Supplementary information for

Dual responsive PMEEECL-PAE block copolymers: a computational selfassembly and doxorubicin uptake study

Amin Koochaki^{a,b}, Mohammad Reza Moghbeli^{*a}, Sousa Javan Nikkhah^a, Alessandro Ianiro^{b,c}, Remco Tuinier^{*b,c}

^a Smart Polymers and Nanocomposites Research Group, School of Chemical Engineering, Iran University of Science and Technology, Tehran 16846–13114, Iran

^b Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry,
 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

^c Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513,
 5600 MB Eindhoven, The Netherlands

^{*} Correspondence to: M. R. Moghbeli (mr_moghbeli@iust.ac.ir)

^{*} Correspondence to: R. Tuinier (r.tuinier@tue.nl)

System	AA/CG	Production time	Simulation box	Temperature (K)	
		(ns)	size (nm ³)		
PMEEECL ₂₀ -PAE ₅ in	AA	50	245	285, 290, 295, 300,	
water box				305, 310, 315, 320,	
				325, 330, 335	
PMEEECL ₂₀ -PAE ₁₀ in	AA	50	310	285, 290, 295, 300,	
water box				305, 310, 315, 320,	
				325, 330, 335	
PMEEECL ₂₀ -PAE ₁₅ in	AA	50	382	285, 290, 295, 300,	
water box				305, 310, 315, 320,	
				325, 330, 335	
PMEEECL ₂ -PAE ₂ in	AA	10	90	300	
water box					
PMEEECL ₂ -PAE ₂ in water box	CG	300	12350	300	
PMEEECL ₂₀ -PAE ₅ in	CG	600	32768	300, 305, 310, 315,	
water box				320, 325, 330	
PMEEECL ₂₀ -PAE ₁₀ in	CG	600	33076	300	
water box					
PMEEECL ₂₀ -PAE ₁₅ in water box	CG	600	33560	300	
DOX in water Box	AA	10	60	300	
DOX in water Box	CG	300	11148	300	
DOX 1wt% of	CG	640	31300	300	
PMEEECL ₂₀ -PAE ₅ in water box					
DOX 5wt% of	CG	640	31357	300	
PMEEECL ₂₀ -PAE ₅ in water box					
DOX 10wt% of	CG	640	31381	300	
PMEEECL ₂₀ -PAE ₅ in water box					

Table S1: Details of simulation systems for all-atom (AA) and coarse-grained (CG) simulations.

i	j	χ_{ij}	i	j	χ_{ij}
W	А	0.51	А	I^+	0
W	В	1.8	В	С	0.5
W	С	3.5	В	Ι -	0
W	Ι-	0	В	I^+	0
W	I^+	0	С	Ι -	0
А	В	0.4	С	I^+	0
А	С	0.8	I^+	Ι -	0
А	Ι-	0			

Table S2. Flory-Huggins interaction parameters χ_{ij} used in the SCF computations.

	$R_{\rm g}({ m \AA})$					
	PMEEECL ₂₀ -		PMEEECL ₂₀ -		PMEEECL ₂₀ -	
	PAE ₅		PAE ₁₀		PAE ₁₅	
T (K)	PMEEECL	PAE	PMEEECL	PAE	PMEEECL	PAE
285	24.2 ± 0.6	19.3 ± 0.6	24.4 ± 0.2	32.1 ± 0.5	26.2 ± 0.2	40 ± 0.6
290	21.9 ± 0.9	18.6 ± 0.6	22.8 ± 0.5	37 ± 0.4	25.6 ± 0.5	45.4 ± 0.9
295	20.2 ± 0.4	17.7 ± 0.8	24.9 ± 0.3	30 ± 0.5	27.2 ± 0.4	34.5 ± 0.6
300	22 ± 1	17 ± 1	23.8 ± 0.6	34.2 ± 0.7	21.3 ± 0.5	45.3 ± 0.5
305	24.4 ± 0.3	16.4 ± 0.5	16.2 ± 0.3	38.5 ± 0.4	19.7 ± 0.6	47.2 ± 0.3
310	22.2 ± 0.3	18.8 ± 0.2	17.4 ± 0.4	34.2 ± 0.6	19 ± 0.2	44.5 ± 0.4
315	16.2 ± 0.3	15.1 ± 0.5	17.1 ± 0.5	34 ± 2	22.4 ± 0.3	38.9 ± 0.6
320	15 ± 1	19 ± 1	19.8 ± 0.2	29.6 ± 0.3	19.5 ± 0.3	52 ± 0.9
325	17 ± 2	17.3 ± 0.3	17.9 ± 0.6	36.4 ± 0.3	20 ± 0.4	38.1 ± 0.5
330	15.1 ± 0.3	16.5 ± 0.6	16.1 ± 0.4	38.4 ± 0.5	20.7 ± 0.5	41.7 ± 0.4
335	17.3 ± 0.4	19.1 ± 0.3	17.3 ± 0.5	36.2 ± 0.8	20.2 ± 0.4	43.4 ± 0.5

Table S3: All-atom MD simulations results for the radius of gyration (R_g) for both the hydrophilic (PMEEECL) and hydrophobic (PAE) parts of PMEEECL₂₀-PAE_M block copolymer with M = 5, 10, and 15 for various temperatures from 285 K to 335 K.

<i>M</i>	Hydrophilic mass fraction (<i>f</i>)	$T_{\rm cg}\left({ m K} ight)$
0	1	318 ± 2.5
5	0.697	312 ± 2.5
10	0.563	302 ± 2.5
15	0.463	298 ± 2.5

Table S4: Estimated coil-to-globule transition temperature (T_{cg}) of PMEEECL in PMEEECL₂₀-PAE_M block copolymers with M = 0, 5, 10, and 15 as a function of hydrophilic mass fraction from fitting equation 1 to simulations data in Fig. 1a and Table S3. For M = 0 the T_{cg} is excerpted from [24].

PMEEECL₂₀-PAE_M

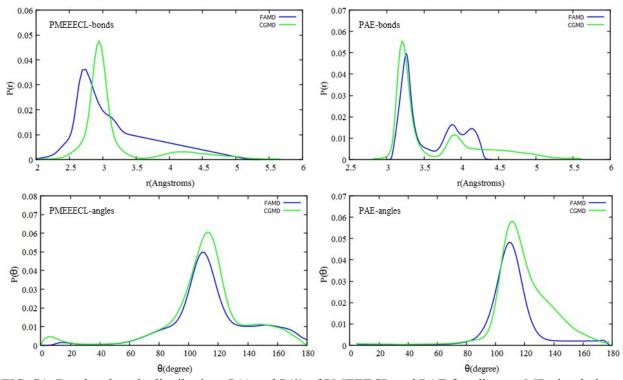


FIG. S1: Bond and angle distributions P(r) and $P(\theta)$ of PMEEECL and PAE for all-atom MD simulations and MARTINI CG force field simulations.

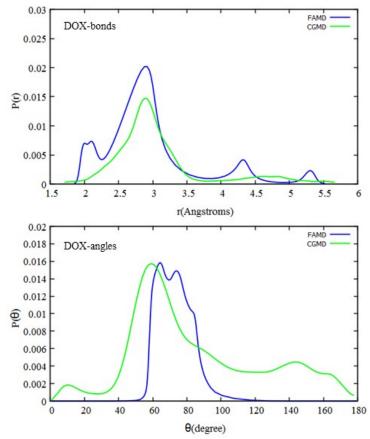


FIG. S2: Bond and angle distributions P(r) and $P(\theta)$ of DOX for all-atom MD simulations and MARTINI CG force field simulations.

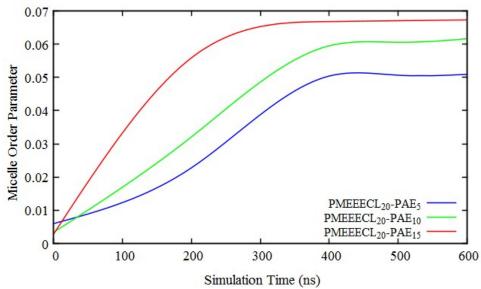


FIG. S3: Micelle order parameter as a function of simulation time.

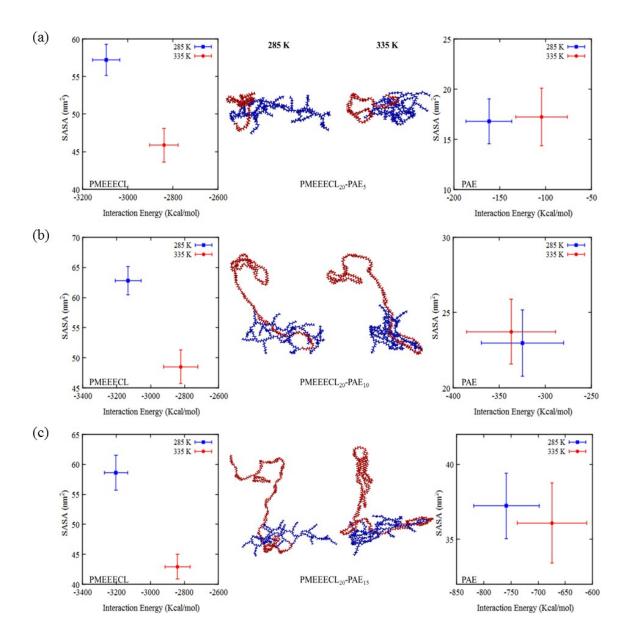


Figure S4: Solvent accessible surface area (SASA) as a function of non-bonded interaction energy of PMEEECL and PAE in addition to PMEEECL-PAE snapshot at 285 K and 335 K for a) PMEEECL₂₀-PAE₅, b) PMEEECL₂₀-PAE₁₀, and c) PMEEECL₂₀-PAE₁₅. Blue and red chains in snapshots are the PMEEECL and PAE blocks, respectively.

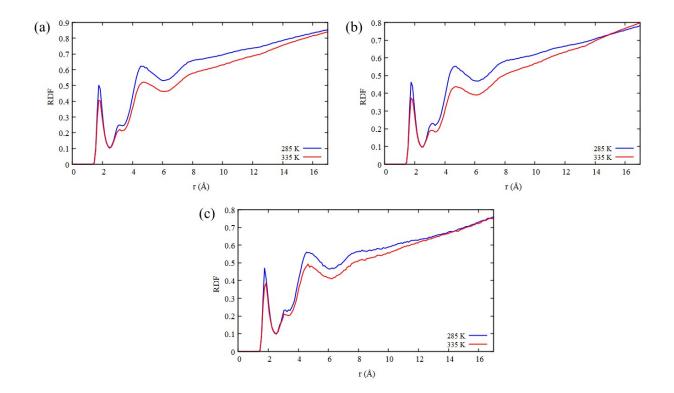


Figure S5: Radial distribution function (RDF) between hydrogen of water molecules and oxygen of PMEEECL at 285 K and 335 K for a) PMEEECL₂₀-PAE₅, b) PMEEECL₂₀-PAE₁₀, and c) PMEEECL₂₀-PAE₁₅.

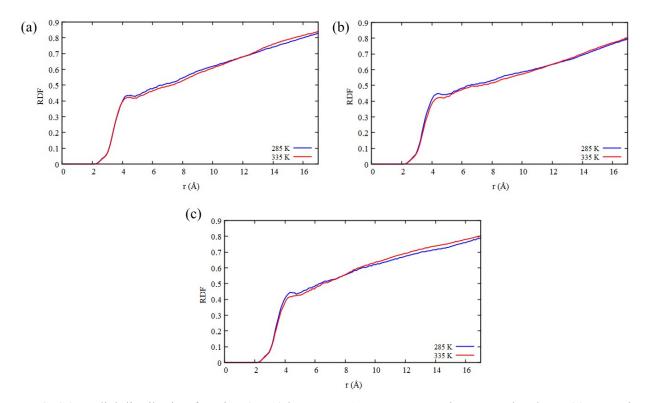


FIG. S6: Radial distribution function (RDF) between PAE monomer and water molecules at 285 K and 335 K.

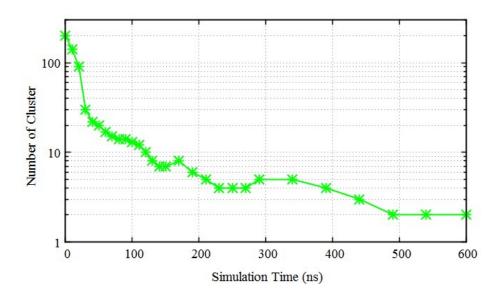


FIG. S7: Number of clusters as a function of simulation time for spherical micelles composed of $PMEEECL_{20}$ -PAE₅.

Response to temperature by CG simulations

As the PMEEECL beads are the thermoresponsive part of PMEEECL₂₀-PAE₅ amphiphilic block copolymer and based on the Fig. 1a there are 4 different types of beads needed to mimic the PMEEECL block and consequently the RDF of these beads and water ones are calculated and plotted in Fig. S8. For all beads of PMEEECL there is an observable reduction for the affinity of them and water beads by increasing temperature and the transition temperature could be observable around 315 K, which is in consistent with all-atom MD simulations for PMEEECL₂₀-PAE₅ amphiphilic block copolymer.

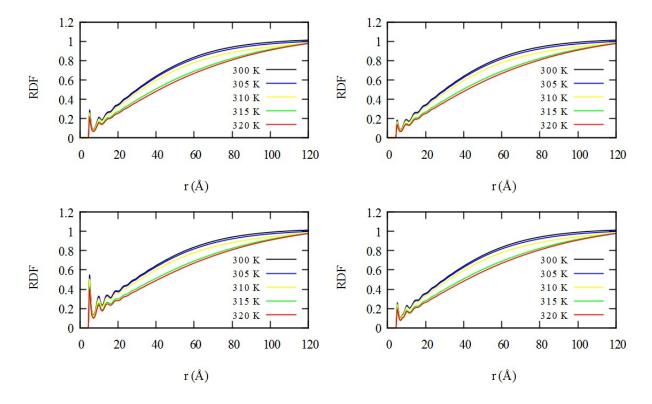


Figure S8: The RDF between the centers of mass of four different beads of PMEEECL block and water beads as a function of temperature.