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Figure S1. Expression of CAR in different human liver cancer cell lines and normal human

liver tissues. The mRNA expression levels of CAR in 45 liver cancer cell lines (red bar) and 7

human normal liver tissues (green bar) were extracted from MERAV (Metabolic gEne RApid

Visualizer) database.
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Figure S2. The levels of hCAR overexpression correlate with the suppressed growth of
hepatoma cells in vitro. (A, B) The protein levels of hCAR in HepG2-hCAR and Hep3B-hCAR
cells after Dox treatment at 0.1 pg/ml and 1 pg/ml for 72 h. (C, D) The relative growth rates of
HepG2-hCAR and Hep3B-hCAR cells under the treatment with vehicle control or Dox at 0.1
pg/ml and 1 pg/ml were measured on day 2, 4, 6, and 8 using CCKS8 reagents. Results are
expressed as mean + S.D. from at least three independent experiments in (C) and (D). ** and ##,

p<0.01.
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Figure S3. Cell-Titer-Glo assay confirmed overexpression of CAR suppresses the growth of
hepatoma cells. Cultured HepG2, HepG2-hCAR (A, B) and Hep3B, Hep3B-hCAR (C, D) cells
were treated with vehicle control or Dox (1 pg/ml) for 2, 4, 6, and 8 days as detailed in
Supplementary Materials and Methods. Relative cell growth rate was measured using the
CellTiter-Glo assay following the manufacturer’s instructions. Data were collected from at least

three independent experiments and expressed as mean + S.D. **, p <0.01.
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Figure S4. Overexpression of hCAR3 in HepG2 and Hep3B cells does not alter cell growth
rates. The relative growth rate of HepG2-hCAR3 and Hep3B-hCAR3 cells was measure on day
0, 2,4, 6, and 8 after vehicle control or Dox (1 pg/ml) treatment. Relative cell growth rate was
analyzed using the CCKS assays (A, B) and CellTiter-Glo assays (C, D). Results are expressed

as mean + S.D. from at least three independent experiments.
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Figure S5. The hierarchical clustering heatmap of RNA-seq data in HepG2-hCAR cells
after hCAR induction. The Hierarchical Clustering was performed using significant expressed
genes (Group-DOX vs Group-con). The group-DOX (DOX-1, DOX-2 and DOX-3) were
HepG2-hCAR cells treated with Dox; and the group-con (con-1, con-2 and con-3) were HepG2-

hCAR cells treated with vehicle control.
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Figure S6. The significantly enriched pathways of RNA-seq data in HepG2-hCAR cells

treated with Dox or vehicle control. O
significant pathway on the top. (A) The
treated with Dox. (B) The significant do

with Dox.

rdered from top to bottom by p-value, with the most
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A Up-regulated GO terms of DE gene
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Figure S7. Gene ontology (GO) analysis of RNA-seq data in HepG2-hCAR cells treated
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with Dox or vehicle control. We conducted GO annotation and enrichment analyses to identify
the biological process (BP), molecular function (MF), and cellular component (CC) of
differentially expressed (DE) genes in RNA-seq data of HepG2-hCAR cells treated with Dox or
vehicle control. (A) The up-regulated GO terms of DE gene in HepG2-hCAR cells treated with

Dox. (B) The down-regulated GO terms of DE gene in HepG2-hCAR cells treated with Dox.
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Figure S8. The expression of hCAR and EPO was not significantly affected by Dox
treatment in normal HepG2 and Hep3B cells. (A, B) mRNA expression of hCAR and EPO
was analyzed in normal HepG?2 cells after treatment with vehicle control or Dox at indicated
concentrations for 72 h. (C, D) mRNA expression of hCAR and EPO was analyzed in normal
Hep3B cells after treatment with vehicle control or Dox at indicated concentration for 72 h. Data

were collected from at least three independent experiments and expressed as mean + S.D.
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Table S1. List of PCR Primer sequences

Primer sequences for RT-PCR

Gene name Forward primer sequence 5°-3’ Reverse primer sequence5’-3’
CAR GAGCTGAGGAACTGTGTGGTA CTTTTGCTGACTGTTCTCCTGAA
EPO AGGCCCTGTTGGTCAACTCT GCAGTGATTGTTCGGAGTGGA
HNF4a TGAGAATGTGCAGGTGTTGAC CGGCTAAATCTGCAGGAGTA

p21 CTGGAGACTCTCAGGGTCGAAA GATTAGGGCTTCCTCTTGGAGAA
GATA-2 CATCAAGCCCAAGCGAAGACT CAGCTCCTCGAAGCACTCCG
CYP24A1 CAAACCGTGGAAGGCTATC AGTCTTCCCCTTCCAGGATCA
TNS4 TTCCTCATCGAGTCTTCCGCCAAA CCATGATGGAATGCTGGCACACAA
ISM1 CTTCCCCAGACCGCGATTC CGACCACCTCTATGGTGACCT
LOXL4 GTCTAATGGCTGGGGAGTCA GTCACTGGGCTATGCTGCTT
ANGPTL1 AGGAAACTGCGCCCACTTTCATAAA ATTCCATCTTGGTGCTTGCTTCTGT
CXCLS8 AGGGTTGCCAGATGCAATAC AAACCAAGGCACAGTGGAAC
CDHI1 CCGCCGGCGTCTGTAGGAA AGGGCTCTTTGACCACCGCTCTC
CD3D ACTGGCTACCCTTCTCTCG CCGTTCCCTCTACCCATGTGA
FABPI GCTGGGTCCAAAGTGATCCA TGTCACCTTCCAACTGAACCA
APOC3 GTTACATGAAGCACGCCACC CACGGCTGAAGTTGGTCTGA
AHSG TCCTTGGGGATACAAACACACC TACCACGGAAAACTTGCCATC
AFP AAATACATCCAGGAGAGCCA CTGAGCTTGGCACAGATCCT
MTTP GGTGCAATGGAGTTTAGCTTG GGCCAGCTTTCACAAAAGAG
IGSF1 CTTGGGAGAACATCACGCTTT CCTGCATTGGACTCAGTAAGG
UPK3A GCCTCTCTGCATGTTTGACA CCCACCCTCTGTTTGTAGGA
APOH CCCAAGCCAGATGATTTACCAT ACAGTCCTGTGAGAGGGCA
PLA2G12B ATTCCGATGGTGTCTCCACTCG CAAGGTCCACACGGTGTTGAAC
ADHG6 CAATACTGCCAAGGTGACTCC GCTCCTGCTGCTTTACAACC
GAPDH CCCATCACCATCTTCCAGGAG GTTGTCATGGATGACCTTGGC
DUSP5 ACAGCCCTGCTGAATGTCTC GGAGCTAATGTCAGCCGTGT

Primer sequences for the cloning of EPO 3°UTR enhancer region

Forward primer 5°-3’

Reverse primer 5°-3°

CGGGGTACCGGGCCCTACGTGCTGTCTCACACA
CCGCTCGAG TTGGCAGCTGCCTTACTGCGGTGA
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Table S2. List of antibodies used in this study

Name Supplier Cat no.
anti-CAR Perseus Proteomics PP-N4111-00
anti-STAT3 BD Transduction Laboratories S21320
anti-phospho-STAT3 Cell Signaling Technology 9145
anti-AKT Cell Signaling Technology 4691
anti-phospho-AKT Cell Signaling Technology 4060
anti-ERK 1/2 ProteinTech Group 16443-1-AP
anti-phospho-ERK 1/2 Sigma-Aldrich M9692
anti-HNF4a Santa Cruz Biotechnology sc-374229
anti-p21 Santa Cruz Biotechnology sc-397
anti-Ki67 Cell Signaling Technology 9449
anti-B-actin Sigma-Aldrich A3854
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Supplementary Methods

Generation of Doxycycline (Dox) inducible hCAR3 stable cell lines

Human CAR3 expression lentivirus plasmid was generated by subcloning the full-length hCAR3
cDNA from the pPCMV2-hCAR3 expression plasmid into the EcoRI site of a pPCW57-GFP-2A-
MCS lentiviral vector as detailed in Materials and Methods. For generation of Dox inducible
hCAR3 overexpression stable cell lines, HepG2 and Hep3B cells were infected with Dox
inducible hCAR3 lentivirus for 72 h, then refed with fresh medium including the selection drug.
Cells were refed every 2 days until uninfected control cells were completely killed, which took
4-5 days for puromycin (1 pg/ml). The positive infection cells were plated 1 cell/well in 96-well
plate. The cells grown up from a single cell were selected and Dox induction was tested again.
The cell lines with the best Dox induction for overexpression of hCAR3, named HepG2-hCAR3

and Hep3B-hCAR3, were selected for use in this study.
Cell-Titer-Glo Assay

Cell viability was assayed using Cell-Titer-Glo Assay kit (Promega, Madison, WI) according to
the manufacturer's instructions. The HepG2, HepG2-hCAR, HepG2-hCAR3, Hep3B, Hep3B-
hCAR, and Hep3B-hCAR3 cells were seeded at the density of 0.5 x 10° or 1x 10? per well in 96-
well plates. The cells were treated with vehicle control or Dox (1 pg/ml). At the time points of
days 0, 2, 4, 6, and 8, the luminescence was read on a 96 microplate luminometer (Promega,
Madison, WI). Relative cell growth rate was normalized against control on day 0. Data were

collected from at least three independent experiments and expressed as mean + S.D. **, p <0.01.
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Unedited Gel for Western blotting
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HepG2-hCAR HepG2
Dox =- - - + + + - - -+ + +
CAR - e «—37kDa «—37kDa
 le25kDa «—25kDa
] <—50kDa <4—50kDa
B-actin |« S S-S S5 - «37kDa e e e - «37kDa
Flgure ZG Con hCAR hCAR3
CAR <+—37kDa
<+—25kDa %
©
@
N

<+—50kDa

B-actin < 37kDa

Hep3B-hCAR

+ + + - - -

——

m <«—37kDa

<«—25kDa

<«—37kDa

<€—25kDa

<+—50kDa
<4—37kDa

B
+—50kDa

<+—37kDa

CAR

B-actin

Con hCAR  hCAR3

<

37kDa

25kDa

50kDa
37kDa

gedeH




Figure 3D
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Figure 7B
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Figure 7C
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Figure 8B
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Figure S2
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