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Figure S1 Analysis of the P3 SEC peak by SEC-MALS. (A) Chromatogram from size-

exclusion run on Urease type IX using a Bio-rad ENrich SEC 650  10 x 300 column. The 

third peak (P3) was analysed by SEC-MALS. (B) SEC-MALS analysis of P3 in (A) showing 

3 peaks of distinct molecular weights (Mw). The MALS curve is represented by a solid 

orange line, the absorbance at 280 nm (UV) detected during the SEC is represented by  a 

dashed line, and measured molecular weight of the eluted protein found in each peak is 

represented by blue spheres. More information about the SEC-MALS peaks can be found in 

Table S1.

Table S1 Molar mass estimates of the peaks from the SEC-MALS run on P3, as determined 

using the ASTRA7 analysis software

Peak Mn (kDa) Mw (kDa) Polydispersity 
(Mw/Mn)

Calculated mass 
(g)

Mass fraction 
(%)
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Peak 1 532.45 ± 5.62 532.55 ± 5.62 1.00 ± 0.1 15.02 21.11

Peak 2 254.20 ± 2.72 254.35 ± 2.73 1.00 ± 0.02 8.03 27.49

Peak 3 143.03 ± 1.57 143.05 ± 1.57 1.00 ± 0.02 6.17 51.41

Table S2 Kinetic parameters of each peak found in the size-exclusion purification of urease 

type IX

Kinetic parameters P1 P2 
(Ur-hex)

P3
(Ur-imp)

Vmax (µM/s) 0.676 ± 0.031 0.7109 ± 0.037 0.2989 ± 0.024

KM (mM) 1.748 ± 0.552 2.06 ± 0.719 0.7083 ± 0.511

kcat (s-1)* 1,352 ± 61.288 1,421.4± 74.169 597.8 ± 48.434

kcat/KM 773.46 690.67 843.99

* determined by dividing the Vmax by the concentration of urease used for assays (0.5 nM).

Figure S2 Distribution of hydrodynamic radii of protein species found in Ur-mix (A) and Ur-

hex (B) samples in the absence and presence of 0.2 M urea, as measured by DLS. 
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Figure S3 Chromatograms from the size-exclusion chromatography of urease in PBS (black), 

urease in phosphate buffer (PB) with 0.5 M urea added to the sample (green) and urease in 

PB (blue). The protein standards (red) show the elution volume of thyroglobulin (670 kDa) 

and gamma globulin (158 kDa).
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Figure S4 Zeta potential of the urease micromotors at various stages of functionalisation 

Table S3 Biophysical properties of protein species described in this work, computed using 

protparam.

Properties Urease Canavalin Bovine serum 
albumin

Molecular mass 
(kDa)

544.396 150.944 69.593

Isoelectric point 
(pI)

6.06 5.44 5.82

Lysine content (%) 6.0 4.5 9.9

Hydropathicity 
(GRAVY)

-0.152 -0.443 -0.429
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Figure S5 Analysis of the clusters found on the surface of the urease motors imaged by 

STORM. Histograms and associated distribution curves showing the sizes (in number of 

localisations per cluster, panel A), density (in localisations per nm, panel B), and diameters 

(panel C) of the clusters found on the surface of the Ur-hex (blue) and Ur-AR (red) motors, 

as well as the number of clusters found per particle (panel D).
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