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Supplementary Figure 1. Schematic of the 1D SOM. SOM is an unsupervised network
including one input layer, one output layer, and the fully connected synapse matrix. During
training, not only the winner's weights (red) but the weights of other neurons (blue) are also
updated through the neighborhood function. Examples of three common neighborhood functions
in SOMs are Gaussian function, bubble function, and Mexican hat function (R is the margin of
the winner area).



3

Supplementary Figure 2. Weight map of the color mapping application. (a) The weight map of the
selected memristor array before training. All the devices are initialized to HRS (around 50 µS). (b)
Evolution of the device conductance in three columns (the 5th, 35th, 55th column) during the training
process.
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Supplementary Figure 3. The clustering ability of our SOMs tested by IRIS dataset. The clustering
ability of our SOM is proven by 5 (3 data rows and 2 squire rows) ×64 memristor array with
IRIS dataset (150 points from each of the three iris flower species: Setosa, Virginica, and
Versicolor with four different features). Here only three features are used in clustering. (a)
Weight map of the SOM after training in features space. The big red dots represent the neurons'
location of the SOM, and the small orange, blue and green dots are three different kinds of
flowers, respectively. (b) Clustering result after training process A 'non-firing or 'low-firing'
boundary can be found between different clusters. Three clusters can be defined by the 'non-
firing’ or 'low-firing' boundary. (c) The frequency of neurons' response with all data points.
(d)~(f). The frequency of neurons' response with different clusters. For the data in the same
cluster, they always fire the neurons in the same region. And after the training process, the
memristor-based SOM system enables 94.6% high classification accuracy.
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Supplementary Figure 4. The clustering ability of our SOMs tested by other datasets. (a) The
clustering ability of the 1D-SOM is proven by 22 (13 data rows and 9 squire rows) × 12
memristor array with wine dataset (178 points, three kinds of wine). The most common
unsupervised clustering algorithm is the K-mean clustering, which needs to know the number of
clusters. We cannot directly classify the three kinds of wine for our SOM, but we can cluster the
wines into 12 different clusters. And because of the neighborhood function, we can see the
similarity of the wine. And the same kind of wine is close to each other. 95% accuracy can be
achieved if the neurons are equally divided into three clusters. (b) Gaussian distribution data set
(1024 points, 16 different clusters, 32 dimensions) in three selected dimensions. (c)The perfect
result to show the clustering ability of our 2D SOM. A 48 (36 data rows and 12 squire rows) ×64
(8×8 2D SOM) crossbar array with randomly initialized conductance is used for the training. 16
different clusters have been successfully tested.
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Supplementary Figure 5. Influence of neighborhood function factor for color mapping and
clustering. (a), (b), (c) After 600 training epochs neuron responses when the input color is white
(1,1,1) with different neighborhood function value (a) 0.5, (b) 5, (c) 50, the three weights of each
neuron are the RGB elements of the color. When the neighborhood function is very small, the
connection between the winner and neighborhoods is negligible. As a result, SOMs will lose the
ability to recognize mixed colors from neighborhood function, and there is no obvious
topological relationship of the neuron response. With the increasing neighborhood function, the
SOMs show better clustering ability. When the neighborhood function becomes enormous, the
connection between the winner and the neighborhoods will be so strong that the total number of
the clusters will be decreased during the test process. Based on this principle, a dynamic
compressed rate can be achieved just by tuning the neighborhood function factor.
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Supplementary Figure 6. Schematic of memristor crossbar array for similarities calculation. (a) Dot
product method (b) normalized dot product [1]. Besides the Euclidean distance, the cosine similarity is a
popular metric for similarity measure between vectors X and Y, which can be calculated by
XY/(||X||∙||Y||). The normalized dot product approximates the cosine similarity by dividing the dot product
by the l-1 norm of Y instead of the l-2 norm. The conductance of the memristor can be acted as the weight
of the neuron. As Rh is a high resistance, when a series pulses are applied as the input, for each column,
the output is approximately the normalized dot product of the inputs and weights and can be determined
by ����� = �=1

� ��∙����

�=1
� ����

�=1
� ��∙����

�=1
� ����

). Compared to the dot product, the normalized dot product shows a rougher

similarity estimate. However, the Euclidean distance we measured based on our squire method presents
higher accuracy than the normalized dot product. (c) Schematic of our method.
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Supplementary Figure 7. Result of SOM-based image compression. Shows the result of image
compression implemented with the hardware memristor SOM system. The original image (left panel) is
processed, the original image pixels are applied into the memristive SOMs, and the data row weight
vector of the winner is the RGB value of the new compressed image pixel. Image is successfully
compressed with acceptable resolution.
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Supplementary Figure 8. Output neuron response for image segmentation. The neurons in the
output layer are clustered into five categories according to each neuron's position and response
color. Here five different clusters can be obtained.
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Supplementary Figure 9. A 10 cites TSP by 4×45 crossbar array, normalized weight in city space
form initial state to 240 training iterations in the training process. (Experimental) The black dots
represent the position of the cities; orange dots are the normalized weights of 45 different
neurons, and the red dashed line is the possible route determined by the sequence of the neurons.
At the initial states, all the devices are in the HRS. During the training process, the winner node
moves in the city plane and induces its neighborhood on the ring to do so, but with a decreasing
intensity along the ring. At the beginning of the training process, most nodes tend to converge
together with a larger neighborhood function. With a gradually decreasing neighborhood
function in the training process, the nodes will progressively become independent and eventually
attach to different cities. Finally, the neighborhood function will only affect the winner itself, and
the shortest route will be found. Due to the writing error and the variation of the device, some
synapses are offset the original positions. But the extra neurons help to overcome this issue and
will not affect the result.
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Supplementary Figure 10. Schematic of multiple devices as one weight. A simple method has
been adopted to overcome the serious impact of the writing error. In our system, we do not need
a complex design. Due to the intrinsic structure of the SOMs (low dimensional inputs),
additional rows can be directly used to act as multiple devices for one weight. For example, the
original SOM is implemented by a 4×N array. A 12 ×N array, which can be divide into three
identical 4×N sub-arrays, is adopted to implement 3 devices as one weight SOM. And the inputs
of all the sub-arrays are the same so that they can share the same input channels. With this
method, we only need extra area costs in the memristor array part. No extra circuits such as DAC
and ADC are needed.
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Supplementary Figure 11. A larger-scale TSP simulation. Simulation result for 50 city TSP by our
memristor-based SOM with the ideal device. To show the potential of solving the complex
problem of our system, a 50-city TSP based on our SOMs has been tested. The red dots represent
the position of the cities. After training, the normalized weight vectors of nodes are mapped into
the city space; the neurons are converted into different cities. The black dashed line is the
shortest route determined by the sequence of these neurons in 3D space. This result proves that
not only 2D TSP but our memristor-based SOM also can solve more complex optimization tasks.
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Supplementary Note 1: Performance analysis of the memristor-based SOM.

We present simple estimations of the performance for two different tasks. 1) Images compressed/segment
with a trained SOM. 2) Solving ten-city TSP with a memristor-based SOM.

Table 1. Parameters of two different applications

Application Array size Weight Training epochs Inference times

Image
compressed/segment

5×64 320 ~ Image size (500
×600)

10 city TSP 12×45 540 210 10

Energy estimation of task 1:

With a trained SOM, we only need an inference process to implement image compression and segment.

In the inference or reading process, the maximum inference voltage is 0.2 V, the voltage width is 10 ns,
and the average conductance is around 10 kΩ. The Joule heat dissipated by a single memristor is around

������ = 10�� ×
0.2�2

10�Ω
= 40 ��

The energy consumption in the memristor array for compressing or segmenting a 500×600 size image is

������ = ������ × �����ℎ� × ��������� = 40 �� × 320 × 500 × 600 = 3.84 ��

Energy estimation of task 2:

In the inference or reading process, the maximum inference voltage is 0.2 V, the voltage width is 10 ns,
and the average conductance is around 10 kΩ. The Joule heat dissipated by a single memristor is around:

������ = 10�� ×
0.2�2

10�Ω
= 40��

So the energy cost of the whole array in the inference process is:

������ = ������ × �����ℎ� × ������� = 40�� × 540 × 10 = 216��

Considering adding the external circuit part. The maximum intrinsic energy cost of a single DAC[2],
ADC[3], and TIA[4], could be estimated as

���� = 25�� × 10�� = 250�� （12-bit, 250MHz sampling rate）

���� = 0.2�� × 10�� = 2��

���� = 1.26��� × 10�� = 12.6�� （6-bit, 1GHz）
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In addition, the 45 output neurons could have their TIA signals converted to digits with ���� =
���� �������

10��×1���
= 5 6-bit ADCs converting at 1GHz. The total energy cost of the test process is

����� = ������ + ������� × ���� × ���� + ���� × ���� + ���� × ����
= 216�� + 10 × 250�� × 540 + 2�� × 45 + 12.6�� × 5 = 1.38��

In the training process, the maximum writing voltage is around 2.2V. 2.2V 5ns pulses could program the
memristor used in this study.

��_����� = 5�� ×
2.2�2

10�Ω
= 2.42��.

Here we assumed that the neighborhood function is constant and affects half of the array. And with the
write and verify scheme, each write process needs 50 verification steps.

������ = ��_����� × 0.5 × �����ℎ� × ������� × ��������� = 2.42�� × 0.5 × 540 × 210 × 50 = 12.71��

Considering adding the external circuit part. DACs shall produce the transistor gate voltages during
programming. The total energy cost of the training process is

������ = ������ + ������� × ��������� × �����ℎ� × ���������

=12.71�� + 50 × 210 × 540 × 25�� × 5�� =0.71 mJ

Comparison with the SOM in CMOS platform:

The inferencing dynamic power consumption of the memristor array part of a 5×64 SOM at a clock
frequency of 200MHz is around 40 �� × 5 × 64 × 200��� = 2.56 ��.

The one-shot updating dynamic power consumption of the memristor array part of a 5×64 SOM at a
clock frequency of 200MHz is around 2.42 �� × 5 × 64 × 200��� = 154. �� ��.

For our memristor array, the maximum writing voltage is around 2.2V. 2.2V 5ns pulses could program
the memristor used in this study. The frequency is around 200MHz. Due to the 128×64 size memristor
array, our hardware system can implement a SOM with 8×8 map size and 128 vector dimensions. As a
result, the ideal MCUPS (millions of updates per second) is around 128×64×200÷50 = 32768.

Table 2 shows the comparison of the memristor-based SOM and current state-of-the-art SOM hardware
system.
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Table 2 Comparison of the memristor-based SOM and current state-of-the-art SOM hardware

system.

Design Our work [5] [6] [7] [8]

Tech. Memristor

SOM

FPGA

AW-SOM

NOC-

SOM

FPGA

SOM

CMOS

SOM

Vec. Dim. 128 3 256 3 16

Map size 8×8 5×5 16×16 16×16 16×16

Frequency (MHz) 200 100 250 100 100

MCUPS 32768 ~ 18597 25344 9102

Power

consumption

154.8 mW （training）

2.56 mW（testing）

(For image processing: 5×64 array)

204 mW ~ ~ ~

in-situ Yes ~ Yes Yes No
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