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Reviewers' comments:  

Reviewer #1 (Remarks to the Author):  

This study proposes a fast, public, accessible tool with a new deep learning network (3D DAGMNet) 

to automatically detect and segment acute ischemic stroke lesion. It combines dual attention gates 

that fuse channel Attention Gate and spatial Attention Gate, multi-scale learning using down-

sampling and up-sampling, self-normalization activation unit and the deep supervision mechanism. It 

is trained and tested on a large dataset including 2348 DWIs of patients with acute and sub-acute 

ischemic strokes, and also evaluated on an external public dataset. Experimental results show that 

the proposed 3D DAGMNet outperforms several state-of-the-arts, particularly in small lesions. The 

automated lesion quantification of volume and contrast had virtually total agreement with human 

quantification. It is a very interesting study and provides regular users a public tool. However, this 

paper is lack of some technique details and explanations, some necessary experiments and 

discussions, and some statistical analysis. Thus, it cannot be published before revision according to 

the following concerns.  

(1)The authors stated that “The lesion profile (e.g., volume, intensity, location) was balanced 

between these sets”. However, the authors do not perform statistical test (no P value) to verify this 

statement.  

(2)The non-normal distribution data such as the age, onset to MRI time in Table 1 should be shown 

in the format: median [IQR] rather than mean and std.  

(3)Why not state the exclusion and inclusion criteria of subject selection? Please give a flow chart.  

(4)It is better to move the sections: 2.2, 2.4 into the Section: Methods, and the results shown in 

section 4.5 into the section: Results.  

(5)It is not reasonable to stratify all subjects into small and large lesion groups using 1 mL (e.g., 1.5 

mL is not considered as large lesion), why not stratify all subjects into three groups: small, moderate 

and large?  

(6)In Table 2, why not give the 95%CI of the correlation coefficient? why no 95%CI for the subject 

detection rate? is the inference time the average time over all testing subjects? Why no std? and the 

inference time for DAGMNet_CH3 and DAGMNet_CH2 is the same. Please check. The number of 

parameters can be shown using M(1024*1024) as the uint.  

(7)The reviewer expects more discussions. Why the proposed method performs much worse on 

>24h subjects than the hyper-acute subjects? Are there any performance differences of the 

proposed method on left and right lesions? Whether the segmentation performance is associated 

with the onset-to-MRI time, and sex?  

(8)To reduce the memory resource requirement and the computational time, the DWI is down-

sampled to 96*112*48. This step might lose some information, resulting in a poor performance. 

What’s the performance of lesion detection and segmentation when the input size is 192*224*192? 

this additional experiment is necessary to verify it is reasonable to down-sample the images.  

(9)How about the influence of the proposed Intensity-normalization on the performance? What’s 



the performance using some other normalization methods such as Z-score and min-max 

normalization?  

(10) In general, in attention gate modules, there is a sigmoid or softmax or normalization operation 

before element-wise multiplication. Why no such operations in sAG and cAG?  

(11) There are no convolution layers in each level of the encoder. I wonder whether adding 

convolution layers after down-sampling and before inputting into Xen,I can improve the 

performance?  

(12)Missing some technical details. What’s the number of feature channels (i.e., the number of 

filters) of each convolution layer? How to decide the weights of each term in the Lfused function and 

why not weights for the Lfused and Lside? In general, the validation set is used to tune hyper 

parameters of Dl models, however, the authors do not give the details of the validation. Or use 5-

fold cross-validation on the whole training set?  

(13)Missing legends in several subfigures in Fig. 2. Why no regression line, correlation coefficient and 

P value in some subfigures in Fig. 3.  

(14)Minor concerns: missing the full name of MNI, B0. Two “.” at the end of the caption of Table 2. 

Missing space in “(blue)and”. what’s the meaning of “fn” in Figure 1? Some Equations are not 

numbered. Double-check the manuscript.  

Reviewer #2 (Remarks to the Author):  

This was a clearly written manuscript about automatic acute ischemic stroke (AIS) lesion detection 

and segmentation on MRIs using a 3D CNN called DAGMNet.  

The major finding of this study is developing a 3D CNN model that outperforms generic networks 

such as FCN, U-Net, and patch-wise approaches like DeepMedic for the AIS lesion segmentation. The 

authors of this study showed that the application of dual attention gates intra skip connections with 

the combination of SeLU activation, multi-scale contextual information block, L1-regularization on 

final predicts, and deep supervision could result in a robust AIS lesion segmentation model. They 

also claim that their approach surpasses previously developed networks particularly in small lesions 

owing to several features of their proposed method including 1) lower false-positive rate, 2) 

balanced precision and sensitivity, and 3) being robustness to data perturbs such as artifacts, low 

resolution, and technical heterogeneity.  

Although the application of ML and DL for lesion and tumor segmentation is not a new topic, as 

described by the authors, traditional machine learning algorithms that utilize low-level features such 

as intensity, spatial, and edge information are not optimal to capture the large variation in lesion 

patterns, especially in real-world low-resolution and noisy clinical data. Convolutional neural 

networks (CNNs) on the other hand, outperform brain lesion detection and segmentation compared 

to the traditional ML-based methods. However, medical image segmentation using 2D, 2.5 D, and 3D 

CNN have their own challenges including lack of generalizability (2D), loss of utilization of full 

contextual information (2.5 D), and vanishing gradient problem and computational complexity (3D). 

Accordingly, efficient and accurate segmentation of AIS lesions still remains a challenge and keep 



this topic as an interest of clinicians and technicians.  

Lack of a large training dataset and accessibility to the real clinical data and inefficiency of synthetic 

data to represent heterogeneity in real clinical data are obstacles in training generalized models. The 

utilization of large clinical datasets (more than 2000) including 1390 DWIs for the training and 

validation and 459 images for the test is one of the strong points of this study. Besides, the authors 

of this manuscript have given enough details of the work (and publicly available tool), so that the 

work could be reproducible by other researchers.  

Comments:  

Introduction:  

1.The authors have done a thorough literature review, however, there are two recent studies done 

at Stanford University that are not opened in the introduction of this manuscript. Due to the 

relevance of the topic and application of the similar approach (attention gate NN), I strongly 

recommend the authors discuss these works in the introduction section. Relevant references:  

Yu Y, Xie Y, Thamm T, et al. Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial 

Magnetic Resonance Imaging. JAMA Netw Open. 2020;3(3):e200772. 

doi:10.1001/jamanetworkopen.2020.0772  

Y. Yu, Y. Xie, T. Thamm, E. Gong, J. Ouyang, S. Christensen, M.P. Marks, M.G. Lansberg, G.W. Albers, 

G. Zaharchuk. American Journal of Neuroradiology Mar 2021, DOI: 10.3174/ajnr.A7081  

2.The authors mentioned a relatively modest training sample size in Zhang et al study. It would give 

a better intuition to the readers if the authors mention the sample size in the text.  

Results:  

1.What is the reason for the slightly better performance of the method when it takes 3 channels as 

input? In other words, which additional information does IS contrast provide to the network that 

DWI and ADC do not and it leads to the better performance of the method despite the increased 

false-positive rate?  

2.In 2.6, what is the justification of the authors, for setting 1 cm3 as the threshold for dividing the 

lesions into groups of small and large? How about trying the median size?  

3.In 2.7, what is the justification of the authors for the higher dependency of their approach to the 

lesion contrast compared to the other investigated networks in this study?  

Methods:  

1.In 4.1 where the authors report the inter-evaluator index of agreement, it would be more 



informative to report the intra-evaluator agreement as well.  

2.In 4.2, it is not clear which brain masks are served as the gold standard? If automated skull-

stripping is one of the sub/-goals of this study, it is recommended to add this as a sub-goal in the 

introduction.  

3.In 4.3 please explain the reasons for padding the images.  

4.In 4.5.1 “” is used disconcert. First,  is referring to the different FWHM sizes. Next, it is referred 

to configuration parameters (thresholding) ADC and DWI dwi, adc, and id, but it is not clear 

what are the numbers presenting and what is the unit of the parameters? Are they percentage? If 

yes, please clarify.  

Reviewer #3 (Remarks to the Author):  

Strengths are the relatively large sample and the strictly separated training / testing data sets. The 

results are very good and certainly worth communicating.  

To get a better sense of the technical data heterogeneity: What are the specifics of the MRI 

sequences and scanners (vendors, field strength?  

Lesions can not be classified as “stroke”. Stroke is a clinical event. Please use „diffusion abnormality“ 

or „ischemic abnormality” instead of „stroke lesion“.  

Discussion (pg. 10/29): “The balanced precision and sensitivity” What does “precision” mean here? 

Please define.  

Discussion (pg. 11/29): “retrospective radiological evaluation favored the results of the automated 

segmentation” Can the authors give a quantitative summary of those cases?  

Reviewer #4 (Remarks to the Author):  

In this work, the author proposed a 3D attention-based deep learning model to perform acute 

ischemic stroke lesion segmentation. The model was trained with a large dataset (N>1000) and the 

result looks promising. While the proposed idea is interesting and can potentially make a new best 

benchmark for the acute ischemic stroke lesion segmentation, there are unclear details in the 

manuscript and there are questions to be addressed. Here are the questions/suggestions:  

1. P.1 Abstract: “Our proposed model outperformed generic nets … ”. I understand that authors 

probably refer “nets” as “neural networks”. For audience coming from non-deep-learning field, they 

may not be aware of this. Please address this unclarity. Several possible suggestions to replace the 

word are “neural networks”, “models”, etc.  

2. ¬¬¬P.3 1. Introduction: “The 3D networks suffer from issues … no prior information about the 



lesion location”. Have authors look into the application of a U-net variation (i.e., 3D) in lesion 

segmentation tasks?  

3. P.4 2.1 Cohort: “From the 2,348 DWIs quality-controlled for clinical analysis,” It is impressive that 

the authors have a large and clean ischemic stroke dataset for training deep learning models. In 

here, it is unclear that whether 2,348 DWIs are obtained from distinct patients (i.e., one patient may 

have multiple DWIs), please clarify (From Table 1 I found the answer--- 2,348 patients’ DWIs; this is 

unclear in the text).  

4. P.5 2.1 Cohort: “… and testing dataset (n=459), … testing models.”. How did the authors come up 

with this training (N=1,390) and testing (N=459) dataset ratio (~33%), which is uncommon to general 

machine learning model train-test split (e.g., 80-20, 70-30)?  

5. P.6 2.4 Lesion detection and segmentation with deep learning models: “Our proposed 3D 

network, … deep supervision.” From figure 1, there are many components in the proposed network. 

(1) How did the authors come up with the network architecture (e.g., use two consecutive conv-

batch-SeLU layers for X_en_i, etc.); (2) this may be out of this paper scope: have authors investigate 

other possible gains from the attention-based deep learning models? That is, deep learning model is 

known to be a black-box approach, which is less appealing to real-life medical application (since we 

cannot explain why the model performance is good). Recently, there are published research work in 

ischemic stroke applications (e.g., time-since-stroke prediction, etc.) that attempt to interpret deep 

learning model features. One advantage of the attention-based model is that the model is trained to 

automatically identify and extract features from the input images that better predict the outcome. 

Have authors look into model interpretation methods for the proposed model? This may provide 

additional information to show that the proposed model is superior than other models (e.g., classical 

models, DeepMedic, etc.)  

6. Fig 1A. It is unclear about the input data size. I assume the smaller an input rectangle is, the 

smaller its input size. Please clarify.  

7. P. 7 2.5 General comparison of models’ performance: “Our proposed model was compared with 

…, and DeepMedic.” In the introduction, the authors state that “To our best knowledge, Zhang et al. 

was the first to reveal the potential of the 3D whole-brain dense networks…”. Since Zhang et al. 

model is the first work and the authors’ proposed model is also based on 3D information, why did 

not the authors include the comparison of Zhang et al. model in this work?  

8. P.7 2.5 General comparison of models’ performance & table 2: “This is particularly noticeable in 

STIR1, ... , particularly in STIR.” Are the evaluation metrics (e.g., dice coefficient, etc.) statistically 

significant? (i.e., the performance of DAGMNET_CH3 model is significantly better than other models 

in term of dice, etc.). There will be quite a lot of p-values for table 2 when authors address this 

question; one suggestion is to include several p-values in the main context for major model 

comparisons and put the rest in the supplementary materials.  

9. Figure 3. Can the authors increase the font size in the figure? Thank you. Also, please clarify the 

meaning of the first three columns in Figure 3---Why are there examples that the lesion volume is 0, 

but the dice coefficient is non-zero?  

10. Table 2. It is exciting to see the proposed model perform generally better than other models. Can 

authors provide an explanation about why the proposed model (DAGMNet_CH3) has lower 

spearman correlation of dice and lesion volume than the DeepMedic model? (given the fact that the 

proposed model outperforms the DeepMedic model in all other spearman correlations)  

11. 4.6.7 System implementation. “Training our proposed models 200 epochs…. two days.” Why 200 

epochs were used? 



We thank the reviewers for their interest in our manuscript and their thoughtful comments that have 
allowed us to improve it. Our responses to the reviewers’ comments are shown below (the reviewers’ 
original comments are pasted in bold). The changes in the revised manuscript are tracked by the Reviewer 
comment’s number. 
 
Reviewer #1 
General comment: 
This study proposes a fast, public, accessible tool with a new deep learning network (3D DAGMNet) to 
automatically detect and segment acute ischemic stroke lesion. It combines dual attention gates that 
fuse channel Attention Gate and spatial Attention Gate, multi-scale learning using down-sampling and 
up-sampling, self-normalization activation unit and the deep supervision mechanism. It is trained and 
tested on a large dataset including 2348 DWIs of patients with acute and sub-acute ischemic strokes, and 
also evaluated on an external public dataset. Experimental results show that the proposed 3D DAGMNet 
outperforms several state-of-the-arts, particularly in small lesions. The automated lesion quantification 
of volume and contrast had virtually total agreement with human quantification. It is a very interesting 
study and provides regular users a public tool. However, this paper is lack of some technique details and 
explanations, some necessary experiments and discussions, and some statistical analysis. Thus, it cannot 
be published before revision according to the following concerns. 
 
R1.1: The authors stated that “The lesion profile (e.g., volume, intensity, location) was balanced between 
these sets”. However, the authors do not perform statistical test (no P value) to verify this statement. 
  
Thanks for this suggestion. We included the results of statistical tests on the demographic, lesion, and 
scanner profiles between the training and testing groups (new Table 5 in Methods). We also marked those 
profiles with statistically significant differences with “*” in Table 1 in the revised manuscript.  
As we had stated, there was no significant difference in population or lesion profiles between the training 
and testing datasets. The only differences that achieved significance level at p< 0.05 were the MRI magnetic 
field (slightly predominance of 1.5T in the training group) and scanner manufacturer (predominance of 
manufacturer 1 in the training group). Parenthetically, please note that our proposed model, as well as 
most of the others, did not show difference in performance according to manufacturer or magnetic field. 
As it would be virtually impossible to balance the groups in each ever aspect, and as the population and 
lesion characteristics were balanced, we considered the training and testing groups reasonably equitable. 
 
R1.2: The non-normal distribution data such as the age, onset to MRI time in Table 1 should be shown in 
the format: median [IQR] rather than mean and std. 
 
Thank you for your suggestion. We revised Table 1 accordingly. The median and IQR are now shown in all 
non-normal distribution data, including age, NIHSS, lesion volume and contrast, and the image voxel size. 
The symptoms onset to MRI time was acquired in categories and is shown in the original format. 
 
R1.3 Why not state the exclusion and inclusion criteria of subject selection? Please give a flow chart.  
 



A flowchart was added in the revised manuscript (new Figure 1). Briefly, our Stroke Center admits about 
500 patients with clinical diagnosis of acute stroke per year (5,000 in the 10 years). About 70% of these 
patients have MRI with DWI at admission, totalizing the 3,398 MRIs we initially looked at. About 15% of 
these images were excluded either because they had artifacts impeditive of clinical reading or because the 
stroke was secondary to etiologies other than vascular (e.g., post operatory or concomitant brain tumors). 
From the cataloged 2,888 cases, 540 (18.7%) had hemorrhagic signals and were not included in this study. 
 
R1.4 It is better to move the sections: 2.2, 2.4 into the Section: Methods, and the results shown in 
section 4.5 into the section: Results.  
 
We reorganized these sections following your suggestion, thank you. The original section 2.2 (imaging 
preprocessing) is now moved to the section 4.2 in the Methods. The original section 2.4 (Lesion detection 
and segmentation with deep learning networks) is combined to subsections 4.7.1, 4.7.3 and 4.7.7 in the 
Methods. 
 
R1.5: It is not reasonable to stratify all subjects into small and large lesion groups using 1 mL (e.g., 1.5 mL 
is not considered as large lesion), why not stratify all subjects into three groups: small, moderate and 
large? 
 
This is a great point, also raised by the Reviewer 2. We now took advantage of our large dataset to capture 
reasonable thresholds to stratify all the subjects into three comparable sized groups. These groups contain 
subjects with lesion volumes here called small, “S” (<1.7ml), medium, “M” (≥1.7ml and <14ml), and large, 
“L” (≥14ml). The numbers of each group are shown in the below table. We reanalyzed the data and revised 
the manuscript to reflect this new stratification (please see first rows of revised Table 2, Figures 3, 4 and 10, 
Results section 2.4). Briefly, our proposed model still showed significantly better performance than others 
in the “small lesion” group. 
 

Groups Small (S) Moderate (M) Large (L) 
All data 618 615 616 
Training 466 471 453 
Testing 152 144 163 

 
R1.6: In Table 2, why not give the 95%CI of the correlation coefficient? why no 95%CI for the subject 
detection rate? is the inference time the average time over all testing subjects? Why no std? and the 
inference time for DAGMNet_CH3 and DAGMNet_CH2 is the same. Please check. The number of 
parameters can be shown using M(1024*1024) as the uint. 
 
We included 95% CI for all the correlation coefficients and SDRs in Table 2. The 95% CI for Spearman’s 
correlation was calculated via Fisher transformation as in Bishara et al., 2017, Behavior research methods, 
49.1: 294-309; the 95% CI for SDR was calculated by z-score=1.96 as in Hazra, 2017, Journal of thoracic 
disease 9.10: 4125. 
The average inference time was originally computed for CH3 in randomly selected 100 testing subjects. 



Following the reviewer’s suggestion, we re-inferenced all the models over all the testing subjects, under 
the same computational conditions and updated Table 2. We note that we did not include std for 
DeepMedic as it runs over a whole batch of subjects by default setting, making hard to track individual 
inference time.  
We re-wrote the number of parameters following the reviewer’s suggestions, thank you. 
 
R1.7: The reviewer expects more discussions. Why the proposed method performs much worse on >24h 
subjects than the hyper-acute subjects? Are there any performance differences of the proposed method 
on left and right lesions? Whether the segmentation performance is associated with the onset-to-MRI 
time, and sex? 
 
We thank the reviewer for bringing up these points, which gave us the opportunity to perform further 
analysis and to expand on these crucial topics. 
We now analyze the difference between models’ performances according population characteristics (sex, 
race), and image and lesion profiles (affected hemisphere, MRI magnetic field and scanner manufacturer). 
As shown in the new Figure 5, our proposed model, and all models in general, perform consistently within 
all these subgroups. The only significant difference in performance was according to MRI manufacturer: 
DeepMedic and FCN_CH2 performed worse in Manufacturer 3 (Figure 5). This is interpreted with caution 
given the small sample of Manufacturer 3 scans in the testing set. 
We didn’t observe significant difference in models’ performance according symptoms onset to MRI time 
<6h or ≥6h in our testing set. However, in general, all models performed worse (although still rivaling with 
humans) in hyperacute strokes (<2h, as in STIR1), as compared to acute, late acute, and subacute strokes 
(STIR2 and internal test set). This might be related to the lowest prevalence of hyperacute cases in the 
training set (MRIs with strokes younger than 2 hours are relatively infrequent in clinical centers). On the 
other hand, our method produced relatively less accurate segmentation in four cases of large, late subacute 
strokes, that presented subtle intensity contrast in their boundaries (one example shown in Figure 4J). This 
type of lesion is more challenge to whole-brain-wise networks, compared to local patch-wise networks like 
DeepMedic. Currently, we are trying to ameliorate both issues by adding such cases to our training set and 
a follow-up patch-wise Siamese segmentation network to “refine” boundaries.  
All the new results are included in the Figure 5, Figure 11, Results section 2.5, and discussed in Paragraphs 
2 and 3 of the Discussion. 
 
R1.8: To reduce the memory resource requirement and the computational time, the DWI is down-
sampled to 96*112*48. This step might lose some information, resulting in a poor performance. What’s 
the performance of lesion detection and segmentation when the input size is 192*224*192? this 
additional experiment is necessary to verify it is reasonable to down-sample the images. 
 
This is a very good point. We had the same question when started training the networks and did similar 
experiment as suggested by the reviewer. As the reviewer correctly pointed, using the whole brain high 
resolution images exhausted the memory resources and greatly increased the training time (as we had to 
reduce the batch size and feature numbers in convolution layers), which would prevent us to train the 
network deep enough to capture the lesion features. This raised the concern that we share with the 



reviewer: how much, and which kind of information, is lost by downsampling? We note that particularly in 
this study, the original image resolution is about 1x1 mm in plane, and 4-7 mm inter-slice. When we 
interpolated to 1x1x1 mm3 in MNI coordinates (to be able to standardize the anatomy for the next steps) 
we went from low to high resolution slices. However, according to Information Theory principles, the 
images interpolated to 1x1x1 mm3 do not carry more information than that encoded in their original 4-7 
mm slices. Therefore, inter-slice downsampling to 4mm seems a reasonable choice. Regarding the in-plane 
resolution, it is possible that we lost some information by going from 1mm to 2mm resolution. The 
question is then how much humans (e.g., trained annotators or radiologists), who made our gold standard, 
benefited from this information. Based on the illustrative example below, the answer is not much, since 
images with 1mm or 2mm resolution in plane, produce virtually the same annotation. Furthermore, the 
way we randomly downsampled to IP-MNI space makes the networks more robust to spatial 

inconsistencies, as they are trained with downsampled images with slightly different spatial shifting 
 
Illustrative case resampled to in-plane resolution of 1x1mm2 (two panels at left) and 2x2mm2, with manual 
segmentation overlaid in red. In both cases, the measured lesion volume (4.3ml), mean intensity (DWI 
normalized) and standard deviation (4.9 ± 2.3) were the same.   
 
We note that the above arguments about the cost/benefit of downsampling are very particular to this 
study, which uses low resolution clinical images as inputs and aims to detect a “high effect size” 
abnormality (i.e., the lesion contrast boundary). We share the reviewer’s opinion that this is an important 
issue and must be considered in each specific case.  
 
R1.9: How about the influence of the proposed Intensity-normalization on the performance? What’s the 
performance using some other normalization methods such as Z-score and min-max normalization? 
 
This is again a great point. Intensity-normalization is indeed a crucial point for DL models and imaging 
analysis in general. Our choice for intensity normalization was based on its success to capture the contrast 
between lesioned voxels and normal tissue voxels, while minimizing variations in DWI intensity range 
across subjects (as indicated by the consistent post-normalization intensity range over manufacturer, 
magnetic field etc, shown in the Figure 8 in the Methods). Nevertheless, we do believe that other 
normalization approaches, such as the z-score mentioned by the reviewer, can result in similar 
performance, as long as the networks are sufficiently improved and trained (e.g., using extra convolution 
layers and more parameter tuning/searching steps during training phase). 
To investigate the influence of the intensity normalization, we used images normalized by three different 



methods: 1) standard z-score normalization on whole images (‘StandardNorm’), 2) standard z-score 
normalization on brain-masked region only (‘BrainMaskStandardNorm’), 3) Max-Min normalization 
(‘MaxMinNorm’), compared to our proposed normalization method (‘ProposedNorm’), keeping all other 
procedures for training the network, inferencing predicts, and the post-processing, unaltered. We trained 
and 5-fold cross-validated all proposed methods with UNet_Ch2 (for the easiness of training). All methods 
converged to the same level in validation Dice and loss function within 100 epochs as in the figures below. 

 

As shown by the Dice scores below (mean(std); median) on the Testing dataset, all the three intensity 
normalization methods tested resulted in inferior performance compared to our proposed normalization. 

 
Dice on Testing dataset 

 
While we believe that the large variability in the intensity scale across DWIs and populations is a great 
challenge for simple normalization methods, we also believe that more complex training (better loss 
function or parameter searching/more convolution layers) might alleviate this issue. In addition, other 
studies have been using different self-supervised networks to reduce the bias and noise at the 
preprocessing steps [i.e. Alejandro et al. 2020 https://arxiv.org/abs/2006.13944 and Fadnavis et al. 2020 
https://arxiv.org/abs/2011.01355], which can be a feasible future approach. Although testing and 
optimizing pre-processing steps, as intensity normalization, is not in the scope of this study, we recognize 
the importance of the point raised by the reviewer and included the following sentence in section 4.5: 
 
“Our choice for this intensity normalization approach is, therefore, based on its success to capture the 
contrast between lesioned voxels and normal tissue voxels, while minimizing variations in intensity range 
across subjects. The influence of other intensity normalization approaches, from simple z-score 
normalization up to different networks [i.e. Alejandro et al. 2020 https://arxiv.org/abs/2006.13944] is 
subject to further evaluation”.  
 
R1.10: In general, in attention gate modules, there is a sigmoid or softmax or normalization operation 



before element-wise multiplication. Why no such operations in sAG and cAG? 
 
We apologize for the missing information: we do have the sigmoid operation at sAG and cAG, but they were 
missed in the Figure 2, which is now updated accordingly. Furthermore, we rephrased the dual attention 
gate subsection (section 4.7.3 in the revised manuscript) including details missed in the original draft. 
 

R1.11: There are no convolution layers in each level of the encoder. I wonder whether adding 
convolution layers after down-sampling and before inputting into Xen,I can improve the performance? 
 
There are some convolution layers at each level after down-sampling, prior to all DAG’s (red boxes in the 
figure below). They are used to capture lower-level features of the inputs at each down-sample domain. 
Please let us know if we misunderstood your question and you are suggesting something else. 

 

 
R1.12: Missing some technical details. What’s the number of feature channels (i.e., the number of filters) 
of each convolution layer? How to decide the weights of each term in the Lfused function and why not 
weights for the Lfused and Lside? In general, the validation set is used to tune hyper parameters of Dl 
models, however, the authors do not give the details of the validation. Or use 5-fold cross-validation on 
the whole training set? 
 
We again apologize for the missing information. We include these details and further clarifications in 
sections 4.7.6 and 4.7.8 of the revised manuscript. The edits are as below: 
 
The number of features (“fn”, as defined in Figure 2 of the revised manuscript), was chosen to make 
trainable parameters comparable among models. For DeepMedic, we used their default model without any 
change. For UNet and FCN architectures, we used the original structures proposed in their papers, and 
adapted the input size as the table below, so they used similar number of trainable parameters as ours. 
 

Model DAGMNetCH3 DAGMNetCH2 UNetCH3 UNetCH2 FCNCH3 FCNCH2 
Fn 32 32 40 40 14 14 



 
The weight of each term in Lfuse was chosen to make each loss function term converge to similar scale 
during training steps. We did try different weight for L_1 regularization term (L_1 = 1e-4, 1e-5, and 1e-6). 
L_1=1e-4 suppressed too many predicts, generating a lot of zeros and increasing false negatives. L_1=1e-6 
did not have enough regularization after training certain epochs, being too small compared to other loss 
function terms (less 1e-2 scale). L_gds and L_bbc were initially weighted differently, which did not result in 
noticeable difference. When models’ Dice approached inter-evaluator’s Dice, further tune seemed 
unnecessary. The same reasoning was true for Lfused and Lside: other trials (like Lfused=10, 5 or 2; and 
Lside=1) did not result in noticeable differences, and we eventually opted by the simplest option, keeping 
them the same.  
 
Validation: As training networks took over 1-2 days, we did no use cross-validation in each experiment for 
the sake of time, which is a common practice in this scenario. Instead, in each experiment, 20% of subjects 
from the training dataset were randomly selected as validation dataset, with the same random states for all 
experiment models, for searching parameters such as weights, networks structures etc in each experiment. 
Once the loss functions converged in validation dataset along the training epochs (200 epochs at top, early 
stops at 100 epochs if training and validation loss function converged early), we selected the best model 
(snapshot models every 10 epochs) in the validation dataset. For each experiment, we trained the same-
type networks independently, with different training set and different resampled validation sets, at least 
twice to check if similar performance would be achieved and to avoid overfitting. Once the networks 
parameters (including weights for loss or regularization, different network layers, depth…etc) were finalized 
according to their best performance in the validation sets, we used the whole training dataset, including 
validation, to train the final deployed model and to make the loss function and dice scores converge as in 
the previous training dataset (with a few validation samples aside for early stop as suggested by Amari, 
Shunichi, et al. "Asymptotic statistical theory of overtraining and cross-validation." IEEE Transactions on 
Neural Networks 8.5 (1997): 985-996). This allowed us to fully use the training dataset and better capture 
the population variation. The Testing dataset and STIR were totally unexploited till this step.  
 
As a matter of fact, we did a 5-fold cross validation experiment on UNet_Ch2 (for the easiness of training. 
Each fold took about 1.5 weeks to train; the whole cross-validation experiment took about 3 weeks on 4 
GPU’s.) As shown by the Dice scores below (average(std); median), there was no significant differences 
between the Testing Dice results of 5-fold cross-validated models (left) or our current validation approach 
deployed model (right). Actually, the Dice scores were virtually the same. 

 
Dice on Testing dataset 

 
Therefore, although a fully 5-fold or 10-fold cross validation could result in a network of a slightly different 
performance, to fully brutal search large parameters configurations would be time-prohibitive with the 
available computational resources. Ultimately, we reinforce that rather than arguing that we created the 



best possible model, we keep our contribution restricted on offering a reasonably efficient pre-trained 
model, accessible to non-expert researchers, able to support large scale reproducible data analysis. 
 
R1.13: missing legends in several subfigures in Fig. 2. Why no regression line, correlation coefficient and 
P value in some subfigures in Fig. 3. 
 
All the panels in Figure 2 (of the original draft, now Figure 3) share the same legends, at the bottom right. 
This is now explained in the figure caption, thank you for noticing this missing information.  
For Figure 3 (of the original draft, now Figure 6), the correlation between lesion size, DWI and ADC contrast 
with Dice is not expected to be linear. Hence, drawing straight fitting line would not provide the same 
useful information as the fitting line on the correlation between ground trues and predicts of volume, DWI 
and ADC contrast. 
All the correlation coefficients and 95% CI (recommended in your comment #6) are in Table 2, as it would 
be hard to include them in the figure with a readable font size.  
 
R1.14: Minor concerns: missing the full name of MNI, B0. Two “.” at the end of the caption of Table 2. 
Missing space in “(blue)and”. what’s the meaning of “fn” in Figure 1? Some Equations are not numbered. 
Double-check the manuscript. 
 
We appreciate your careful revision. The revised draft was double-checked and proof-read at our best.  
MNI is defined as “Montreal Neurological Institute” at the section 4.2 in the revised draft and B0 is now 
defined as “the image in the absence of diffusion gradients” at the section 4.2 of the revised draft.  
Fn means the number of features; it’s added at the Methods and specified in Figure 2 of the revised 
manuscript.  
All notation definitions were checked and added, if missing, in the revised version.  
All equations were numbered properly as well.  
  



Reviewer #2 
General comments: 
This was a clearly written manuscript about automatic acute ischemic stroke (AIS) lesion detection and 
segmentation on MRIs using a 3D CNN called DAGMNet. 
The major finding of this study is developing a 3D CNN model that outperforms generic networks such as 
FCN, U-Net, and patch-wise approaches like DeepMedic for the AIS lesion segmentation. The authors of 
this study showed that the application of dual attention gates intra skip connections with the 
combination of SeLU activation, multi-scale contextual information block, L1-regularization on final 
predicts, and deep supervision could result in a robust AIS lesion segmentation model. They also claim 
that their approach surpasses previously developed networks particularly in small lesions owing to 
several features of their proposed method including 1) lower false-positive rate, 2) balanced precision 
and sensitivity, and 3) being robustness to data perturbs such as artifacts, low resolution, and technical 
heterogeneity. 
Although the application of ML and DL for lesion and tumor segmentation is not a new topic, as 
described by the authors, traditional machine learning algorithms that utilize low-level features such as 
intensity, spatial, and edge information are not optimal to capture the large variation in lesion patterns, 
especially in real-world low-resolution and noisy clinical data. Convolutional neural networks (CNNs) on 
the other hand, outperform brain lesion detection and segmentation compared to the traditional ML-
based methods. However, medical image segmentation using 2D, 2.5 D, and 3D CNN have their own 
challenges including lack of generalizability (2D), loss of utilization of full contextual information (2.5 D), 
and vanishing gradient problem and computational complexity (3D). Accordingly, efficient and accurate 
segmentation of AIS lesions still remains a challenge and keep this topic as an interest of clinicians and 
technicians. 
Lack of a large training dataset and accessibility to the real clinical data and inefficiency of synthetic data 
to represent heterogeneity in real clinical data are obstacles in training generalized models. The 
utilization of large clinical datasets (more than 2000) including 1390 DWIs for the training and validation 
and 459 images for the test is one of the strong points of this study. Besides, the authors of this 
manuscript have given enough details of the work (and publicly available tool), so that the work could be 
reproducible by other researchers. 
 
R2.1 The authors have done a thorough literature review, however, there are two recent studies done at 
Stanford University that are not opened in the introduction of this manuscript. Due to the relevance of 
the topic and application of the similar approach (attention gate NN), I strongly recommend the authors 
discuss these works in the introduction section. Relevant references: 
Yu Y, Xie Y, Thamm T, et al. Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial 
Magnetic Resonance Imaging. JAMA Netw Open. 2020;3(3):e200772. 
doi:10.1001/jamanetworkopen.2020.0772 
Y. Yu, Y. Xie, T. Thamm, E. Gong, J. Ouyang, S. Christensen, M.P. Marks, M.G. Lansberg, G.W. Albers, G. 
Zaharchuk. American Journal of Neuroradiology Mar 2021, DOI: 10.3174/ajnr.A7081 
 
Thank you for this suggestion. We agree these studies are relevant to our work and now briefly discuss 
them in the Introduction (3rd paragraph). 



 
R2.2 The authors mentioned a relatively modest training sample size in Zhang et al study. It would give a 
better intuition to the readers if the authors mention the sample size in the text. 
 
Thank you for identifying this missing information. In the referred study, a total of 242 low-resolution 
images were used for training, validating, and testing the models; plus 36 high-resolution images, 
downsampled to low-resolution, to test for generalization. This is now included in the fourth paragraph in 
the introduction.  
 
R2.3 What is the reason for the slightly better performance of the method when it takes 3 channels as 
input? In other words, which additional information does IS contrast provide to the network that DWI 
and ADC do not and it leads to the better performance of the method despite the increased false-
positive rate? 
This is a very interesting question, that we asked ourselves when interpreting the results. The third channel, 
IS, gives the networks extra information on the spatial location of the voxels with “abnormal intensities” 
(lesioned or artifact voxels). This could condition the networks to focus on these suspicious regions, rather 
than capturing features from scratching the whole brain. Take the spatial attention gates, for example. The 
third channel, IS, would have higher values after spatial global pooling and the networks would pay more 
attention on these corresponding spatial channels. On the other hand, the IS predicts from classical 
methods also contain false positives, particularly in artefact-prone regions. In these cases, the networks are 
expected to identify the morphological feature differences between lesions and artefact. Inevitably, this 
might introduce more false positives in the 3-channel models. As this is a very interesting point, we added 
the following sentence the subsection 2.3, “General comparison of DL models’ performance”. 
“It is likely that the extra “IS” channel conditions the network attention to regions of abnormal voxel 
intensity. This improves the model performance in most of the cases, as the identified abnormal voxels 
truly correspond to lesions. On the other hand, it might increase the false positives in a minority of cases, in 
which the abnormal voxels correspond to DWI artefacts”.  
 
R2.4 In 2.6, what is the justification of the authors, for setting 1 cm3 as the threshold for dividing the 
lesions into groups of small and large? How about trying the median size? 
 
This is a great point, also raised by Reviewer 1 Comment 5. We now take advantage of our large dataset to 
capture reasonable thresholds to stratify the subjects into three comparable sized groups. These groups 
contain subjects with lesion volumes here called small, “S” (<1.7ml), medium, “M” (≥1.7ml and <14ml), and 
large, “L” (≥14ml). The numbers of each group are shown below. We reanalyzed the data and revised the 
manuscript to reflect this new stratification (please see first rows of revised Table 2, Figures 3, 4 and 10, 
and Results section 2.4). Briefly, our proposed model still showed significantly better performance than 
others in the “small lesion” group. 

 Small (S) Moderate (M) Large (L) 
All data 618 615 616 
Training 466 471 453 
Testing 152 144 163 



 
R2.5 In 2.7, what is the justification of the authors for the higher dependency of their approach 
to the lesion contrast compared to the other investigated networks in this study?  
The sentence “As shown by the correlation coefficients in Table 2, the performance of our model 
(DAGMNet_CH3) is more dependent on the lesion contrast, and less dependent on the lesion volume than 
all the other model’s performance” is inaccurate and was removed. We apologize for the misconstruction. 
This section meant to show that human-defined lesion features strongly correlated with features of the 
lesion as predicted by any of the models. We also want to mention that our proposed model showed the 
strongest correlation, indicating the highest agreement with human delineation.  
 
R2.6 In 4.1 where the authors report the inter-evaluator index of agreement, it would be more 
informative to report the intra-evaluator agreement as well. 
We included the intra-evaluator agreement as well (0.79±0.12) at section 4.1 in the revised draft, thank you 
for your suggestion. 
 
R2.7 In 4.2, it is not clear which brain masks are served as the gold standard? If automated skull-stripping 
is one of the sub/-goals of this study, it is recommended to add this as a sub-goal in the introduction. 
The gold standard brain masks for training and testing our automated skull-stripping algorithm were 
generated by the method in our reference [40], followed by manual correction. We re-wrote section 4.2 
(now it is the section 4.3 in the revised draft) to make it clearer, as well as to clarify other steps of the skull 
stripping process. Although our automated skull-stripping algorithm was highly efficient, it is not a goal of 
this study, and we prefer to keep the details in the Methods.  
 
R2.8 In 4.3 please explain the reasons for padding the images. 
An even image size facilitates the “down-sample” required in further steps (otherwise, extra padding or 
cropping would be needed during “up-sampling/transposed convolution” step). We padded images to the 
closest even number with factors of power of 2, such as 192 = 3*2^6. 
 

R2.9 In 4.5.1 “ ” is used disconcert. First,   is referring to the different FWHM sizes. Next, it is 

referred to configuration parameters (thresholding) ADC and DWI  dwi,  adc, and  id, but it is 

not clear what are the numbers presenting and what is the unit of the parameters? Are they percentage? 
If yes, please clarify. 
Thank you for catching up this inconsistence and the missing information. We assume that the reviewer is 

referring to “sigma” (“ ” is probably a format issue – please let us know if we misunderstood it). For 

consistence, we changed all the notation for FWHM size to “fwhm”. The “sigma” is threshold in the z-score 
scale, not percentage. This information is now added at the section 4.6.1 and 4.6.2 of the revised 
manuscript, as below. 

  

  



Reviewer #3 
General comment: 
Strengths are the relatively large sample and the strictly separated training / testing data sets. The 
results are very good and certainly worth communicating. 
 
R3.1 To get a better sense of the technical data heterogeneity: What are the specifics of the MRI 
sequences and scanners (vendors, field strength?) 
 
Thank you for pointing this missing information. We added the information about scan manufacturers, field 
strength, voxel size (reflecting the different DWI protocols) in Table 1. We also added the following 
paragraph to section 2.1: 
“The demographic, lesion and scanner profiles for all the datasets are summarized in Table 1. The 
distribution of strokes according to arterial territories (MCA > PCA > VEB > ACA) and the demographic 
characteristics reflect the general population of stroke patients. MRIs were obtained on seven scanners 
from four different manufacturers, in different magnetic fields (1.5T (~60\%) and 3T), with more than a 
hundred different protocols. The DWIs had high in plane (axial) resolution (1x1mm, or less), and typical 
clinical high slice thickness (ranging from 3 to 7 mm). Although a challenge for imaging processing, the 
technical heterogeneity promotes the potential generalization of the resulting developed tools. “ 
 
R3.2 Lesions can not be classified as “stroke”. Stroke is a clinical event. Please use „diffusion 
abnormality“ or „ischemic abnormality” instead of „stroke lesion“ 
 
Thank you for this suggestion, we replaced stroke lesion by diffusion abnormality. 
 
R3.3 Discussion (pg. 10/29): “The balanced precision and sensitivity” What does “precision” mean here? 
Please define. 
 
Precision means True positives / (True positives + False Positives). The definitions of all the performance 
metrics are now included in section 4.8 in the revised draft. 
 
R3.4 Discussion (pg. 11/29): “retrospective radiological evaluation favored the results of the automated 
segmentation” Can the authors give a quantitative summary of those cases? 
 
Thank you for pointing this missing information. We noticed circumstantial disagreements of our method 
with the human evaluators in 24 cases (5% of the Testing set). This was added to the 4th paragraph of the 
Discussion. Retrospectively, the evaluators considered the quality of the machine segmentation better than 
the human segmentation, particularly regarding to boundary definition, as illustrated in the new Figure 7I.  
  



Reviewer #4 
General comments: 
In this work, the author proposed a 3D attention-based deep learning model to perform acute ischemic 
stroke lesion segmentation. The model was trained with a large dataset (N>1000) and the result looks 
promising. While the proposed idea is interesting and can potentially make a new best benchmark for 
the acute ischemic stroke lesion segmentation, there are unclear details in the manuscript and there are 
questions to be addressed. Here are the questions/suggestions: 
 
R4.1. P.1 Abstract: “Our proposed model outperformed generic nets … ”. I understand that authors 
probably refer “nets” as “neural networks”. For audience coming from non-deep-learning field, they may 
not be aware of this. Please address this unclarity. Several possible suggestions to replace the word are 
“neural networks”, “models”, etc. 
 
Thank you for this suggestion. We replaced the “nets” by “networks” 
 
R4.2. P.3 1. Introduction: “The 3D networks suffer from issues … no prior information about the lesion 
location”. Have authors look into the application of a U-net variation (i.e., 3D) in lesion segmentation 
tasks? 
 
In the initial phase of this study, we trained/tested UNet variations, like Mnet and UNet 3+, in a subset of 
1,000 cases. They did not achieve significant better performance than the original Unet. On the other hand, 
the models’ performance improved with the addition of the attention gates, so we further focused on 
comparing our attention models with the original UNet. The comparison with other UNet variations is 
indeed an interesting theme for further evaluation. 
For clarification, all the models presented in this study are in 3D. 
 
R4.3. P.4 2.1 Cohort: “From the 2,348 DWIs quality-controlled for clinical analysis,” It is impressive that 
the authors have a large and clean ischemic stroke dataset for training deep learning models. In here, it is 
unclear that whether 2,348 DWIs are obtained from distinct patients (i.e., one patient may have multiple 
DWIs), please clarify (From Table 1 I found the answer--- 2,348 patients’ DWIs; this is unclear in the text). 
 
Each 2,348 DWIs were obtained from distinct patients. We now clarify this in the text and in the new figure 
1, a flow chart of the data included and its analysis. We are glad the reviewer appreciates this work; as 
predictable, it took several years to complete.  
 
R4.4. P.5 2.1 Cohort: “… and testing dataset (n=459), … testing models.”. How did the authors come up 
with this training (N=1,390) and testing (N=459) dataset ratio (~33%), which is uncommon to general 
machine learning model train-test split (e.g., 80-20, 70-30)? 
 
We arbitrarily used 2/3 for training, 1/3 for testing. Because we have large numbers, we could afford a 
larger testing sample than used in previous studies. The large testing set allowed us to evaluate 
performance in different subgroups, as shown in Figure 3 and 4 of the revised manuscript. 



 
R4.5. P.6 2.4 Lesion detection and segmentation with deep learning models: “Our proposed 3D 
network, … deep supervision.” From figure 1, there are many components in the proposed network. (1) 
How did the authors come up with the network architecture (e.g., use two consecutive conv-batch-SeLU 
layers for X_en_i, etc.); (2) this may be out of this paper scope: have authors investigate other possible 
gains from the attention-based deep learning models? That is, deep learning model is known to be a 
black-box approach, which is less appealing to real-life medical application (since we cannot explain why 
the model performance is good). Recently, there are published research work in ischemic stroke 
applications (e.g., time-since-stroke prediction, etc.) that attempt to interpret deep learning model 
features. One advantage of the attention-based model is that the model is trained to automatically 
identify and extract features from the input images that better predict the outcome. Have 
authors look into model interpretation methods for the proposed model? This may provide additional 
information to show that the proposed model is superior than other models (e.g., classical models, 
DeepMedic, etc.) 
 
We apologize in advance for the long response, but an “historical” perspective of this study will help us to 
answer these points. 
(1) Per previous studies and our own experience with classical methods and 2D networks, we knew an 
efficient algorithm should be able to 1) locate abnormal voxels, 2) distinguish those from artefacts, 3) refine 
the lesion boundaries (a challenging task even for human annotators) and, 4) segment lesions of various 
volumes/profiles with similar efficiency. Focusing on the last goal in particular and inspired by previous 
studies employing 2D networks with two pathways at different receptive scale levels (like EDD networks 
(Liang 2017)), we built 3D UNet/MNet models with deep supervision at each level. This aimed to conquer 
the drawback that although big lesions could be detected at different levels in the original generic UNet, 
small lesions features could be dropped after down-sampling pathway/max-pooling layer. The inclusion of 
information from classical methods (here called “IS”) aimed to help the networks to focus on abnormal 
voxels, even if in small clusters (small lesions). To make the 3D models share information between different 
scale levels, we used different infra- and inter- connections between convolution layers. This obviously 
increased the complexity of the networks, raising gradient vanishing issues. To overcome these issues, we 
introduced batch normalization and some self-normalized activation (SeLU). Furthermore, attention 
techniques were introduced to make the networks focus on the key features of inputs (lesion spatial or 
morphological features, in this case). 
This description is now added to the Methods section of our revised manuscript. 
As the reviewer see, we simply combined previous techniques commonly used to solve the challenges we 
faced (although we are aware that these applications are not deprived of polemic. For example: one might 
say “Attention is all you need” [Ashish et al. 2017 arXiv:1706.03762] to “Attention is Not All You Need” 
[Yihe Dong et al. 2021 arXiv:2103.03404]). Arguing, mathematically or empirically, that these are the best 
choices or that our models’ architecture is the best, is not our aim and is out of our expertise. 
Parenthetically, we don’t think network’s architecture design was ever standardized with strong solid 
mathematical arguments so far. We reinforce that our contribution restricts on offering a reasonably 
efficient pretrained model, extensively tested, accessible to non-expert researchers, able to support large 
scale reproducible and objective data analysis. 



 
(2) This is indeed a valuable suggestion. So far, we haven’t done any rigorous investigation about the 
possible gains from the attention-based deep learning models. This is indeed one of our future plans, as it 
would help us to understand, for example, how to capture lesion’s features as humans do (likely based on 
the four goals mentioned in the beginning of this response). Other future plans include extracting location 
features according our previously created vascular atlas (NITRC: Arterial Atlas: Tool/Resource Info) and to 
apply transformer from detecting ischemic lesions to hyperacute ischemic lesions or hemorrhage lesions.  
 
R4.6. Fig 1A. It is unclear about the input data size. I assume the smaller an input rectangle is, the smaller 
its input size. Please clarify. 
 
The input data size is in (96,112,48,2) voxels or (96,112,48,3) voxels for 2-channel or 3-channel models, 
respectively. All our models are whole brain 3D models. Sorry for the confusion in the original draft; this 
information is now specified in the section 4.4, section 4.7.7 and the Figure 2 in the revised manuscript. 
 
R4.7. P. 7 2.5 General comparison of models’ performance: “Our proposed model was compared with …, 
and DeepMedic.” In the introduction, the authors state that “To our best knowledge, Zhang et al. was the 
first to reveal the potential of the 3D whole-brain dense networks…”. Since Zhang et al. model is the first 
work and the authors’ proposed model is also based on 3D information, why did not the authors include 
the comparison of Zhang et al. model in this work? 
 
Comparing our models to Zhang et al.’s model was indeed our first choice. However, the authors did not 
provide either their pre-trained model or complete documentation/source codes to reliably reproduced it 
(as DeepMedic does). Ambiguous information in their paper reduced our confidence on precisely 
reproducing their pipeline. For example, the image dimensions along the whole networks are unclear, as 
well as how they combined the patches into the final image for the whole size in the original space (they 
mentioned “During training, each image was randomly cropped to 24 × 80 × 80 and flipped along the three 
axes on the fly....”). In addition, the use of DenseNet and some inconsistences in the description of the 
images pre-processing and the model validation and testing reduced our enthusiasm about their methods. 
For example, the description about image “cropping” is obscure and raises questions about the use of the 
whole brain; they used the statistics calculated from training dataset to normalize testing dataset (so they 
are not completely independent); the models were “retrained” in the external testing dataset (ISLE), raising 
questions about generalization and robustness. Finally, as one of our aims is to provide a model readily 
useful for ischemic lesion segmentation in clinical images, and to compare it with other models that 
propose to do the same, DeepMedic seem like a proper option. 
 
R4.8. P.7 2.5 General comparison of models’ performance & table 2: “This is particularly noticeable in 
STIR1, ... , particularly in STIR.” Are the evaluation metrics (e.g., dice coefficient, etc.) statistically 
significant? (i.e., the performance of DAGMNET_CH3 model is significantly better than other models in 
term of dice, etc.). There will be quite a lot of p-values for table 2 when authors address this question; 
one suggestion is to include several p-values in the main context for major model comparisons and put 
the rest in the supplementary materials. 

https://www.nitrc.org/projects/arterialatlas/


 
Thank you for this suggestion. We included the heatmaps of p-values for the comparison of models’ 
performance (new figure 10). We also include an “*” in Table 2 representing significant differences. In 
addition, the p-values for major model comparisons were included in the section 2.4 in the new 
manuscript. 
 
R4.9. Figure 3. Can the authors increase the font size in the figure? Thank you. Also, please clarify the 
meaning of the first three columns in Figure 3---Why are there examples that the lesion volume is 0, but 
the dice coefficient is non-zero? 
 
Thank you for this suggestion. We increased the font size in the figures.  
The first 3 columns of the original figure 3 (figure 6 in the revised draft) are scatter plots of lesion volumes 
and DWI and ADC contrasts versus the Dice scores obtained with different models. In other words, they 
show how the models perform in lesions of diverse volume and contrast. This is now clarified in the figure 
caption. The lesion volume is never zero, this impression is probably an effect of the large range of values in 
the y-axis. 
 
R4.10. Table 2. It is exciting to see the proposed model perform generally better than other models. Can 
authors provide an explanation about why the proposed model (DAGMNet_CH3) has lower spearman 
correlation of dice and lesion volume than the DeepMedic model? (given the fact that the proposed 
model outperforms the DeepMedic model in all other spearman correlations) 
 
This is an interesting question, with a somehow contra-intuitive explanation. The Dice metric is, by its 
definition, biased by the segmented volume. In other words, Dice scores and lesion volumes are naturally 
positively correlated. If a model performs well in lesions of small volume, as our proposed model does, this 
correlation is “broken”, becoming lower than expected. Therefore, the lower correlation between our 
model Dice and lesion volume might result from its better performance (significantly higher Dice) than 
DeepMedic in small lesions and slightly lower Dice (although not significant) in large lesions. 
This brief explanation is included in section 2.6 of the revised manuscript 
 
R4.11. 4.6.7 System implementation. “Training our proposed models 200 epochs…. two days.” Why 200 
epochs were used? 
 
We chose 200 epochs as most experiments of benchmark models converged after 80~120 epochs. 
Experiments of more complex networks (not included in the results, as they had similar or inferior 
performance to the models presented and clear overfitting) took even longer (150~180 epochs, some are 
even more than 3 days to train). Therefore, we used the maximum training epoch as 200, and early 
terminated it when the validation loss function converged. The model with the maximum validation Dice 
was saved. 
To clarify this and other possible questions about the model’s training and validation, we revised the 
Methods, including more details in subsections 4.7.8. Other specific information can be also found in our 
response to Reviewer 1, Comment 12. 



Reviewers' comments:  

Reviewer #1 (Remarks to the Author):  

The authors have solved most of my concerns in the revised manuscript. However, it need further 

minor revision. My minor concerns are list as follows.  

(1) In Fig.1, the 2rd-4th grey rectangles are also named as Input, which makes the reader confused. 

These rectangles denote the features generated by performing down-sampling on the Input (the 1st 

grey rectangle). Thus, they are not input, only the 1st rectangle is the input.  

(2) In general, the IQR is shown in the format: [Q1-Q3] rather than the range. I suggest the Age, 

NIHSS, lesion volume, lesion contrast and voxel size in Table are shown in the format median[Q1-

Q3]. The mean, std, min and max can be removed.  

(3) Some symbols (“fn,fwhm” ) are very strange. a variable is not denoted using two or more 

alphabets. Use an alphabet with subscript or superscript  

(4) in the row: False Positive Subject Detection Rate, why the subject detection rate is 1, however 

the 95%CI is [0.51,0.59]. it is unreasonable. Please check. The highlights in Table 3 are confused. why 

no bold metric or two bold metrics in some rows?  

(5) How to determine the a1 and a2 in equation (1)?  

(6) In the first paragraph, “Strikes of (2,2,4)” seems wrong. stride? Check the writing before again 

throughout.  

(7) In Fig.4, what’s the meaning of distribution? Why the maximum probability distribution is >1? I 

do not think the Fig. 4 can show the proposed method performs well for large lesions. Using the box 

plots of Dice for small, moderate and large is better.  

Reviewer #2 (Remarks to the Author):  

I want to thank the authors of the paper for the well-explained responses to the reviewer's 

comments and deep revision of the manuscript.  

The only minor comment that I suggest is regarding page 9, section 2.6, where the authors mention 

that the Dice score is biased by the lesion volume. I don't think the Dice itself is biased toward lesion 

volume because even if a lesion volume is small, but there is a good overlap between the predicted 

segmentation and ground truth, still the Dice is high. However, Dice is sensitive to false positives and 

this becomes specifically problematic when the lesion is small and only contains a few voxels.  

Reviewer #3 (Remarks to the Author):  

No further comments  

Reviewer #4 (Remarks to the Author):  

Thank you for addressing all of my questions. 



Reviewer #1: 
The authors have solved most of my concerns in the revised manuscript. However, it need further 
minor revision. My minor concerns are list as follows. 
(1) In Fig.1, the 2rd-4th grey rectangles are also named as Input, which makes the reader 
confused. These rectangles denote the features generated by performing down-sampling on the 
Input (the 1st grey rectangle). Thus, they are not input, only the 1st rectangle is the input. 
 
Thank you for your suggestions and for reading our paper again. We removed the word “input” from 
the 2nd-4th rectangles from Fig. 1. We also modified the Figure architecture to make this part clearer. 
 
(2) In general, the IQR is shown in the format: [Q1-Q3] rather than the range. I suggest the Age, 
NIHSS, lesion volume, lesion contrast and voxel size in Table are shown in the format 
median[Q1-Q3]. The mean, std, min and max can be removed. 
 
We changed table 1 according to your suggestions, thank you. 
 
(3) Some symbols (“fn,fwhm” ) are very strange. a variable is not denoted using two or more 
alphabets. Use an alphabet with subscript or superscript 
 
We changed fn to Nf, and fwhm to Wfwhn.  
The Figure 1 is also modified accordingly.  
 
(4) in the row: False Positive Subject Detection Rate, why the subject detection rate is 1, however 
the 95%CI is [0.51,0.59]. it is unreasonable. Please check. The highlights in Table 3 are confused. 
why no bold metric or two bold metrics in some rows? 
 
One was the median; we agree that this is meaningless for subject-based false positives and removed 
the median from this row (we apologize we did not notice it before). We also agree that the bolds are 
distracting and removed the highlighting from Table 1 (for clarification, we had highlighted what we 
thought were the most crucial results, mentioned and discussed later in the results and discussion 
sections). 
 
(5) How to determine the a1 and a2 in equation (1)? 
They are calculated by fitting the bimodal Gaussian function to the intensity histogram of each DWI.  
We clarified by adding the following sentence to the manuscript:  
“ai, bi, ci are calculated by least-square fitting the bimodal Gaussian function to the intensity histogram 
of individual DWI.” 
 
(6) In the first paragraph, “Strikes of (2,2,4)” seems wrong. stride? Check the writing before again 
throughout. 
Thank you for catching this mistake. We corrected it and checked the writing throughout again. 
 



(7) In Fig.4, what’s the meaning of distribution? Why the maximum probability distribution is >1? 
I do not think the Fig. 4 can show the proposed method performs well for large lesions. Using the 
box plots of Dice for small, moderate and large is better. 
The distribution is the probability density of Dice scores. So, while the curve’s peak can be >1, the area 
under the curve equals 1. To avoid misunderstanding, we changed the caption and the y-axis labels to 
“Probability Density”; thank you for pointing the unclearness. 
Regarding to the general meaning of Figure 4, while Dice boxplots for small, moderate and large lesions 
(shown in the right column of Figure 3) show the general tendency of the groups, the distribution shows 
more details of the performance across Dices. For example, the smoothness of the curves and general 
absence of “bumps” at low Dices indicate the absence of subgroups of lesions in which the methods fail 
or perform worse. This information can be lost when the results are summarized in boxplots. Therefore, 
we don’t think Figure 4 is redundant and would like to keep it, with the agreement of the reviewer.  
 
Reviewer #2: 
I want to thank the authors of the paper for the well-explained responses to the reviewer's 
comments and deep revision of the manuscript. The only minor comment that I suggest is 
regarding page 9, section 2.6, where the authors mention that the Dice score is biased by the 
lesion volume. I don't think the Dice itself is biased toward lesion volume because even if a lesion 
volume is small, but there is a good overlap between the predicted segmentation and ground 
truth, still the Dice is high. However, Dice is sensitive to false positives and this becomes 
specifically problematic when the lesion is small and only contains a few voxels. 
 
Thank you for your suggestion and for reading our paper again. We changed “Dice is biased” to “Dice is 
sensitive to false positives”. 



REVIEWERS' COMMENTS:  

Reviewer #1 (Remarks to the Author):  

The authors have addressed my concerns in the revised manuscript. No further comments now. this 

paper can be published. 
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