct m/z appear. In such cases, further investigation is 
required—for example, MS2 spectra assessment—particularly in 
contexts involving authentic reference standards and internal 
standards. 

Isotope detection

Equation S1:      𝑑𝑖𝑠𝑜 =
𝑁∆𝑚

𝑧
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Isotopic signatures were identified for 13C-containing analytes in 
a representative sample. Only signatures with at least three-
member isotopologues within expected m/z error were 
considered, resulting in 2132 13C-containing adduct ions detected 
by their isotopic signature. Detected isotopic signatures can be 
then used to either (i) exclude redundant features in downstream 
analysis or (ii) provide further evidence supporting presence or 
absence of a given analyte via formula confirmation. In either 
case, the ability to rapidly identify these signatures is critical to 
mass spectrometry analysis. Representative examples for singly 
charged, multiply charged, and overlapping isotopic signature are 
depicted in Figures S10, S11, and S12, respectively.
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Figure S1. Peak width characterization. Features selected to span each separation dimension to determine a relationship between m/z and 
peak width. The sigma of the distributions in m/z and drift time (blue) are plotted alongside the relative resolution of the sampling interval in 
m/z (red), illustrating the relationship between dynamic resolution and dynamic kernel size. For retention time (blue), as there is no discernable 
relationship between separation dimensions and peak width, the average width of the sampled distributions (red) was used to inform kernel 
size selection.
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Figure S2. Representative feature, Bruker. An example feature from data produced by a Bruker timsTOF Pro, visualized in the native 
dimensionality of LC-IMS-MS. The top row shows 2D representations of the data, left to right: m/z versus drift time, drift time versus retention 
time, and retention time versus m/z. The bottom row shows 1D representations, left to right: m/z, drift time, retention time. Each panel is the 
result of summing across dimensions not shown.
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Figure S3. Representative feature, Waters. An example feature from data produced by a Waters UPLC i-Class coupled to a Synapt G2Si, 
visualized in the native dimensionality of LC-IMS-MS. The top row shows 2D representations of the data, left to right: m/z versus drift time, 
drift time versus retention time, and retention time versus m/z. The bottom row shows 1D representations, left to right: m/z, drift time, retention 
time. Each panel is the result of summing across dimensions not shown.
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Figure S4. Comparison of peak detection in all dimension projections. Evaluation of number of features detected (left) and relative 
computational cost (right) in native dimensionality (for LC-IMS-MS, 3D, blue), as well as all possible lower dimensional projections. 
Permutations of (i) 2D followed by 1D (pink), (ii) 1D followed by 2D (green), and (iii) iterative 1D approaches (orange) are shown for 
positive (dark) and negative (light) mode, respectively. Feature counts and computational costs were averaged over all acquired samples, per 
ionization mode, with one standard deviation represented by the error bars. Computational cost was normalized relative to 3D, positive mode.
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Figure S5. Comparison of peak detection similarity. Each peak detection approach for positive ionization mode was compared pairwise to 
assess intersection, or peaks shared between methods, averaged across replicates and samples (N=168). In the left panel, peak coordinates 
were required to match to instrument precision, resulting in few intersecting peaks among methods. In the right panel, we employed a match 
tolerance of ±20 ppm, ±1.5%, and ±0.3 minutes for m/z, drift time, and retention time, respectively, based on tolerances used for cross-sample 
alignment. Negative ionization mode results did not materially differ.
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Figure S6. Comparison of peak coordinate deviation. Each peak detection approach for positive ionization mode was compared pairwise 
to assess the difference in corresponding peak apices, averaged across replicates and samples (N=168). Coordinates that did not differ were 
excluded from the average. Top right, top left, and bottom panel describe such error for each dimension: m/z in parts per million, drift time 
in percent, and retention time in minutes. Negative ionization mode results did not materially differ.
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Figure S7. Linear alignment by support vector regression. Support vector regression (SVR) was evaluated here on the retention time 
dimension between 2 illustrative samples described by a linear relationship in retention time. Accordingly, to model this relationship, a 
linear kernel was selected. 
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Figure S8. Alignment characterization. Features defined in three dimensions after alignment by agglomerative clustering were assessed for 
intra-cluster variance. That is, the average error within a feature cluster following comparison to the mean of the cluster in that dimension. 
The above shows the histogram and kernel density estimation of said error in each dimension, reported as ppm for m/z, percent for drift time, 
and minutes for retention time.
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Figure S9. Extracted ion approach. Applying DEIMoS’s suite of targeted functionality, extracted ion representations of the data are easily 
generated for presumably present features wherein one or more separation coordinates are known. In this case, deuterated internal standards 
with known m/z were analyzed using LC-IMS-MS/MS, leaving corresponding drift and retention times as unknown coordinates. By isolating 
the data in m/z for probable adduct masses (±20 ppm tolerance), present analytes will appear in the resulting 2D representations. Here we 
visualize the deuterated forms of L-tryptophan [M+H]+ (210.1285 m/z, top left), lysine [M+H]+ (151.1379 m/z, top right), lysine [M+Na]+ 
(173.1198 m/z, bottom left), and alanine [M+Na]+ (119.0808 m/z, bottom right), each indicated by white highlight and zoomed for emphasis 
in the inset panel.
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Figure S10. Isotope detection, singly charged. An example of isotope detection in the native dimensionality of LC-IMS-MS data. The top 
row shows 2D representations of the data, left to right: m/z versus drift time, drift time versus retention time, and retention time versus m/z. 
The bottom row shows 1D representations, left to right: m/z, drift time, retention time. Each panel is the result of summing across dimensions 
not shown. In the 1D plot of m/z, the parent ion is indicated in blue, with isotopologues highlighted in red. By this representation, it is apparent 
that isotopologues, for the resolution of this LC-IMS-MS/MS experiment, are indistinguishable in drift and retention time.
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Figure S11. Isotope detection, multiply charged. An example of isotope detection of a multiply charged analyte (z = +2) in the native 
dimensionality of LC-IMS-MS data. The top row shows 2D representations of the data, left to right: m/z versus drift time, drift time versus 
retention time, and retention time versus m/z. The bottom row shows 1D representations, left to right: m/z, drift time, retention time. Each 
panel is the result of summing across dimensions not shown. In the 1D plot of m/z, the parent ion is indicated in purple, with isotopologues 
highlighted in according to a rainbow spectrum (left to right: blue, cyan, green, yellow, orange). Profiles of each colored isotopologue 
correspond in the 1D projections of drift and retention time. Again, these isotopologues, for the resolution of this LC-IMS-MS/MS experiment, 
are indistinguishable in drift and retention time.
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Figure S12. Isotope detection, overlapping. An example of isotope detection overlapping, singly charged analytes (z = +1) in the native 
dimensionality of LC-IMS-MS data. The top row shows 2D representations of the data, left to right: m/z versus drift time, drift time versus 
retention time, and retention time versus m/z. The bottom row shows 1D representations, left to right: m/z, drift time, retention time. Each 
panel is the result of summing across dimensions not shown. In the 1D plot of m/z, the parent ions are indicated in purple and cyan, 
respectively, with isotopologues highlighted in according to a rainbow spectrum (left to right: blue, cyan, green, yellow, orange, red). Note 
the cyan feature is considered both an isotopologue of the purple feature, as well as parent to isotopologues to its right. Profiles of each colored 
isotopologue correspond in the 1D projections of drift and retention time. Here, the overlapping analytes were not distinguishable by retention 
time, but were separable by drift time, as there were 3 distinct drift time groupings. These represent either 3 parent analytes, each separated 
by its drift time profile grouping, or two parent analytes, wherein the middle drift time groupings (cyan, green) represent a linear combination 
of co-drifting populations (blue and purple, and yellow, orange, and red, respectively). 


