
 Supplemental  Figure  1.  Flowchart  of  CellWalkR  pipeline.  CellWalkR  takes  scATAC-seq,  bulk 
 epigenetic  data,  and  label  sets  as  input  which  it  then  combines  into  a  graph.  After  diffusing 
 information  across  this  graph,  different  portions  of  the  resulting  influence  matrix  are  used  for 
 analysis and visualization. 



 Supplemental  Figure  2.  Network  Constructed  by  CellWalkR.  CellWalkR  builds  a  network 
 consisting  of  two  types  of  nodes  representing  cells  and  labels.  The  findMarkers  function  can  be 
 used  to  generate  label  nodes  from  scRNA-seq  data.  Edges  between  labels  and  cells  are 
 computed  using  the  computeLabelEdges  function,  which  can  be  supplied  with  multiple  sets  of 
 labels.  An  edge  is  generated  between  a  label  and  a  cell  based  on  how  open  the  marker  genes 
 are  in  the  cell’s  scATAC-seq  data.  The  definition  of  regions  used  to  quantify  openness  of  marker 
 genes  is  flexible  and  user-defined;  it  can  correspond  to  promoters,  gene  bodies,  and/or  distal 
 regions  (e.g.  correlated  peaks  identified  by  Cicero).  Edges  between  cells  are  computed  using 
 the  computeCellSim  function,  using  Jaccard  similarity  by  default,  though  any  distance  function 
 can be passed. 



 Supplemental  Figure  3.  CellWalkR  Performance.  a)  Run  time  of  CellWalkR  on  AWS  P2.xlarge 
 instance  (for  up  to  15,000  cells)  and  P3.2xlarge  (for  20,000  cells)  using  a  CPU  or  GPU.  A  typical 
 analysis  of  10,000  cells  can  be  run  in  150  seconds  on  a  CPU  and  10  seconds  on  a  GPU,  while 
 an  analysis  of  20,000  cells  can  be  run  in  611  seconds  on  a  CPU  and  27  seconds  on  a  GPU. 
 The  GPU  is  more  than  15  times  faster,  with  greater  benefits  for  more  cells.  b)  Memory  used  by 
 CellWalkR  on  a  P2.xlarge  instance.  A  typical  analysis  of  10,000  cells  requires  12Gb  of  memory, 
 while 20,000 cells requires 24Gb. 



 Supplemental  Figure  4.  CellWalkR  Performance  With  Approximate  Solution.  The  solution  of 
 a  random  walk  with  restarts  can  be  approximated  using  an  iterated  walk,  which  requires 
 consecutive  matrix  multiplications  rather  than  a  matrix  inversion.  Each  step  is  computed  as 
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 matrix  of  the  degree  of  each  node  and  A  is  the  adjacency  matrix.  a.  Run  time  of  CellWalkR 
 using  a  CPU  to  compute  each  step  of  the  walk  with  30,000  cells.  For  comparison,  computing  the 
 full  solution  for  30,000  cells  takes  ~3  hours.  b.  Memory  usage  of  CellWalkR  to  compute  the  full 
 solution  of  the  walk  and  five  steps  of  the  approximate  solution.  We  extrapolate  that  computing 
 the  approximate  solution  for  30,000  cells  requires  2Gb  as  compared  to  170Gb  for  the  full 
 solution. 



 Supplemental  Figure  5.  Plotting  Label  Scores  a)  When  a  single  cell  type  is  selected,  the 
 amount  of  influence  a  single  label  has  on  each  cell  is  shown  on  the  generated  t-SNE.  b)  When 
 two  cell  types  are  selected,  CellWalkR  shows  the  difference  in  influence  between  two  labels, 
 allowing the user to identify transition regions. 



 Supplemental  Figure  6.  Comparison  to  SnapATAC.  a)  CellWalkR  embedding  of  cell-to-cell 
 influence  using  t-SNE  (left)  creates  more  distinct  clusters  than  the  embedding  generated  by 
 SnapATAC  (right)  with  clear  separation  of  labeled  cell  types.  Cells  are  colored  by  maximally 
 influencing  labels  in  CellWalkR,  with  cells  receiving  a  maximum  influence  less  than  0  marked  as 
 “Other.”  Note  that  labels  are  not  defined  by  clustering  in  embedding,  thus  the  grouping  of  cell 
 types  in  the  embedding  can  serve  as  a  validation  of  the  distinctness  of  labels.  Additionally, 
 CellWalkR  displays  an  ability  to  identify  both  common  cell  types  and  very  rare  cell  types,  with  a 
 large  dynamic  range  in  cluster  size.  b)  Using  the  same  embeddings  as  in  panel  a,  but  now  with 
 cells  colored  by  their  cluster  assignment  according  to  SnapATAC.  SnapATAC  detects  a  very 
 large  number  of  clusters  and  has  no  built  in  ability  to  detect  what  cell  type  they  represent.  The 
 clusters  all  include  similar  numbers  of  cells  (right).  When  these  cluster  assignments  are  plotted 
 in  the  CellWalkR  embedding  (left),  there  is  a  clear  gradient  from  top  to  bottom  but  no  separation 
 between labels. 


