

Supplemental Figure 1. Supporting information for fluorescent microscopy analysis. (Supports Figure 1.)

(A) Confirmation of moderate SEP3 degradation by $PHYL_{OY}$ and $PHYL_{OY}$ -CYF. the expression of $PHYL_{OY}$, SEP3, GUS-CFP, and P19 were mixed at a ratio of 2:4:3:1 and infiltrated into *N. benthamiana* leaves.

(B) Localization of $PHYL_{OY}$ -CFP in *Nicotiana benthamiana* epidermal cells. *Agrobacterium* cultures ($OD_{600} = 1.0$) for the expression of $PHYL_{OY}$ -CFP, SEP3, RAD23C, and P19 were mixed at a ratio of 2:4:3:1 and infiltrated into *N. benthamiana* leaves.

(C) BiFC analysis using NYF-SEP3 or NYF-AP3, PHYL_{OY}-CYF, and GUS-CFP. Proteins were expressed as in the case of Figure 1D. Proteins were detected 40 h after infiltration by immunoblot analysis, using a polyclonal anti-GFP or an anti-PHYL_{OY} antibodies. Coomassie Brilliant Blue (CBB) staining is shown as a loading control. Fluorescence was observed 40 h after infiltration. Bars indicate 25 μ m.

Supplemental Figure 2. In planta coimmunoprecipitation assay using FLAG-RAD23C and $PHYL_{OY}$. (Supports Figure 2.)

Agrobacterium cultures for expression of FLAG-fused proteins ($OD_{600} = 0.5$), PHYL_{OY} ($OD_{600} = 0.1$), and P19 ($OD_{600} = 1.0$) were mixed at a ratio of 10:10:1 and infiltrated into *N. benthamiana* leaves. FLAG-GUS was used as a control. The input and immunoprecipitated (IP) proteins (using an anti-FLAG antibody) were detected 36 h after infiltration by immunoblot analysis, using an anti-FLAG or an anti-PHYL_{OY} antibody. Coomassie Brilliant Blue (CBB) staining is shown as a loading control.

Supplemental Figure 3. In planta coimmunoprecipitation using (A) FLAG-RAD23C, PHYL_{OY}-CYF, and myc-SEP3 or (B) SEP3-FLAG, PHYL_{OY}, myc-RAD23C, and PAD1-CFP. (Supports Figure 2.)

(A) Protein expression, immunoprecipitation using an anti-FLAG antibody, and protein detection (immunoprecipitated proteins only) were performed as described in Figure 2A.

(B) Agrobacterium cultures for expression of SEP3-FLAG ($OD_{600} = 1.0$), PHYL_{OY} ($OD_{600} = 0.1$), myc-RAD23C($OD_{600} = 1.0$), PAD1-CFP ($OD_{600} = 1.0$), and P19 ($OD_{600} = 1.0$) were mixed at a ratio of 1:1:1:1:0.1 and infiltrated into *N. benthamiana* leaves. Immunoprecipitation using an anti-FLAG antibody, and protein detection were performed as in (A).

Supplemental Figure 4. Comparison of ubiquitination between $PHYL_{OY}$ and $PHYL_{OY}^{allK/R}$. (Supports Figure 3.)

Immunoprecipitation using SEP3-FLAG and PHYL_{OY} or PHYL_{OY}^{allK/R} was performed as in Figure 3A. SEP3-interacting PHYL_{OY} or PHYL_{OY}^{allK/R} was detected by immunoblot analysis using an anti-PHYL_{OY} antibody. Because of the differences of in planta accumulation between PHYL_{OY} and PHYL_{OY}^{allK/R}, the loading amount of SEP3-interacting PHYL_{OY} was one-tenth of the amount of PHYL_{OY}^{allK/R} in the experiment. Bands corresponding to ubiquitinated PHYL_{OY} were detected (black arrows) but those to ubiquitinated PHYL_{OY}^{allK/R} were not, indicating that PHYL_{OY}^{allK/R} is not ubiquitinated. Asterisks indicate nonspecific bands, which were observed without PHYL_{OY}^{allK/R} expression.

Supplemental Figure 5. Comparison of in planta protein accumulation between $PHYL_{OY}$ and $PHYL_{OY}^{allK/R}$. (Supports Figure 3.)

(A)PHYL_{OY} and PHYL_{OY}^{allK/R} or (B) PHYL_{OY}-HA and PHYL_{OY}^{allK/R}-HA were expressed in *N.* benthamiana leaves. Protein detection was performed as described in Figure 3B using an anti-PHYL_{OY} (A) or an anti-HA(B) antibody.

Supplemental Figure 6. Protein structure of SEP3 and RAD23C. (Supports Figure 4.) **(A)** The domains and residues in SEP3 involved in multimerization reported by Puranik *et al.* (2014).

(B) Domain organization of RAD23C according to the GenBank reference sequence (AEE73826).

Supplemental Figure 7. Y2H assay using PHYL_{OY} and domains in *A. thaliana* MTF or RAD23. (Supports Figure 4.)

(A) Interaction of PHYL_{OY} with the M, I, K, and C domains of SEP3.

(B) Interaction of PHYL_{OY} with the K domains of *Arabidopsis thaliana* A- (AP1), B- (AP3, PI), and C- (AG) class MTFs in yeast cells.

(C) Interaction of $PHYL_{OY}$ with the UBA2 domains of *A. thaliana*. Each Y2H assay was performed as described in Figure 4.

Supplemental Figure 8. Interactions of the MTF/phyllogen/RAD23 protein complex using different phyllogen or host proteins. (Supports Figure 4.)

(A) to (C) Interaction of $PHYL_{PnWB}$ with *Arabidopsis* proteins. (A) In planta immunoprecipitation using FLAG-RAD23C, $PHYL_{PnWB}$, and myc-SEP3. (B) to (C) Y2H assay using $PHYL_{PnWB}$ and partial region of SEP3 (B) or *A. thaliana* RAD23 homologs (C). (D) to (E) Interaction of $PHYL_{OY}$ with rice proteins. (D) Y2H assay using $PHYL_{OY}$ and OsRAD23 or its UBA2 domain. (E) In planta immunoprecipitation using SEP3 and RAD23 homologs of rice with $PHYL_{OY}$. Y2H and immunoprecipitation experiments were performed as described in Figures 4 and 2A, respectively.

۸

A		*	20	*	40	*	60	*	80	*		
PHYL _{oy} opt2 PHYL _{oy} ^{allK/R}	: ATGAACA : ATGAACA	AGGATAT A <mark>G</mark> GGATAT	CGCTTCTGC CGCTTCTGC	ТТСТААСААС. ТТСТААСААС.	AACCAGAACA AACCAGAACA	ГСАССААСТАС ГСАССААСТАС	TCTATCGAAC TCTATCGAAC	GAGAACATTA GAGAACATTA	CAACCTCAA CAACCTCA	GTACA <mark>A</mark> GAT GTACA <mark>G</mark> GAT	: 92 : 92	
PHYL _{OY} opt2 PHYL _{OY^{allK/R}}	10 : CAGAAAG : CAGAA <mark>GA</mark>)0 AACGCTG AACGCTG	* TTAAGAAGA TTAGA <mark>A</mark> GGA	120 TCAACACCGA TCAACACCGA	* GAGAGAGATCO GAGAGAGATCO	140 CAGCAGCTCTC CAGCAGCTCTC	* TAACAACGAT TAACAACGAT	160 TCCTAACAAGA TCCTAACA <mark>G</mark> AA	* ACACCCTCC ACACCCTCC	180 TCGCTCTCA TCGCTCTCA	A : 184 A : 184	
PHYL _{OY} opt2 PHYL _{OY} ^{allK/R}	* : AG <mark>CAGAA</mark> : GA <mark>CAGAA</mark>	2 ACCTTGAG ACCTTGAG	00 AACCTCATC AACCTCATC	* CACAACCAGA CACAACCAGA	220 AG <mark>GAGCAGCT</mark> GAGAGCAGCT	* 2 FAAG <mark>ACCTACC</mark> FAGAACCTACC	40 AGA <mark>AGCTCC</mark> AGA <mark>GA</mark> CTCC	* CCA <mark>AG</mark> ACCCTC CCAGAACCCTC	260 CAACGATGAG CAACGATGAG	* AACAACTGA AACAACTGA	: 276 : 276	
в		*	20	*	40	*	60	*	80	*		
SEP3 : SEP3ª ^{IIK/R} :	ATGGGAAG ATGGGAAG	AGGGAGAC AGGGAGAC	GTAGAATTGA GTAGAATTGA	AG <mark>AGGATAGA</mark> GA <mark>AGGATAGA</mark>	GAACA <mark>AG</mark> ATC <i>I</i> GAACA <mark>GA</mark> ATC <i>I</i>	AATAGGCAAGT AATAGGCAAGT	GACGTTTGCA GACGTTTGCA	AAGAGAAGGA A <mark>GA</mark> AGAAGGA	ATGGTCTTT ATGGTCTTT	'GAAGAAAGC 'GA <mark>GA</mark> AGAGC	: 95 : 95	
SEP3 : SEP3 ^{allK/R} :	100 ATACGAGC ATACGAGC	* TTTCAGTI TTTCAGTI	120 CCTATGTGAT CCTATGTGAI	* GCAGAAGTTG GCAGAAGTTG	140 CTCTCATCATC CTCTCATCATC	* CTTCTCAAATA CTTCTCAAATA	160 GAGGAAAGCT GAGGAA <mark>GA</mark> CT	* GTACGAGTTT GTACGAGTTT	180 TGCAGTAGTT TGCAGTAGTT	* CGAGCATGC CGAGCATGC	: 190 : 190	
SEP3 : SEP3 ^{allK/R} :	2) TTCGGACA TTCGGACA	00 CTGGAGAC CTGGAGAC	* GGTACCAAAA GGTACCAAAG	220 GTGTAACTAT ATGTAACTAT	* GGAGCACCAGA GGAGCACCAGA	240 AACCCAATGTG AACCCAATGTG	* CCTTCAAGAG CCTTCAAGAG	260 AGGCCTTAGC AGGCCTTAGC	* AGTTGAACT AGTTGAACT	280 Pagtagccag Pagtagccag	: 285 : 285	
SEP3 : SEP3 ^{allK/R} :	* CAGGAGTA CAGGAGTA	300 TCTCAAGO TCTCAGAO	* CTTAAGGAGC CTTA <mark>GA</mark> GAGC	320 GTTATGACGC GTTATGACGC	* CTTACAGAGA# CTTACAGAGA#	340 ACCCAAAGGAA ACCCAAAGGAA	* TCTGTTGGGA TCTGTTGGGA	360 GAAGATCTTG GAAGATCTTG	* GACCTCTAAC GACCTCTAAC	380 TACAA <mark>AG</mark> GA TACAA <mark>GA</mark> GA) A : 380 A : 380	
SEP3 : SEP3 ^{allK/R} :	GCTTGAGT(GCTTGAGT(* CACTTGAC CACTTGAC	400 GAGACAGCTI GAGACAGCTI	* GATTCTTCCT GATTCTTCCT	420 IGAAG <mark>CAGATO IGA</mark> GA <mark>CAGATO</mark>	* CAGAGCTCTCA CAGAGCTCTCA	440 ggacacagtt ggacacagtt	* TATGCTTGAC TATGCTTGAC	460 CAGCTCAACO CAGCTCAACO	* GATCTTCAGA GATCTTCAGA	A : 475 A : 475	
SEP3 : SEP3 ^{allK/R} :	480 GTAAGGAA0 GTAGAGAA0	* CGCATGC1 CGCATGC1	500 GACTGAGAC GACTGAGAC	* AAATA <mark>A</mark> AACT AAATA <mark>G</mark> AACT	520 CTAAGACTAAG CTAAGACTAAG	* GGTTAGCTGAT GGTTAGCTGAT	540 GGGTATCAGA GGGTATCAGA	* TGCCACTCCA TGCCACTCCA	560 GCTGAACCCI GCTGAACCCI	* AACCAAGAA AACCAAGAA	• A : 570 A : 570	
SEP3 : SEP3ª ^{IIK/R} :	5 GAGGTTGA GAGGTTGA	80 TCACTACC TCACTACC	* GGTCGTCATC GGTCGTCATC	600 ATCATCAACA ATCATCAACA	* ACAACAACAC ACAACAACACI	620 PCCCAAGCTTT PCCCAAGCTTT	* CTTCCAGCCT CTTCCAGCCT	640 TTGGAATGTG TTGGAATGTG	* AACCCATTC AACCCATTC	660 TCAGATCGO TCAGATCGO	: 665 : 665	
SEP3 : SEP3ª ^{IIK/R} :	* GTATCAGG GTATCA <u>GG</u>	680 GGCAACAA GGCAACAA	* AGATGGAATG AGATGGAATG	700 GGAGCAGGAC GGAGCAG <u>GAC</u>	* CAAGTGTGAA1 CAAGTGTG <u>AA1</u>	720 TAATTACATGT TAATTACATGT	* TGGGTTGGTT TGGGTTG <u>GTT</u>	740 ACCTTATGAC ACCTTAT <u>GAC</u>	* ACCAACTCT <i>I</i> ACCAACT <u>CT</u> I	ATTTGA : 7 ATTTGA : 7	756 756	

Supplemental Figure 9. Modified nucleotide sequences cloned in the study. (Supports Figures 1 to 4.)

Sequences of (A) $PHYL_{OY}^{allK/R}$, (B) $SEP3^{allK/R}$, and (C) plant codon-optimized *mScarlet* are shown with the reference sequences ($PHYL_{OY}opt2$, SEP3, and *mScarlet*, respectively). Identical nucleotides are indicated by black boxes.

Supplemental Figure 9, continued.

Supplemental Table 1.	Primers	used in	this study.
-----------------------	---------	---------	-------------

Primer name	Sequence $(5' \rightarrow 3')$	Targets	Purpose
PHYL1 ver2 mnsF	CCTCAACGATGAGAACAACTATCTAGACCCAGC	PHYLov	deletion of stop codon
PHYL1 ver2 mnsR	GCTGGGTCTAGATAGTTGTTCTCATCGTTGAGG	PHYLox	deletion of stop codon
Phyl1-pColdF	GGGAATTCCATATGATGAATAAGGATATTGCTTCTG	PHYLox	cloning (pCOLD I)
Phyll-pColdR	CTAGTCTAGACTATCAATTATTTTCATCATTAAGAGTC	PHYLov	cloning (pCOLD I)
PHYL1opt2 to ALSVver2			cloning
_R	TCCCCCGGGGTTGTTCTCATCGTTGAGGG	PHYLOY	(ALSV vector)
KallR_to_ALSVver2_F	CCGCTCGAGATGAACAGGGATATCGCTTC	PHYLOY ^{allK/R}	cloning (ALSV vector)
Phyllopt2_ALSVver2_F	CCGCTCGAGATGAACAAGGATATCGCTTC	PHYL _{OY} , PHYL _{OY} ^{allK/R}	cloning (ALSV vector)
PHYL_to_pENTA_F	AAGGAACCAATTCAGTCATGAACA	PHYL _{OY} , PHVL an ^{allK/R}	HA-tag fusion
PHYL1_G8_HA_R	TGGGTATCCACCTCCACCTCCACCGTTGTTCTCATCGTTGA G	PHYL _{OY} , PHYL _{OY} ,	HA-tag fusion
EcoRI Ndel PnWB F	GGGAATTCCATATGGATCCTAAGCTCCCTGAG	PHVI n un	cloning (nCOLD I)
XhoI PnWB R	CCGCTCGAGTCAGTTCTTCTCCATCGTTG	PHYL _{prwp}	cloning (pCOLD I)
Rad23A to pGADT7 F	ACCAGATTACGCTCATATGAAGCTCACTGTTAAGACTCTCAAGG	RAD23A	cloning (pGADT7)
Rad23A to pGADT7 R	TGCCCACCCGGGTGGAATCAGTCTTCAAAATCTGCTG	RAD23A	cloning (pGADT7)
Rad23B to pGADT7_F	ACCAGATTACGCTCATATGAAGCTCACCGTTAAAAACTCTCAAGG	RAD23R	cloning (pGADT7)
Rad23B to pGADT7_R	TGCCCACCCGGGTGGAATCAGTCTTCAAAGTCACCTGAG	RAD23B	cloning (pGADT7)
nENTA Rad23C mnsE	GCATGAATTCGAGGAATATCTAGACCCAGCTT	RAD23C	deletion of ston codon
pENTA_Rad23C_mnsR	AAGCTGGGTCTAGATATTCCTCGAATTCATGC	RAD23C	deletion of stop codon
Rad23C_G8_R	TCCACCTCCACCTCCACCTTCCTCGAATTCATGCATGTGATC	RAD23C	cloning (pMAL-c5X)
23C_to_pMAL_F2	ATCGAGGGAAGGATTTCACATATGAAGATATTTGTGAAAAACTCTC AAG	RAD23C	cloning (pMAL-c5X)
Rad23C_to_pGADT7_F	ACCAGATTACGCTCATATGAAGATATTTGTGAAAACTCTC	$RAD23C_{UbL}$	cloning (pGADT7)
UbL_R	TGCCCACCCGGGTGGAATCATTTACTCTTGTTCATCATAATGAC	$RAD23C_{UbL}$	cloning (pGADT7)
UBA1_F	ACCAGATTACGCTCATATGCTAGCCGCTGGAAGTAATTTAGAGAG	RAD23C _{UbA1}	cloning (pGADT7)
UBA1_R	TGCCCACCCGGGTGGAATCAAGGGATCCCAGTATAAAGATATTC	RAD23C _{UbA1}	cloning (pGADT7)
Rad4_F	ACCAGATTACGCTCATATGCTTGACTTCTTGCGCAACAGCCAAC	RAD23C _{RAD4}	cloning (pGADT7)
Rad4_R	TGCCCACCCGGGTGGAATCATCCTTCAACGGGTTCATTGATTAAG	RAD23C _{RAD4}	cloning (pGADT7)
UBA2_F	ACCAGATTACGCTCATATGGTCACACATGAGGAACGTGAAGCCA	RAD23C _{UBA2}	cloning (pGADT7)
UBA2_R	TGCCCACCCGGGTGGAATCAGTGATCTAGAAGATAGTTTGCAGC	RAD23C _{UBA2}	cloning (pGADT7)
UBA2_to_pENTA_F	AAGGAACCAATTCAGTCATGGTCACACATGAGGAACGTGA	RAD23C _{UBA2}	cloning (pENTA)
Rad23D_to_pGADT7_F	ACCAGATTACGCTCATATGAAGATTTTCGTGAAGACTCTC	RAD23D	cloning (pGADT7)
Rad23D_to_pGADT7_R	TGCCCACCCGGGTGGAATTATTGATCTTCAAACTCATGCATG	RAD23D	cloning (pGADT7)
OsRAD23 to pGADT7 F	ACCAGATTACGCTCATATGAAGATATCCGTGAAGACACTCAAGG	OsRAD23	cloning (pGADT7)
OsRAD23 to pGADT7 R	TGCCCACCCGGGTGGAATTATGGTGGCCCCTCGTCGTCGA	OsRAD23	cloning (pGADT7)
OsRAD23 to pENTA F	AAGGAACCAATTCAGTCATGAAGATATCCGTGAAGACACTCAAGG	OsRAD23	cloning (pENTA)
OsRAD23 to pENTA R	AAGCTGGGTCTAGATTTATGGTGGCCCCTCGTCGTCGA	OsRAD23	cloning (pENTA)
OsRAD23_UBA2to_pG ADT7_F	ACCAGATTACGCTCATATGGTTACTCCAGAGGAGAATGAAGC	OsRAD23 _{UBA2}	cloning (pGADT7)
OsRAD23_UBA2to_pG ADT7_R	TGCCCACCCGGGTGGAATCAGTGATCTAGGAGATAGTTTGC	OsRAD23 _{UBA2}	cloning (pGADT7)
pAD-AP1-k-F	GTACCAGATTACGCTCATATGAACTGGTCGATGGAGTATAAC	AP1 (K domain)	cloning (pGADT7)
pAD_AP1_K_R	ATGCCCACCCGGGTGGAATTCTTAGATCTGTTTAGAAAGCAT	AP1 (K domain)	cloning (pGADT7)
pENTA-AP3F	AAGGAACCAATTCAGTCATGGCGAGAGGGAAGATCCAG	AP3	cloning (pENTA)
pENTA-AP3R2	CTCGAGTGCGGCCGCGAATTTTATTCAAGAAGATGGAAGG	AP3	cloning (pENTA)
pAD-AP3-k-F	GTACCAGATTACGCTCATATGCGAATGCAAGAAACCAAGAGG	AP3 (K domain)	cloning (pGADT7)
pAD_AP3_K_R	ATGCCCACCCGGGTGGAATTCTTACAGCTCATGTATGAG	AP3 (K domain)	cloning (pGADT7)
pAD-PI-k-F	GTACCAGATTACGCTCATATGAACCTTAGCAATGAGATTG	PI (K domain)	cloning (pGADT7)
pAD_PI_K_R	ATGCCCACCCGGGTGGAATTCTTACAGCTGGAAAGTGAG	PI (K domain)	cloning (pGADT7)
pAD_AG_K_F	GTACCAGATTACGCTCATATGTATTATCAACAAGAATCA	AG (K domain)	cloning (pGADT7)
pAD_AG_K_R	ATGCCCACCCGGGTGGAATTCTTATATCTTTGCACGAAGAAT	AG (K domain)	cloning (pGADT7)
SEP3_inverse_R	GCTGATGGGTATCAGATGCCA	SEP3	construction of SEP35mt

Supplemental Table 1, continued.

Primer name	Sequence $(5' \rightarrow 3')$	Targets	Purpose
30aa5mt_to_SEP3_F	GCAGATCAGAGCTCTCAGGACACAGTTTGCTCTTG	SEP3	construction of SEP3 ^{5mt}
30aa5mt_to_SEP3_R	TGGCATCTGATACCCATCAGCTAACCTTAGTCTAGCAG	SEP3	construction of SEP35mt
SEP3_inverse_for30aacloni ng_F	CTGTGTCCTGAGAGCTCTGATCTGC	SEP3	construction of SEP3 ^{5mt}
SEP3_to_pENTA_F	AAGGAACCAATTCAGTCATGGGAAGAGGGAGAGTAG	SEP3	HA- or FLAG-tag fusion
SEP3_G8_R	TCCACCTCCACCTCCACCAATAGAGTTGGTGTCATAAGG	SEP3	HA- or FLAG-tag fusion
SEP3-ADF	ACCAGATTACGCTCAAATGGGAAGAGGGAGAGAGTAGA	SEP3 (M domain)	cloning (pGADT7)
SEP3-AD177R	ATGCCCACCCGGGTGGTCAACTGCAAAACTCGTACAGCT	SEP3 (M domain)	cloning (pGADT7)
SEP3-AD178F	ACCAGATTACGCTCAAAGTTCGAGCATGCTTCGGAC	SEP3 (I domain)	cloning (pGADT7)
SEP3-AD276R	ATGCCCACCCGGGTGGTCAAAGTTCAACTGCTAAGGCCT	SEP3 (I domain)	cloning (pGADT7)
SEP3-AD277F	ACCAGATTACGCTCAAAGTAGCCAGCAGGAGTATCT	SEP3 (K domain)	cloning (pGADT7)
SEP3-AD525R	ATGCCCACCCGGGTGGTCATAACCTTAGTCTTAGAGTTTT	SEP3 (K domain)	cloning (pGADT7)
pAD_SEP3_146F	GTACCAGATTACGCTCATATGAGGACACAGTTTATGCTT	SEP3 (K domain)	cloning (pGADT7)
pAD_SEP3_145R	ATGCCCACCCGGGTGGAATTCTTAGAGAGCTCTGATCTGCTT	SEP3 (K domain)	cloning (pGADT7)
pGEX_SEP3_K_F	CGCGGATCCAGTAGCCAGCAGGAGTATC	SEP3 (K domain)	cloning (pGEX-4T-1)
pGEX_SEP3_K_R	CCCTCGAGGAATTCTCATAACCTTAGTCTTAGAGTT	SEP3 (K domain)	cloning (pGEX-4T-1)
pAD_SEP3_5mt_F	GTACCAGATTACGCTCATATGAGGACACAGTTTGCTCTTGAC	SEP3 ^{5mt}	cloning (pGADT7)
pAD_SEP3_5mt_R	ATGCCCACCCGGGTGGAATTCTTATAACCTTAGTCTAGC	SEP3 ^{5mt}	cloning (pGADT7)
SEP3-AD526F	ACCAGATTACGCTCAAGCTGATGGGTATCAGATGCC	SEP3 (C domain)	cloning (pGADT7)
SEP3-ADR	ATGCCCACCCGGGTGGCCTCAAATAGAGTTGGTGTCAT	SEP3 (C domain)	cloning (pGADT7)
AtPAD1-F1	AAGGAACCAATTCAGTCATGGCGAGATACGATCGAGCAATCACTG	PAD1	cloning (pENTA)
AtPAD1-R1	AAGCTGGGTCTAGATATGTTTCCTTCGCAGGGCCTTTC	PAD1	cloning (pENTA)
pENTA_to_pGADT7_R	TGCCCACCCGGGTGGAAGTACAAGAAAGCTGGGTCTAGAT	genes cloned in pENTA	cloning (pGADT7)
pENTA_R	GACTGAATTGGTTCCTTTAAAGCCTGC	pENTA	FLAG- or HA-tag fusion
G8-Flag-pENTA_F	GGAGGTGGAGGTGGAGGTGGAGACTACAAGGACGACGATGACAA GTGAATCTAGACCCAGCTT	pENTA	FLAG-tag fusion
G7-HA-pENTA_F	GGAGGTGGAGGTGGAGGTGGATACCCATACGATGTTCCAGATTAC GCTTGAATCTAGACCCAGCTT	pENTA	HA-tag fusion
G8_Flag_pMALX_F	GGAGGTGGAGGTGGAGGTGGAGACTACAAGGACGACGATGACAA GTGATCCGAATTCCCTGCAGG	pMAL-C5X	FLAG-tag fusion
pMALX_R	CATATGTGAAATCCTTCCCTCGA	pMAL-C5X	FLAG-tag fusion
M13R-pCAM2338F	GTCATAGCTGTTTCCTGACTATCAGTGTTTGACAGGA	pCAMBIA1301	cloning (ALSV vector)
M13F-pCAM8718	ACTGGCCGTCGTTTTACTTCGGCGTTAATTCAGTACA	pCAMBIA1301	cloning (ALSV vector)