Supporting information

Fig. S1 DPV curves of the bare GC electrode (a), the CB-nafion/Fc/CB/GC electrode (b), the MWNT-nafion/Fc/MWNT/GC electrode (c), and the modified CB-MWNT-nafion/Fc/CB-MWNT/GC electrode (d) in 250 μ M IAA and 250 μ M SA in PBS (pH=7.4, 10 mM).

Fig. S2 Optimization of the modification process with different concentrations of CB using $250 \ \mu M$ SA.

Fig. S3 Optimization of the modification process with different concentrations of MWNT using 250 μ M IAA.

Fig. S4 The DPV curves of IAA and SA using six freshly prepared CB-MWNT-nafion/Fc/CB-MWNT/GC electrodes for 250 μ M IAA and 250 μ M SA in PBS (pH=7.4, 10 mM).

Table S1

Comparisons of the previous reported IAA detection methods.

Detector	Method	Linear range	LOD	References
Multiwalled carbon nanotubes-chitosan modified glassy carbon electrode	DPV	0.67– 48.82 μΜ	0.1 μΜ	[1]
Carbon tape modified electrode	DPV	1–100 μΜ	0.1 μΜ	[2]
SiO ₂ @AuNPs modified glassy carbon electrode	DPV	0.2–55 μM	5.19 nM	[3]
Hemin/reduced graphene oxide composite modified glassy carbon electrode	i-t	0.1-43 μM	74.0 nM	[4]
multiwalled carbon nanotubes and sucrose derived carbon modified glassy carbon electrode	DPV	0.1-30 μM	29.6 nM	[5]
3-mercaptopropionic acid stabilized CdS/reduced graphene oxide nanocomposites modified ITO electrode	Photocurrent	0.57 nM–5.71 μM	0.29 nM	[6]
4-allyloxy-7- aminocoumarin polymer membrane	Fluorescence	1–1000 μM	0.90 μM	[7]

Ionic liquid-modified silica sorbent	HPLC	1–200 μM	0.91 μΜ	[8]
Carbon felt detector	HPLC with electrochemical detection	1-100 mM	1.1 mM	[9]
Symmetry C8 column	Reversed phase high performance liquid chromatography (RP- HPLC) with fluorescence	0.36-71.4 μM	85.6 nM	[10]
6-Oxy-(acetyl piperazine) fluorescein label	Capillary electrophoresis with laser-induced fluorescence (CE–LIF)	0.02–1.0 μM	4.8 nM	[11]
Tetraazacalix[2]arene[2] triazine-modified silica gel	Open-tubular capillary electrochromatography	0.29-11.4 μM	45.7 nM	[12]
Modified CB-MWNT- nafion/Fc/CB- MWNT/GC electrode	DPV	25.0– 1000.0 μM	1.99 μM	This work

Table S2

Comparisons of the previous reported SA detection methods.

Detector	Method	Linear range	LOD	References	
Multiwalled carbon nanotubes-chitosan modified glassy carbon electrode	DPV	0.67– 48.82 μM	0.1 μΜ	[1]	
Carbon tape modified electrode	DPV	1–100 μΜ	0.1 μΜ	[2]	
Pt nanoparticles modified Pt disk electrode	i-t	20–500 μM	6.4 μM	[13]	
Nickel titanate nanoceramic modified carbon paste electrode	DPV	3.0–40.0 μM, 40.0– 1000.0 μM	68.0 nM	[14]	
Screen printed electrodes	SWV	16–300 μM	5.6 μΜ	[15]	
Pencil trace modified carbon tape electrode	SWV	0.1–100 μM	0.1 μΜ	[16]	
Nucleosil 100-5 C18 column	Liquid chromatographic– tandem mass spectrometric (LC– MS/MS)	0.72–7.2 μM, 72– 360 μM	0.36 μM	[17]	

Agilent Eclipse C18 analytical column	gilent Eclipse C18 nalytical column Liquid chromatographic– tandem mass spectrometric (LC– MS/MS)		22 nM	[18]
Polymeric adsorbent (Super Q) filters	Vapor-phase extraction and gas chromatography- positive ion chemical ionization-mass spectrometry	36.2 nM- 7.24 μM	3.6 nM	[19]
ProntoSIL 120 C18 ace- EPS column protected by C8 guard column	Isocratic high-pressure liquid chromatography with post-column hydrolysis and fluorescence	0.36– 144.8 μM	0.11 μM	[20]
Mercaptopropionic acid (MPA)–capped cadmium telluride (CdTe) quantum dot (QDs) fluorescent probes	Fluorescence	3.62– 289.6 μM	1.09 μM	[21]
Disposable terbium (III) salicylate complex imprinted membrane	Solid phase surface fluorescence	144.8 μM–3.62 mM	0.1 μΜ	[22]
Modified CB-MWNT- nafion/Fc/CB- MWNT/GC electrode	DPV	25.0– 1000.0 μM	3.3 μΜ	This work

Table S3

Intra-assay (six measurements for one modified electrode) and inter-assay (six freshly prepared electrodes) of IAA and SA.

IAA Intra-assay		Inter-assay		SA	Intra-assay		Inter-assay		
(µM)	Mean	CV	Mean	CV	(µM)	Mean	CV	Mean	CV
50	49.18	2.47	48.89	3.63	50	49.08	3.08	48.91	4.02
250	241.13	3.32	238.77	5.18	250	245.88	3.12	246.76	4.95

CV represents coefficient of variation.

Table S4

Results obtained by the developed microsensor for detecting IAA and SA in the stem of soybean seedlings.

Time	Control					Salt stress			
(h)	IAA	SD	SA	SD	IAA	SD	SA	SD	
(11)	(µM)		(µM)		(µM)		(µM)		
0	69.98	6.59	317.89	18.12	64.08	6.28	314.91	19.32	
12	61.11	6.05	324.28	19.18	124.69	6.67	336.83	14.04	
24	77.52	7.13	300.96	17.88	40.35	3.11	427.40	19.12	
36	73.75	6.28	302.25	14.20	33.56	1.63	740.30	15.47	

SD represents standard deviation.

References:

[1] L. Sun, X. Liu, L. Gao, Y. Lu, Y. Li, Z. Pan, et al., Simultaneous Electrochemical Determination of Indole-3-acetic Acid and Salicylic Acid in Pea Roots using a Multiwalled Carbon Nanotube Modified Electrode, Anal. Lett. 48 (2015) 1578-1592.

[2] L. Sun, J. Zhou, J. Pan, Y. Liang, Z. Fang, Y. Xie, et al., Electrochemical mapping of indole-3-acetic acid and salicylic acid in whole pea seedlings under normal conditions and salinity, Sens. Actuat, B 276 (2018) 545-551.

[3] J. Sun, T. Gan, R. Zhai, W. Fu, M. Zhang, Sensitive and selective electrochemical sensor of diuron against indole-3-acetic acid based on core-shell structured SiO2@Au particles, Ionics 24 (2018) 2465-2472.

[4] F. Liu, J. Tang, J. Xu, Y. Shu, Q. Xu, H. Wang, et al., Low potential detection of indole-3-acetic acid based on the peroxidase-like activity of hemin/reduced graphene oxide nanocomposite, Biosens. Bioelectron. 86 (2016) 871-878.

[5] L. Lu, Y. Yu, H. Zhou, P. Li, Y. Peng, W. Wang, et al., Sensitive Electrochemical Determination of Indole-3-Acetic Acid Based on Multiwalled Carbon Nanotubes and Sucrose-Derived Carbon Composites, Int. J. Electrochem. Sci. 11 (2016) 2392-2400.

[6] L.-J. Sun, Q.-M. Feng, Y.-F. Yan, Z.-Q. Pan, X.-H. Li, F.-M. Song, et al., Paperbased electroanalytical devices for in situ determination of salicylic acid in living tomato leaves, Biosens. Bioelectron. 60 (2014) 154-160.

[7] C.X. Jiao, C.G. Niu, L.X. Chen, G.L. Shen, R.Q. Yu, 4-allyloxy-7aminocoumarin as a fluorescent carrier for optical sensor preparation and indole-3acetic acid assay, Sensor Actuat B-Chem 94 (2003) 176-183.

[8] L. Sheikhian, S. Bina, Simultaneous extraction and HPLC determination of 3indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquidmodified silica as sorbent, Journal Of Chromatography B-Analytical Technologies In the Biomedical And Life Sciences 1009 (2016) 34-43.

[9] H. Dejmkova, M.D. Daniel, Electrochemical determination of indole-3-acetic acid and indole-3-butyric acid using HPLC with carbon felt detector, Monatsh. Chem. 150 (2019) 439-442.

[10] M. Szkop, W. Bielawski, A simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acid, Anton Leeuw Int J G 103 (2013) 683-691.

[11]H. Chen, X.-F. Guo, H.-S. Zhang, H. Wang, Simultaneous determination of phytohormones containing carboxyl in crude extracts of fruit samples based on chemical derivatization by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. B 879 (2011) 1802-1808.

[12]L. Yang, Y.L. Chen, S.N. Zhao, W.F. Zhang, H.F. Du, Z.F. Deng, et al., Simultaneous Determination of Indole-3-Acetic Acid and Indole-3-Butyric Acid in Plant by Field-Amplified Sample Stacking Open-Tubular Capillary Electrochromatography Based on Solid-Phase Extraction with Calixarene Sorbent, Chromatographia 79 (2016) 243-254.

[13]Z. Wang, F. Ai, Q. Xu, Q. Yang, J.-H. Yu, W.-H. Huang, et al., Electrocatalytic activity of salicylic acid on the platinum nanoparticles modified electrode by electrochemical deposition, Colloids Surf., B 76 (2010) 370-374.

[14]S.M. Ghoreishi, F.Z. Kashani, A. Khoobi, M. Enhessari, Fabrication of a nickel titanate nanoceramic modified electrode for electrochemical studies and detection of salicylic acid, J. Mol. Liq. 211 (2015) 970-980.

[15]S. Rawlinson, A. McLister, P. Kanyong, J. Davis, Rapid determination of salicylic acid at screen printed electrodes, Microchem. J. 137 (2018) 71-77.

[16]H. Wang, X. Bi, Z. Fang, H. Yang, H. Gu, L. Sun, et al., Real time sensing of salicylic acid in infected tomato leaves using carbon tape electrodes modified with handed pencil trace, Sens. Actuat, B 286 (2019) 104-110.

[17]S. Croubels, A. Maes, K. Baert, P. De Backer, Quantitative determination of salicylic acid and metabolites in animal tissues by liquid chromatography–tandem mass spectrometry, Anal. Chim. Acta 529 (2005) 179-187.

[18] W. Zheng, K.H. Yoo, A.M. Abd El-Aty, D.H. Park, J.M. Choi, S.K. Kim, et al., Quantitative determination of carbasalate calcium derived metabolites, acetylsalicylic acid and salicylic acid, in six animal foods using liquid-liquid extraction method coupled with liquid chromatography-tandem mass spectrometry, Food Chem. 278 (2019) 744-750.

[19] J. Engelberth, E.A. Schmelz, H.T. Alborn, Y.J. Cardoza, J. Huang, J.H. Tumlinson, Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry, Anal. Biochem. 312 (2003) 242-250.

[20]E.L. Hobl, B. Jilma, J. Ebner, R.W. Schmid, Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by isocratic high-pressure liquid chromatography with post-column hydrolysis and fluorescence detection, Biomed. Chromatogr. 27 (2013) 695-698.

[21]O. Bunkoed, P. Kanatharana, Mercaptopropionic acid-capped CdTe quantum dots as fluorescence probe for the determination of salicylic acid in pharmaceutical products, Luminescence 30 (2015) 1083-1089.

[22]J.X. Huang, Y.F. Hu, Y.L. Hu, G.K. Li, Disposable terbium (III) salicylate complex imprinted membrane using solid phase surface fluorescence method for fast separation and detection of salicylic acid in pharmaceuticals and human urine, Talanta 107 (2013) 49-54.