Supporting Information for

Stewartiacids A–N, C-23 carboxylated triterpenoids from the Chinese Stewartia and their inhibitory effects against ATP-citrate lyase and NF-κB

Jiang Wan,^{a,b} Yi Zang,^c Dao-An Xiao,^d Na Li,^a JunminLi,^a Ze-Xin Jin,^a De-Lei Chen,^e Juan

Xiong,*^b Jia Li,*^c and Jin-Feng Hu^{*a,b}

^a Institute of Natural Medicine and Health Products, School of Advanced Study, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, PR China.

^b School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, PR China. Email: jfhu@fudan.edu.cn; Telephone/Fax: +86-21-51980172.

^c State Key Laboratory of Drug Research, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai 201203, PR China.

^d College of Chemistry and Bioengineer, Yichun University, Yichun 336000, PR China.

^e School of Life Science, Hefei Normal University, Hefei 230601, PR China.

* Corresponding authors. Tel/fax: +86 21 51980172.

E-mail addresses: jxiong@fudan.edu.cn (J. Xiong); jli@simm.ac.cn (J Li); jfhu@fudan.edu.cn (J.-F. Hu).

Contents	page
Fig. S1. Key HMBC correlation of compounds 2, 5, 7, 9, 10, and 14.	1
Fig. S2. Diagnostic ROE correlations of compounds 2, 5, 7–10, and 13.	1
Figs. S3–S13: 1D/2D NMR and HRESIMS spectra for compound 1	2-7
Figs. S14–S22: 1D/2D NMR and HRESIMS spectra for compound 2	8-12
Fig. S23: ECD spectra of compounds 1 and 2	12
Figs. S24–S31: 1D/2D NMR and HRESIMS spectra for compound 3	13-16
Fig. S32: ECD spectrum of compound 3	17
Figs. S33–S43: 1D/2D NMR and HRESIMS spectra for compound 4	17-23
Figs. S44–S51: 1D/2D NMR and HRESIMS spectra for compound 5	23-26
Fig. S52: ECD spectra of compounds 4 and 5	27
Figs. S53–S61: 1D/2D NMR and HRESIMS spectra for compound 6	27-31
Figs. S62–S70: 1D/2D NMR and HRESIMS spectra for compound 7	32-36
Fig. S70: ECD spectra of compounds 6 and 7	36
Figs. S71–S81: 1D/2D NMR and HRESIMS spectra for compound 8	37-41
Figs. S82–S89: 1D/2D NMR and HRESIMS spectra for compound 9	43-46
Figs. S90–S97: 1D/2D NMR and HRESIMS spectra for compound 10	47-50
Figs. S98–S108: 1D/2D NMR and HRESIMS spectra for compound 11	51-56
Figs. S109–S116: 1D/2D NMR and HRESIMS spectra for compound 12	56-60
Figs. S117–S124: 1D/2D NMR and HRESIMS spectra for compound 13	60-64
Figs. S125–S132: 1D/2D NMR and HRESIMS spectra for compound 14	64–68
Table S1: Crystal data and structure refinement for 1	69
Table S2: Crystal data and structure refinement for 3	70
Table S3: Crystal data and structure refinement for 4	71
Table S4: Crystal data and structure refinement for 6	72

Fig. S1. HMBC correlations of compounds 2, 5, 7, 9, 10, and 14.

Fig.S2. Diagnostic ROE correlations of compounds 2, 5, 7–10, and 13.

Fig. S3. ¹H NMR spectrum of compound 1 in CD₃OD (400 MHz).

Fig. S4. ¹H NMR spectrum of compound **1** in CD₃OD–expansion.

Fig. S5. ¹³C NMR and DEPT 135 spectra of compound **1** in CD₃OD (150 MHz).

Fig. S6.¹H-¹H COSY spectrum of compound **1** in CD₃OD (600 MHz).

Fig. S7.¹H-¹H COSY spectrum of compound 1-expansion.

Fig. S8. HMBC spectrum of compound 1 in CD₃OD (600 MHz).

Fig. S9. HMBC spectrum of compound 1-expansion.

Fig. S10. ¹H NMR spectrum of compound 1 in C_5D_5N (600 MHz).

Fig. S11. ROESY spectrum of compound 1 inC₅D₅N (600 MHz).

Fig. S12. ROESY spectrum of compound 1-expansion.

Fig. S13. HRESIMS report of compound 1.

Fig. S14. ¹H NMR spectrum of compound 2 in C₅D₅N (400 MHz).

Fig. S15. ¹H NMR spectrum of compound 2-expansion.

2.39 -2.19 -2.19 -2.19 -2.19 -1.77 -1.75 -1	- I.I.	- 1.082	- 1.008	0.900 0.889 0.884
--	--------	---------	---------	-------------------------

Fig. S16. ¹³C NMR spectrum of compound 2 in C₅D₅N (150 MHz).

Fig. S17. ¹³C NMR spectrum of compound **2** –expansion.

	54.45	~ 52.28 ~ 51.70		40.96 40.24 40.24 53.33 37.68 37.54 36.60	- 34.96	- 33.21	- 28.70 - 27.83	07.07	$\frac{-23.34}{72.11}$	- 17.74	- 12 03
--	-------	--------------------	--	---	---------	---------	--------------------	-------	------------------------	---------	---------

Fig. S18. HMBC spectrum of compound 2 in C₅D₅N (600 MHz).

Fig. S19. HMBC spectrum of compound 2-expansion.

Fig. S21. ROESY spectrum of compound 2-expansion.

Fig. S22. HRESIMS report of compound 2.

Fig. S24. ¹H NMR spectrum of compound 3 in CD₃OD (400 MHz).

2.6249 2.5912	2.4734 2.4649 2.4353 2.4281	2.1622 2.1325 2.1329 2.1229 2.0953	1.9008 1.8724 1.8332	1.6892 1.6608 1.6608 1.6163 1.5163 1.5902 1.5405 1.5116 1.4932 1.4787	1.3304	1.2419 1.1893	1.1089	1.0349 1.0188	0.9157
11	\leq	5577	111					12	

Fig. S27. ¹³C NMR spectrum of compound 3-expansion.

Fig. S28. HMBC spectrum of compound 3 in CD₃OD (600 MHz).

Fig. S29. HMBC spectrum of compound 3–expansion.

Fig. S30. ROESY spectrum of compound 3 in CD₃OD (600 MHz).

Fig. S31. HRESIMS report of compound 3.

Fig. S33. ¹H NMR spectrum of compound 4 in C_5D_5N (400 MHz).

Fig. S34.¹H NMR spectrum of compound **4**-expansion.

Fig. S36. ¹³C NMR spectra of compound 4-expansion.

Fig. S38. HSQC spectrum of compound 4 in C₅D₅N (600 MHz).

Fig. S39.¹H-¹H COSY spectrum of compound 4 in C_5D_5N (600 MHz).

Fig. S40. HMBC spectrum of compound 4 in C₅D₅N (600 MHz).

Fig. S41. HMBC spectrum of compound 4-expansion.

Fig. S42. ROESY spectrum of compound 4 in C₅D₅N (600 MHz).

Fig. S43. HRESIMS report of compound 4.

Fig. S48. HMBC spectrum of compound 5 in C₅D₅N (600 MHz).

Fig. S49. HMBC spectrum of compound 5-expansion.

Fig. S50. ROESY spectrum of compound 5 in C₅D₅N (600 MHz).

Fig. S51. HRESIMS report of compound 5.

Fig. S52. Experimental ECD spectra of 4 (red curve) and 5 (black curve) in MeOH..

Fig. S54. ¹H NMR spectrum of compound 6–expansion.

Fig. S58. HMBC spectrum of compound 6 in C₅D₅N (600 MHz).

Fig. S59. HMBC spectrum of compound 6-expansion.

Fig. S60. ROESY spectrum of compound 6 in C₅D₅N (600 MHz).

Fig. S61. HRESIMS report of compound 6.

Fig. S62. ¹H NMR spectrum of compound 7 in C₅D₅N (400 MHz).

Fig. S64. ¹³C NMR spectrum of compound 7 in C₅D₅N (150 MHz).

Fig. S66. HSQC spectrum of compound 7 in C₅D₅N (600 MHz).

Fig. S67. HMBC spectrum of compound 7 in C₅D₅N (600 MHz).

Fig. S68. ROESY spectrum of compound 7 in C₅D₅N (600 MHz).

Fig. S69. ROESY spectrum of compound 7-expansion.

Fig. S70. HRESIMS report of compound 7.

Fig. S72. ¹H NMR spectrum of compound 8 in CD₃OD (400 MHz).

Fig. S76. ¹H-¹H COSY spectrum of compound **8** in CD₃OD (600 MHz).

Fig. S77. HMBC spectrum of compound 8 in CD₃OD (600 MHz).

Fig. S78. HMBC spectrum of compound 8-expansion.

Fig. S79. ¹H NMR spectrum of compound 8 in C₅D₅N (600 MHz).

Fig. S81. HRESIMS report of compound 8.

Fig. S82. ¹H NMR spectrum of compound 9 in CD₃OD (400 MHz).

1.9411	1.9049 1.8929 1.8684	1.7510	1.7118	1.6740	1.6092	1.5511 1.5274	1.4629	1.4270	1.2935	1.2651	1.2317	1.1655	1.1158	1.0486 1.0332	0.9827	0.9448 0.9298
	177					11			1			1		51		12

Fig. S86. HMBC spectrum of compound 9 in CD₃OD (600 MHz).

Fig. S87. HMBC spectrum of compound 9-expansion.

Fig. S89. HRESIMS report of compound 9.

Fig. S90. ¹H NMR spectrum of compound 10 in CD₃OD (400 MHz).

Fig. S93. HSQC spectrum of compound 10 in CD₃OD (600 MHz).

Fig. S94. HMBC spectrum of compound 10 in CD₃OD (600 MHz).

Fig. S95. HMBC spectrum of compound 10-expansion.

Fig. S96. ROESY spectrum of compound 10 in CD₃OD (600 MHz).

Fig. S97. HRESIMS report of compound 10.

Fig. S98. ¹H NMR spectrum of compound 11 in C₅D₅N (400 MHz).

Fig. S100. 13 C NMR spectrum of compound 11 in C₅D₅N (150 MHz).

Fig. S102. HSQC spectrum of compound 11 in C₅D₅N (600 MHz).

Fig. S103.¹H-¹H COSY spectrum of compound 11 in C₅D₅N (600 MHz).

Fig. S104. HMBC spectrum of compound 11 in C₅D₅N (600 MHz).

Fig. S105. HMBC spectrum of compound 11 –expansion.

Fig. S106. ROESY spectrum of compound 11 in C₅D₅N (600 MHz).

Fig. S107. ROESY spectrum of compound 11 –expansion.

Fig. S108. HRESIMS report of compound 11.

Fig. S109. ¹H NMR spectrum of compound 12 in C₅D₅N (400 MHz).

Fig. S113. ¹H-¹H COSY spectrum of compound 12 in C₅D₅N (600 MHz).

Fig. S114. HMBC spectrum of compound 12 in C₅D₅N (600 MHz).

Fig. S115. ROESY spectrum of compound 12 in C₅D₅N (600 MHz).

Fig. S116. HRESIMS report of compound 12.

Fig. S117. ¹H NMR spectrum of compound 13 in CD₃OD (400 MHz)

 $\begin{array}{c} \swarrow 1.5754 \\ \swarrow 1.5519 \\ -1.5321 \\ -1.5321 \\ -1.4900 \\ -1.4531 \\ \sim 1.4320 \end{array}$

-1.2012-1.1489-1.1141

2910 2732 2413 -1.0346-0.9938 -0.9023

Fig. S118. ¹H NMR spectrum of compound 13 –expansion

-1.8471-1.8171/1.7486/1.7272-1.7089/1.6349

/ 1.9531 / 1.9314 - 1.9085

 $\begin{array}{c} 2.2204\\ 2.2131\\ 2.1965\\ 2.1905\\ 2.1759\\ 2.0371\\ 2.0331\\ 2.0331\\ \end{array}$

Fig. S121. HMBC spectrum of compound 13 in CD₃OD (600 MHz)

Fig. S120. ¹³C NMR spectrum of compound 13 –expansion

Fig. S122. HMBC spectrum of compound 13-expansion

Fig. S123. ROESY spectrum of compound 13 in CD₃OD (600 MHz)

Fig. S124. HR-ESIMS report of compound 13

Fig. S125. ¹H NMR spectrum of compound 14 in C₅D₅N (400 MHz).

Fig. S127. 13 C NMR spectrum of compound 14 in C₅D₅N (150 MHz).

Fig. S128. ¹³C NMR spectrum of compound 14-expansion.

Fig. S130. HMBC spectrum of compound 14-expansion.

Fig. S131. ROESY spectrum of compound 14 in C₅D₅N (600 MHz).

Fig. S132. HRESIMS report of compound 14.

Identification code	mjr17084_0m					
Empirical formula	$C_{30}H_{46}O_{6}$					
Formula weight	502.67					
Temperature	170 K					
Wavelength	1.34139 Å					
Crystal system	Monoclinic					
Space group	P 1 21 1					
Unit cell dimensions	a = 14.2747(19) Å	$\alpha = 90^{\circ}$				
	b = 6.4197(9) Å	$\beta = 105.303(9)^{\circ}$				
	c = 14.897(2) Å	$\gamma = 90$ °				
Volume	1316.7(3) Å ³					
Z	2					
Density (calculated)	1.268 Mg/m ³					
Absorption coefficient	0.444 mm ⁻¹					
F(000)	548					
Crystal size	0.05 x 0.02 x 0.01 mm ³					
Theta range for data collection	3.319 to 55.147 °					
Index ranges	-17<=h<=17, -7<=k<=7, -16<=l<=18					
Reflections collected	14495					
Independent reflections	4786 [R(int) = 0.0521]					
Completeness to theta =	99.2%					
Absorption correction	Semi-empirical from equivalents					
Max. and min. transmission	0.7508 and 0.4336					
Refinement method	Full-matrix least-squares on F ²					
Data / restraints / parameters	4786 / 1 / 343					
Goodness-of-fit on F^2	1.061					
Final R indices [I>2sigma(I)]	R1 = 0.0683, wR2 = 0.1556					
R indices (all data)	R1 = 0.0866, wR2 = 0.1718					
Absolute structure parameter	0.19(17)					
Extinction coefficient	0.0051(14)					
Largest diff. peak and hole	0.323 and -0.320 e.Å ⁻³					

 Table S1. Crystal data and structure refinement for stewartiacid A (1)

Identification code	191209wj_0m				
Empirical formula	$C_{30}H_{50}O_9$				
Formula weight	554.70				
Temperature	169.98 K				
Wavelength	1.34139 Å				
Crystal system	Orthorhombic				
Space group	P212121				
Unit cell dimensions	$a = 8.0649(6) \text{ Å}$ $\alpha = 90 ^{\circ}.$				
	b = 11.3973(8) Å	$\beta = 90$ °.			
	c = 32.416(2) Å	$\gamma = 90$ °.			
Volume	2979.6(4) Å ³				
Z	4				
Density (calculated)	1.237 Mg/m ³				
Absorption coefficient	0.471 mm ⁻¹				
F (000)	1208				
Crystal size	0.15 x 0.1 x 0.008 mm ³				
Theta range for data collection	3.576 to 55.060 °.				
Index ranges	-9<=h<=7, -11<=k<=13, -39<=l<=39				
Reflections collected	21220				
Independent reflections	5558 [R (int) = 0.0705]				
Completeness to theta = 53.594 $^{\circ}$	98.5 %				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	0.7508 and 0.3675				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	5558 / 0 / 372				
Goodness-of-fit on F^2	1.031				
Final R indices [I>2 sigma (I)]	R1 = 0.0949, wR2 = 0.2521				
R indices (all data)	R1 = 0.1371, $wR2 = 0.2937$				
Absolute structure parameter	-0.01(19)				
Extinction coefficient	0.029(4)				
Largest diff. peak and hole	0.292 and -0.310 e.Å ⁻³				

 Table S2. Crystal data and structure refinement for stewartiacid C (3)

Identification code	mjl18283_0m					
Empirical formula	$C_{30}H_{46}O_{6}$					
Formula weight	502.67					
Temperature	170.0 K					
Wavelength	1.34139 Å					
Crystal system	Monoclinic					
Space group	P 1 21 1					
Unit cell dimensions	$a = 13.9664(4) \text{ Å}$ $\alpha = 90 ^{\circ}.$					
	b = 6.5552(2) Å	$\beta = 104.366(2)$ °.				
	c = 15.1284(5) Å	$\gamma = 90$ °.				
Volume	1341.73(7) Å ³					
Z	2					
Density (calculated)	1.244 Mg/m ³					
Absorption coefficient	0.436 mm ⁻¹					
F (000)	548					
Crystal size	0.1 x 0.02 x 0.01 mm ³					
Theta range for data collection	2.841 to 54.870 °.					
Index ranges	-17<=h<=17, -7<=k<=7, -18<=l<=18					
Reflections collected	20123					
Independent reflections	5048 [R(int) = 0.0530]					
Completeness to theta = 53.594 $^{\circ}$	99.8 %					
Absorption correction	Semi-empirical from equivalents					
Max. and min. transmission	0.7508 and 0.5858					
Refinement method	Full-matrix least-squares on F ²					
Data / restraints / parameters	5048 / 1 / 335					
Goodness-of-fit on F^2	1.038					
Final R indices [I>2 sigma(I)]	R1 = 0.0534, $wR2 = 0.1558$					
R indices (all data)	R1 = 0.0595, wR2 = 0.1613					
Absolute structure parameter	-0.11(13)					
Extinction coefficient	n/a					
Largest diff. peak and hole	1.397 and -0.327 e.Å ⁻³					

 Table S3. Crystal data and structure refinement for stewartiacid D (4).
Identification code	mjl18275_0m	
Empirical formula	$C_{31}H_{52}O_7$	
Formula weight	536.72	
Temperature	169.98 K	
Wavelength	1.34139 Å	
Crystal system	Monoclinic	
Space group	C 1 2 1	
Unit cell dimensions	a = 30.9220(6) Å	$\alpha = 90$ °.
	b = 13.9294(3) Å	β= 107.9170(10) °.
	c = 14.7361(3) Å	γ= 90 °.
Volume	6039.4(2) Å ³	
Z	8	
Density (calculated)	1.181 Mg/m ³	
Absorption coefficient	0.421 mm ⁻¹	
F(000)	2352	
Crystal size	0.15 x 0.1 x 0.02 mm ³	
Theta range for data collection	3.054 to 55.014 °.	
Index ranges	-37<=h<=37, -16<=k<=16, -17<=l<=18	
Reflections collected	48612	
Independent reflections	11459 [R(int) = 0.0507]	
Completeness to theta = 53.594 $^{\circ}$	99.6 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7508 and 0.5610	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	11459 / 13 / 710	
Goodness-of-fit on F ²	1.038	
Final R indices [I>2 sigma(I)]	R1 = 0.0875, wR2 = 0.2556	
R indices (all data)	R1 = 0.0955, wR2 = 0.2669	
Absolute structure parameter	0.10(8)	
Extinction coefficient	0.0029(7)	
Largest diff. peak and hole	1.152 and -0.472 e.Å ⁻³	

Table S4. Crystal data and structure refinement for stewartiacid F (6).