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Supplementary Methods

Section 1 describes the model, section 2 describes the contact matrix used, section 3 describes
the the choice of initial conditions, section 4 shows our exploration of the space for the estimated
parameters, and finally in section 5 we show additional results with the curves estimated from our
model for each compartment through the time window used here.

1. Model equations

The model is an extended Susceptible, Exposed, Infected, and Recovered (SEIR) model that comprises
susceptible (S), pre-symptomatic (E), asymptomatic (A), mild symptomatic (I), severe/hospitalized
(H), recovered (R) and deceased (D) compartments. These compartments are duplicated to account
for a second variant of SARS-CoV-2, and each of them is stratified into three age classes: young
(<20 years old), adults ([20 − 59] years old), and the elderly (≥ 60 years old). Therefore, all the
compartments (variables) and parameters are R3 elements. The “wild-type” classes represent all
non-P.1 variants present, which do not seem to be variants of concern.

We assume that the second variant is capable of reinfecting individuals who have recovered from
infection by the wild-type variant while the inverse is not possible; in the absence of data indicating
this possibility, allowing reinfection by the wild-type variant on recovered of infection by P.1 would
have negligible effect due to the small time window (3 months) considered in the present work. We
also consider that a variant is not capable of reinfecting individuals recovered from the same lineage.
Our model does not include vaccination due to low rates of vaccination in Brazil during the study
time period.

To model the virus spread in the population, we assume that asymptomatic individuals have
equal infectiousness compared to symptomatic ones, while pre-symptomatic individuals have reduced
infectiousness represented by ω. To model behaviour, we assume that symptomatic individuals
self-isolate themselves to some degree, reducing their contacts by ξ. Individuals with severe disease
have greater isolation ξsev due to hospitalization. The daily contacts between each age class is
represented by the matrix Ĉ (see more information about the contact matrix in the next Section).
The force of infection λk for each variant k is defined below:

λk = βkĈ[Ak + ωEk + (1 − ξ)Ik + (1 − ξsev)Hk]

The complete system of equations is given by:

Completely Susceptible

dS

dt
= −λ1

S

N
− λ2

S

N
[1a]
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Wild variant

dE1

dt
= λ1

S

N
− E1

γ1
[1b]

dA1

dt
= (1 − σ1)α1E1

γ1
− A1

νi,1
[1c]

dI1

dt
= (1 − α1)(1 − σ1)E1

γ1
− I1

νi,1
[1d]

dH1

dt
= σ1E1

γ1
− H1

νs,1
[1e]

dR1

dt
= A1

νi,1
+ I1

νi,1
+ (1 − µ1)H1

νs,1
− prλ2

R1

N
[1f]

dD1

dt
= µ1H1

νs,1
[1g]

P.1 variant

dE2

dt
= λ2

S

N
− E2

γ2
+ prλ2

R1

N
[1h]

dA2

dt
= (1 − σ2)α2E2

γ2
− A2

νi,2
[1i]

dI2

dt
= (1 − α2)(1 − σ2)E2

γ2
− I2

νi,2
[1j]

dH2

dt
= σ2E2

γ2
− H2

νs,2
[1k]

dR2

dt
= A2

νi,2
+ I2

νi,2
+ (1 − µ2)H2

νs,2
[1l]

dD2

dt
= µ2H2

νs,2
[1m]

Supplementary Equations

C1(t) =
∫ t

0
χσ1

E1(t′)
γ1

dt′ [1n]

C2(t) =
∫ t

0
χσ2

E2(t′)
γ2

dt′ , [1o]

where C1 ad C2 are the cumulative hospitalization cases reported, and each variable of the system
(S, Ek, ..., Ck) is a vector containing each age class, e.g., E1 = (E1,y, E1,a, E1,e)T . The equations
were numerically solved by the R package developed by (1).

2. Contact Matrices
Our model includes three age group categories: young ([0 − 19] y.o.), adults ([20 − 59] y.o.), and
elderly (greater than 60y.o.). To model contacts between these groups we use estimated contact
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matrices computed by (2), but since the original matrices use five-year age bins going up to 95+
years, we aggregate classes leading to a 3 × 3 matrix in the following way:

Let A, B be sets of indexes forming age groups (not necessarily of equal sizes), xi,j denoting
contact between age groups i and j in the original matrix, di denoting population size of the age
group i. The new contact matrix Ĉ is given by:

ĈA∗,B∗ =

∑
i∈A

∑
j∈B

dixi,j∑
i∈A

di

[2]

where A∗, B∗ denotes a new indexation rule. Note that the contact matrices depend on local
demographics and therefore must be computed for each place of study.

3. Initial Condition Estimation
The model requires appropriate mid-epidemic initial conditions in order to give relevant results. In
the model, the number of new hospitalizations at a given time – hnew, is directly proportional to the
number of exposed individuals at that time, therefore data was used to get an approximation of the
number of exposed people. Also, to quantify the number of people belonging to the recovered class,
seroprevalence was used.

We can estimate the appropriate initial conditions by finding an approximation for our model
that relates more directly to the available data in each class. In the absence of the variant P.1, the
model has four classes of infected compartments, namely y = (E1, A1, I1, H1)T , and another three
classes, represented by z, i.e., z = (S, R1, D1)T . To that effect, we can write the system as

ẏ = F (y, z) −G(y, z), [3]
ż = J(y, z) , [4]

where F comprises all entries of new Infected, coming from classes z, whilst G accounts for the
transitions within infected classes and also recovery and death from the disease. Then, to find a
good approximation for a small time window, we perform a linearization of our model around a
point (y, z). Keeping z fixed, we get

ẏ = (F̂ − Ĝ)y , [5]
where F̂ and Ĝ are the linearized matrices arising from the functions F and G, respectively. The
only entrance of new infected comes from the βSλ/N terms in the Ė1 = (Ė1,y, Ė1,a, Ė1,e)T equations
(sub-indexes are y young, a adults and e elderly), then, the only non-zero elements of F̂ are in its
first 3 lines. Before proceeding, it is useful to define

b̂ = diag(S)Ĉ [6]
which allow us to write

F̂ = β

N

 ωb̂ b̂ (1 − ξ)b̂ (1 − ξsev)b̂

09,12

 [7]

Ĝ contains the terms of Exposed, E1, the 3 possible forms of the disease considered in the model
(A1, I1 and H1), as the terms in its first 3 rows, whilst the remainder of its main diagonal contains
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terms of recovery and death. For simplicity, every constant (or vector for the terms with σ) in Ĝ
expression Eq. (8) should be thought as diagonal matrices with its elements given by the constants
(or vectors) and every 0 is a 3-dimensional square matrix where all entries are null.

Ĝ =


γ−1 0 0 0

−α(1 − σ)γ−1 ν−1
i 0 0

−(1 − α)(1 − σ)γ−1 0 ν−1
i 0

−σγ−1 0 0 ν−1
s

 [8]

The linearization above implies that, for a small time interval, y has an exponential behavior and
that the eigenvalues of L̂ = F̂ − Ĝ are related to the exponential growth rates. Therefore, a short
time after the beginning of the epidemic, the largest eigenvalue should be the one to dominate. So
the exponential growth rate of the wild-type variant – r, can be matched to the largest eigenvalue
of L̂ to obtain an estimate for β. The eigenvector associated with the largest eigenvalue gives the
proportions of infected classes, which, together with the estimated number of exposed individuals –
E1 = γ1hnew/σ1, results in an approximation for the number of people in the other infected classes.

Given a β, the largest eigenvalue of the linearization matrix is computed using the eigs function
of the R package rARPACK (3) and we find the β that gives r as the largest eigenvalue through
bisection root finding. Finally, subtracting the number of recovered and infected from the total
population gives the number of susceptible individuals.

4. Identifiability and estimation of parameters’ confidence intervals
We have systematically explored the log-likelihood surface by calculating it across an orthogonal
grid of parameter values, and from that we built the log-likelihood profiles of the fitted parameters
(Fig. S1). These are obtained by taking, for each parameter value along the x-axis in each plot,
the minimum negative log-likelihood found across all other parameters with that value fixed. We
initially varied all parameters in a regular grid with a rough resolution (yielding Fig. S1, left), over
a wide range of parameter values. For each parameter combination in the grid we thus calculated
the value of the negative log-likelihood function of the model. In all cases, the profiles showed
a clear unique minimum, which is consistent with a global minimum in the parameter space we
investigated. As detailed in the main text (Methods), we used the 100 points in the grid with lowest
negative likelihood as starting values to numeric optimization routines (4, 5), to obtain the maximum
likelihood estimates (MLEs) of the model parameters. All those points were then in the region of
global minimum. Such numeric routines also provided the values of the negative log-likelihood at the
vicinity of the MLEs (Fig. S1, right). These profiles were smooth and parabolic enough to assume
that our estimates are identifiable, and also to allow an approximation of the distribution of the
estimates by a multivariate Gaussian distribution, which we used to estimate confidence intervals of
the estimated values of the parameters.

5. Full model solutions
In figure S2 we show the number of individuals in each class from both “wild” and the VOC P.1
weekly over the time we evaluated our model (November-1, 2020–February-28, 2021). The numerical
results were performed with the main fitting parameters found by the estimation method (see Table
1 in the main text). All the fixed parameters used are available in Table 2 of the main text.
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Fig. S1. Negative log-likelihood profiles for the fitted parameters (main fit). Left: global analysis, investigating the whole
parameter ranges, but with low resolution. Right: high resolution profile around the global minimum.
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Fig. S2. In the y-axis we present the number of individuals in each compartment for “wild” (sub-index 1) and the VOC
P.1 (sub-index 2) from Nov-1, 2020–Feb-28, 2021) computed at the end of the epidemiological weeks. The shaded area
represents 95% confidence interval according to 1,000 bootstrap simulations of the parameters estimated by the main fitting.
The compartments are: S: Susceptible, E: Exposed (pre-symptomatic), H : Hospitalized (severe infected individuals), I:
Infected (symptomatic individuals, not hospitalized), A: Asymptomatic. D: Deceased, R: Recovered. For this result, we
added all the 3 age categories. C1 and C2 are the cumulative number of hospitalizations for the two variants.
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