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Reviewers' comments:  

Reviewer #1 (Remarks to the Author):  

This study tries to construct an automatic end-to-end solution to analyze the bone marrow smear, 

which is important for clinical practice. Currently, there is no satisfactory product to conduct this 

work, and it is really labor intensive. However, the number of leukemia cases is related small in 

clinical practice, and this product may only save a small part of cost for a whole hospital. Moreover, 

there are some previous researches to address the same issue. Therefore, the scientific significance 

of this study is relatively low. Of course, author demonstrated a complete experiment including high 

level techniques and the-state-of-the-art method. In summary, the novelty of this study is low but 

the experimental technology is acceptable. The results were also reliable if author can provide more 

details as follows.  

Major comments  

1. The term "Histogram of Cell Types" is misleading due to a specific term of "Image histogram" in 

computer vision domain. In fact, it just a distribution of each cell type. Please revise the name of 

your paper.  

2. I think the data splitting needs to be clarified. As far as I understand, data was spited into 5 

subsets for 5-fold cross-validation at random. If that is correct, how do you address data leakage, 

i.e., how do you make sure that your model does not use information from the same patient? Is 

there any patient that is included in both, the training and test set?  

3. This study only included one dataset. The experiment should be included a training set for 

backpropagation, a validation set for hyper-parameter selection, and a test set for performance 

assessment. I understand this study is try to use 5-fold cross validation to sidestep this issue. 

However, no details about hyper-parameter selection let me suspect to overestimate the model 

performance. Author should re-conducted the experiments to follow the standard process.  

4. There were 3 iterations for data collection in this study. Please provided the performance details 

of each iteration. For example, how many samples (especially in the sample of rare cell type) were 

collected from first, second, and third iterations for training and validation, and the performance 

should be provided. Importantly, is the validation set vary in each iteration?  

5. YOLO allows thresholds on the class probability scores for its bounding box objects. Were these 

thresholds explored (e.g. require a probability of > 0.80 to classify as a particular cell type, otherwise 

unable to identify), or was the class with the highest probability simply chosen? Were there any 

other notable settings/parameters used for YOLO here?  

6. This study used 400x image to conduct experiments. However, certain cell type identification 

required 1000x image for experienced hematologists. How to make sure that experts correctly 

identify all cell types?  

7. In fact, the result of flow cytometry is the only gold standard to describe the distribution of cell 

types. I considered the comparison between AI model and hematologists cannot provide the enough 

evidence to explain the accuracy. This is an important limitation in this study. A viable alternative is 

to conduct an expensive human-machine competition including more than 5 hematologists, 

especially in physicians who have not participated in the training stage.  

Minor comments  

8. Authors described "However, to date, YOLO has not been applied to medical domain problems 



such as pathology." in introduction section. However, I can easily to find related paper in PubMed 

[JMIR Med Inform. 2020 Apr 8;8(4):e15963. doi: 10.2196/15963.]. Please conduct a complete review 

and discuss the novelty of this study compared to previous researches.  

9. The experiment details to make the bone marrow smear is important to repeat the works. 

However, there is no enough details, especially in the bone marrow aspiration, staining, and 

digitalized.  

10. The definition of the YOLO bounding box should be provided, in particular the settings of anchor 

boxes. The authors may wish to clean up them.  

11. The authors might provide examples of misclassified cells, and discuss whether the 

misclassifications are egregious, or reasonable for human experts.  

Reviewer #2 (Remarks to the Author):  

Results from the patient-level cross validation need to be shown. Please also perform a leave-one 

patient-out cross-validation and add results to the manuscript. This comment pertains both to ROI, 

non-ROI classification results and to the cell-based classifications as well.  

How are the classification metrics generated? Does for instance the reported F1-score mean an 

average F1score for a single cell type with the average calculated over all regions and WSIs?  

Same question pertains to the ROI vs. non-ROI classification metrics.  

What is mAP@0.5? Non computer science audience may not be familiar with this term. Please be 

clearer with the methods description.  

It is unclear how the IHCT convergence is accomplished. It looks like this is an iterative process but 

initial conditions of the convergence assessment are not described. How many regions with their 

respective HCTs are required to begin with? How many ROIs are required to achieve convergence? 

What is the minimal and maximal number of ROIs to assure that convergence can be achieved? The 

authors provided ranges of ROi and cell types for the IHCT convergence to be achieved, but it is 

unclear whether these numbers can be universally used (or observed) for aspirates from normal vs. 

abnormal (i.e containing abnormal cells) bone marrow. Why measuring convergence is even needed 

here? BTW, why a simple histogram of cells from all regions across a WSI is not a good way of 

representing the cell frequencies, and why IHCT would be better than this histogram?  

What is the value of MSE measured between NDCs by expert 1 and 2 ? Can the authors provide a 

quantitative evidence that the human operator-performed NDC is subject to increased intra-

category variability?  

I doubt section 2.5 can be called clinical validation of model performance. What the authors did here 

is the identification of differences between human counts vs. IHCT yielded by AI by MSE. A clinical 

validation would include statistical tests showing that results of clinical decisions made based on 

IHCT are similar/concordant or same when compared to those based on manual NDC. At this point, 

is also unclear how useful IHCT would be comparing to NDCs clinically.  

The authors said that they used 100 samples (1 sample per patient) in their experiment. What kind 

of samples were used here (say how many from normal bone marrows vs., abnormal ones) ? What 

MESs per group would be like when this potentially non-uniform sample of aspirates is broken down 



into clinically meaningful groups?  

Another problem here is that the authors used manual ground truth to train and validate their AI. 

However, manual cell labeling is inaccurate and has high intra and inter-rater variability. A more 

appropriate would be to use immunohistochemistry to label cells for training, validation and testing 

purposes. An example of such approach is shown here: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177428/  

Since immunohistochemistry (IHC) is likely to be more accurate for cell labeling, the authors should 

show classification results by their AI on IHC labeled cells or aspirates as the ground truth.  

Active learning is not necessarily a new approach in digital pathology. It has been or recommended 

for use before. See these example papers: https://link.springer.com/chapter/10.1007/978-3-030-

23937-4_3  

https://onlinelibrary.wiley.com/doi/full/10.1002/path.5331  

https://pubmed.ncbi.nlm.nih.gov/32758706/  

Inaccurate or unproven statements: (1) Abstract: “HCT has potential to revolutionize 

hematopathology diagnostic workflows, leading to more cost-effective, accurate diagnosis and 

opening the door to precision medicine”. (2) Pg.2: “YOLO has not been applied to medical domain 

problems such as pathology”. Here are examples where YOLO was used in digital pathology. 

https://pubmed.ncbi.nlm.nih.gov/31476576/, 

https://www.osapublishing.org/osac/fulltext.cfm?uri=osac-4-2-323&id=446861 and there are more.  

Reviewer #3 (Remarks to the Author):  

The authors create a tool for automated evaluation of bone marrow aspirate smears using deep 

learning methodologies. In their method, they identify appropriate regions of interest and use the 

YOLO model to classify cells in the smears. Their method was improved through active learning 

through iterative review of model output by hematopathologists. They ultimately validated their 

model through the review of 2 additional hematopathologists reviewing 100 patient samples.  

Overall, this paper describes an exciting new tool for automated bone marrow aspirate differential 

that represents a great opportunity for AI to assist in and streamline diagnoses from bone marrow 

samples. The authors have dealt with one of the major challenges of bone marrow aspirate 

evaluation, the identification of appropriate regions of interest, and have demonstrated the benefits 

of active learning in improving performance of the model.  

Critiques:  

1) The authors do not address either the types of disease entities used in this study or how different 

morphologic abnormalities might affect its performance. The numbers of each disease reviewed are 

not described. For example, how many smears represented myelodysplastic syndrome (MDS) and 

did abnormal morphology seen in MDS affect precision? I would expect it to. Furthermore, how 

many pathologist/AI discrepancies resulted from low numbers of a cell type (as mentioned in the 

discussion). E.g., might some of the discrepancy reflect enhanced diagnostic ability through counting 

of so many cells (and detection of very rare blasts not seen by the human, for example)?  

2) How did the model handle other/unidentifiable cells (e.g. cells with very abnormal morphology).  

3) The authors raise the issue of computational time in the introduction. They should describe the 



run time and whether or not it is feasible to implement in clinical practice.  

4) There is a caveat in the discussion that is difficult to follow: “Finally, when compared to manual 

NDC in 100 patients, the model performed well…” This part seems to suggest the possibility of 

interobserver variability; though a high degree of interobserver variability would be unexpected in 

the identification of neutrophils in particular. It would be best for the authors to write these two 

sentences more clearly as they are hard to follow. But also, is it possible that because neutrophils 

are so frequent in aspirate smears, that it might affect the variance in counts, contributing to the 

observations described (or maybe not, just a thought).  



 
All major changes in the revised manuscript have been highlighted in yellow. 
 
 

Reviewer #1 (Remarks to the Author): 
 
This study tries to construct an automatic end-to-end solution to analyze the bone marrow smear, 
which is important for clinical practice. Currently, there is no satisfactory product to conduct this 
work, and it is really labor intensive. However, the number of leukemia cases is related small in 
clinical practice, and this product may only save a small part of cost for a whole hospital. Moreover, 
there are some previous researches to address the same issue. Therefore, the scientific 
significance of this study is relatively low. Of course, author demonstrated a complete experiment 
including high level techniques and the-state-of-the-art method. In summary, the novelty of this 
study is low but the experimental technology is acceptable. The results were also reliable if author 
can provide more details as follows. 
 
We thank the reviewer for these comments. As mentioned in the introduction, the scope of this work goes 
beyond only blast counts in leukemias, which are only a small proportion of clinical hematopathology 
practice. In the US, there are approximately 700 000 bone marrow studies performed annually, and only a 
fraction of these are leukemias. There is no comparable estimate for Canada, but at 1/10 the population 
this would be in the range of 70 000. This amounts to approximately 800 000 bone marrow studies 
performed annually in North America, each one requiring aspirate cytology review. Therefore, we foresee 
significant cost savings as hematopathologists would be able to take on increased caseload with clinically 
validated ML-based cytology tools. To our knowledge, reliable ML technology to perform aspirate NDC in 
an actual clinical setting has not yet been validated, or even demonstrated. We hope this helps to clarify 
the potential novelty and clinical significance of this work. We now mention this in the introduction, 
page 1 of the revised manuscript.  
 

Major comments 
 
1. The term "Histogram of Cell Types" is misleading due to a specific term of "Image histogram" in 
computer vision domain. In fact, it just a distribution of each cell type. Please revise the name of 
your paper. 
 
Thank you for the comment. We feel that for the purposes of this work, the terms distribution and histogram 
are overlapping and analogous terms. As this paper is clinically-oriented, rather than oriented at the ML 
community, the term histogram conveys the purpose of the work clearly to the clinical/pathologist audience, 
i.e., we are automating a bone marrow manual nucleated differential count which is a distribution of cells in 
various categories as a histogram. Similarly, a manual nucleated differential count can be called a 
histogram in clinical medicine. We therefore feel that “Histogram of Cell Types” is the most accurate and 
meaningful way to convey our technology and results to our clinical colleagues. This should not be 
confusing to our readers, as the primary audience in this journal will be clinical pathologists versus deep 
learning / computer vision specialists. As well, it is generally understood that a “histogram” is a quantification 
of counting discretized measurements. We also added in Introduction: “A histogram is generally a 
representation of a distribution, a very old graphical technique to count discrete values [37].” 
 

2. I think the data splitting needs to be clarified. As far as I understand, data was spited into 5 
subsets for 5-fold cross-validation at random. If that is correct, how do you address data leakage, 
i.e., how do you make sure that your model does not use information from the same patient? Is 
there any patient that is included in both, the training and test set? 
 



Thank you for the helpful comment. In this work, the dataset has been split into train, validation and test 
sets at patient level. It means each set has a unique patient WSI that does not occur in the other sets. This 
strategy has been applied on both “ROI detection” and “cell detection and classification” models, such that 
there is not any data leakage between the sets. We updated the text and highlighted it in the manuscript, 
at sections 4.3 and 4.4, as follows: 

In section 4.3 page 16:  

“We applied patient-level 5-folds cross-validation to train and test the model. Hence, the dataset (98,750 
tiles) was split into two main partitions in each fold, training and test-validation, 80% (204 WSIs, including 
80,250 tiles) and 20% (46 WSIs including 18,500 tiles), respectively. The test-validation was also  been 
split into two main partitions, 70% validation and 30% test. To ensure that enough data for each class was 
chosen in our dataset, the above split ratios were enforced on appropriate and inappropriate tiles 
separately. The dataset was split into training, validation and test sets at patient level, such that each set 
has a patient WSI that does not come in the other sets to prevent data leakage. In each fold, the best model 
was picked by running on the validation partition after the training and then evaluated on unseen patients 
in the test dataset.” 

In section 4.4 page 16:  

“Similar to the ROI detection method above, patient-level 5-folds cross-validation was applied to train the 
model here. Therefore, each fold is divided into training and test-validation partitions, 80% and 20% 
respectively. The test-validation data portion was split into two main partitions (70% validation and 30% 
test). Additionally, to ensure that enough data for each class was  chosen in our dataset, the mentioned 
portions were enforced on each object class type individually. In each fold, the best model was picked by 
running it on the validation partition and then evaluation on the test (unseen) dataset was performed using 
the mean average precision (mAP).” 
 

3. This study only included one dataset. The experiment should be included a training set for 
backpropagation, a validation set for hyper-parameter selection, and a test set for performance 
assessment. I understand this study is try to use 5-fold cross validation to sidestep this issue. 
However, no details about hyper-parameter selection let me suspect to overestimate the model 
performance. Author should re-conducted the experiments to follow the standard process. 

Thank you for the comment. The dataset of 250 patient WSIs randomly selected from over 1000 WSI were 
divided into Train, Validation and Test sets for the ROI detection model, and 106 randomly selected patient 
WSIs were divided into Train, Validation and Test sets for YOLO model development. We highlighted this 
(as in the previous comment) in sections 4.3 and 4.4 of the manuscript. Also, regarding hyper-parameters, 
we highlighted it in the manuscript with the following sentences: 

In section 4.3 page 15:  

“This network was trained using a cross entropy loss function and AdamW optimizer with learning rate 1e-
4 and weight decay 5.0e-4. Also, a pretrained DenseNet121 was applied to initialize all weights in the 
network prior to fine-tuning. The entire network was fine-tuned for 20 epochs with 32 batch size.” 

In section 4.4 page 16:  

“In addition, the hyperparameters for bone marrow cell detection and classification were used as follows: 
max-batches is 130,000; the training steps are 104,000 and 117,000; batch size 64 with subdivision 16; the 
polynomial decay learning rate scheduling strategy is applied with an initial learning rate of 0:001; the 
momentum and weight decay are set as 0:949 and 0:0005 respectively; warmup step is 1,000; YOLO 
network size set to 512 in both height and width; anchor size set to 13, 14, 19, 18, 29, 30, 19, 64, 62, 20, 



41, 39, 35, 59, 50, 49, 74, 35, 56, 62, 68, 53, 46, 87, 70, 70, 95, 65, 79, 85, 101, 95, 87,129, 139,121, 216, 
223.” 

 

4. There were 3 iterations for data collection in this study. Please provided the performance details 
of each iteration. For example, how many samples (especially in the sample of rare cell type) were 
collected from first, second, and third iterations for training and validation, and the performance 
should be provided. Importantly, is the validation set vary in each iteration? 

Thank you very much for the comment. The details of each iteration have been provided inside the 
manuscript in Tables 3 page 4. Regarding the second question, yes, in each iteration a new Training, and 
Test-Validation sets were created and the model trained and evaluated on them. Regarding “samples of 
rare cell types”; we randomly selected patient WSI samples from our starting dataset. We assume by rare 
cell types, you mean cells such as blasts, megakaryocytes or histiocytes. As can be seen in Table 3, these 
were all sampled proportionally across iterations.  

 
5. YOLO allows thresholds on the class probability scores for its bounding box objects. Were these 
thresholds explored (e.g. require a probability of > 0.80 to classify as a particular cell type, otherwise 
unable to identify), or was the class with the highest probability simply chosen? Were there any 
other notable settings/parameters used for YOLO here? 

Thank you for the comment. The following sentence has been added and highlighted in the manuscript 
(section 4.5 page 17): 

“It is worth mentioning that the value of 0.5 was considered for Intersection over Union (IoU) in AP for each 
object detection and >0.75 has been used for class probability.”  

 Also other YOLO parameters have been described as follows, at section 4-4 of the manuscript at page 16: 

“In this architecture, CSPDarknet53 [46] was used as the backbone of the network to extract features, SPP 
[47] and PAN [48] were used as the neck of the network to enhance feature expressiveness and robustness, 
and YOLOv3 [49] as the head. As bag of specials (BOS) for the backbone, Mish activation function [50], 
cross-stage partial connection (CSP) and multi input weighted residual connection (MiWRC) were used. 
For the detector, Mish activation function, SPP-block, SAM-block, PAN path-aggregation block, and DIoU-
NMS [51] were used. As bag of freebies (BoF) for the backbone, CutMix and Mosaic data augmentations, 
DropBlock regularization [52], and class label smoothing were used. For the detector, complete IoU loss 
(CIoU-loss) [51], cross mini-Batch Normalization (CmBN), DropBlock regularization, Mosaic data 
augmentation, self-adversarial training, eliminate grid sensitivity, using multiple anchors for single ground 
truth, Cosine annealing scheduler [53], optimal hyperparameters and random training shapes were used .” 

 
6. This study used 400x image to conduct experiments. However, certain cell type identification 
required 1000x image for experienced hematologists. How to make sure that experts correctly 
identify all cell types? 
 
Thank you for the comment. The 4 Royal College of Physicians and Surgeons of Canada-certified clinical 
hematopathology and hematology members of our team can attest that in modern hematopathology 
practice for bone marrow cytology 1000X oil-immersion is not required in routine practice. Furthermore, 
no digital scanning hardware currently exists that we are aware of that captures 1000X images for cytology. 
We therefore feel using 400X image magnification accurately reflects current best practice in diagnostic 
hematopathology. The expertise for identification comes from many years of training and board certification, 
the same standard that is used for actual clinical diagnosis. 
 



7. In fact, the result of flow cytometry is the only gold standard to describe the distribution of cell 
types. I considered the comparison between AI model and hematologists cannot provide the 
enough evidence to explain the accuracy. This is an important limitation in this study. A viable 
alternative is to conduct an expensive human-machine competition including more than 5 
hematologists, especially in physicians who have not participated in the training stage. 
 
Thank you for the comment. With due respect, to clarify from the perspective and knowledge of the 
numerous hematopathologists and hematologists involved in this work, flow cytometry is not the 
reference standard for cell distributions in clinical diagnostic hematopathology. The reference 
standard for bone marrow cell distributions is expert-pathologist cell counts and annotations. This is 

documented in ICSH International Guidelines (1.LEE, S. ‐H., ERBER, W. N., PORWIT, A., TOMONAGA, 
M. & PETERSON, L. C. ICSH guidelines for the standardization of bone marrow specimens and reports. 
Int J Lab Hematol 30, 349 364 (2008). Therefore, pathologist annotation for pathology images is considered 
the ground truth; this is well-established in the field, and it is the benchmark for clinical diagnosis and patient 
care. In fact, the flow cytometry specimen often contains hemodilution due to being collected in last order 
during a bone marrow exam, and therefore is notoriously inaccurate regarding cell counts. This may be 
different from the research domain. We therefore feel that the cell annotation and annotation evaluation of 
our model by our team of certified expert hematopathologists and hematologists with between 5-35 years 
of morphology experience is sufficient as a reference standard for our work. This again would agree with 
international best-practice clinical guidelines. We clarify the rationale for expert-pathologist cell 
annotation in the methods section, section 4.2 page 14, now entitled “Data Annotation and 
Augmentation Strategy. “ 
 
The idea of a competition study, while conceptually good, would not be possible in the scope of this work 
and as the reviewer points out, would be prohibitively expensive and likely unnecessary. We also had 2 
hematopathologists who did not participate in initial annotation evaluate model performance. We describe 
it as follows in section 2.5  at page 12 of the manuscript.  
 
“For comprehensive clinical evaluation of our end-to-end model, performance was evaluated by two 
additional hematopathologists who were not involved in cell labeling. Both hematopathologists showed high 
concordance with model performance, with mAP > 90% overall cell and object types (Fig. 6 for details). 
Additionally, the Cohen’s Kappa has been calculated both between the hematopathologists and model, and 
within experts as well; 0.97 and 0.98 for expert 1 and expert 2, respectively and 0.99 between both experts.” 
 

Minor comments 
 
8. Authors described "However, to date, YOLO has not been applied to medical domain problems 
such as pathology." in introduction section. However, I can easily to find related paper in PubMed 
[JMIR Med Inform. 2020 Apr 8;8(4):e15963. doi: 10.2196/15963.]. Please conduct a complete review 
and discuss the novelty of this study compared to previous researches. 

Thank you for the great comment. The manuscript has been modified by adding the following sentence in 
section 1 at page 2: 

“For example in [36], YOLO has been applied to assess the cell types in blood smears.  However, only 7 
cell types have been considered in that study. Moreover, the tiles need to be selected manually by the user. 

 
9. The experiment details to make the bone marrow smear is important to repeat the works. 
However, there is no enough details, especially in the bone marrow aspiration, staining, and 
digitalized.  
 



Thank you very much for the comment. The details of making a bone marrow smear is critically important, 
we agree. However, detailing a well-accepted and standardized process is not within the scope of the paper. 
The technical details of making a bone marrow smear can be found at the following references: 
[1] LEE, S. ‐H., ERBER, W. N., PORWIT, A., TOMONAGA, M. & PETERSON, L. C. ICSH guidelines for 
the standardization of bone marrow specimens and reports. Int J Lab Hematol 30, 349 364 (2008).  
 
[4] Bain, B. Bone marrow aspiration. Journal of clinical pathology 54, 657{663 (2001). 
 
This is described and referenced in section 2.1 page 3 of the revised manuscript.  
 

10. The definition of the YOLO bounding box should be provided, in particular the settings of anchor 
boxes. The authors may wish to clean up them.  

Thank you for the comment. It’s added in the manuscript and highlighted, as follows: 

In section 4.4 page 16:  

“anchor size set to 13, 14, 19, 18, 29, 30, 19, 64, 62, 20, 41, 39, 35, 59, 50, 49, 74, 35, 56, 62, 68, 53, 46, 
87, 70, 70, 95, 65, 79, 85, 101, 95, 87,129, 139,121, 216, 223 
 

11. The authors might provide examples of misclassified cells, and discuss whether the 
misclassifications are egregious, or reasonable for human experts. 

Thank you for the comment. We address it as a confusion matrix in Figure 2(b), at page 6, and also Figure 
S2 at page 23. Also in section 3 (page 13), we discussed this specifically issue in the text, as follows on 
page 13 of the revised manuscript: 

“Interestingly, “blasts" and “lymphocytes" showed some overlap in classification by our model, which is a 
similar problem to human hematopathologists. This may reflect biases in model performance, or 
alternatively, may be a function of the overlapping cytological features in these cell types which are often 
confused in clinical practice 
 

  



Reviewer #2 (Remarks to the Author): 
 
1) Results from the patient-level cross validation need to be shown. Please also perform a leave-
one patient-out cross-validation and add results to the manuscript. This comment pertains both to 
ROI, non-ROI classification results and to the cell-based classifications as well.   

Thank you very much for the comment. The results for both “ROI detection” and “cell detection and 
classification” models are patient-level cross validation, such that the dataset was split into train, validation 
and test sets at patient level. It means each set has patients that do not occur in the other ones. This 
strategy was applied on both “ROI detection” and “cell detection and classification” models. Therefore, this 
approach includes “leave one patient out”. To clarify this, we updated the text and highlighted it in the 
manuscript, at sections 4.3 and 4.4, as follows: 

In section 4.3 page 16:  

“We applied patient-level 5-folds cross-validation to train and test the model. Hence, the dataset (98,750 
tiles) was split into two main partitions in each fold, training and test-validation, 80% (204 WSIs, including 
80,250 tiles) and 20% (46 WSIs including 18,500 tiles), respectively. The test-validation also has been split 
into two main partitions, 70% validation and 30% test. To ensure that enough data for each class has been 
chosen in our dataset, the above split ratios were enforced on appropriate and inappropriate tiles 
separately. It is worth mentioning that the dataset has been split into training, validation and test sets at 
patient level, such that each set has a patient that does not come in the other sets to prevent data leakage. 
In each fold, the best model was picked by running on the validation partition after the training and then 
evaluated on unseen patients in the test dataset” 

In section 4.4 page 16:  

“Similar to the ROI detection method above, patient-level 5-folds cross-validation was applied to train the 
model here. Therefore, each fold is divided into training and test-validation partitions, 80% and 20% 
respectively. The test-validation data portion was split into two main partitions (70% validation and 30% 
test). Additionally, to ensure that enough data for each class was  chosen in our dataset, the mentioned 
portions were enforced on each object class type individually. In each fold, the best model was picked by 
running it on the validation partition and then evaluation on the test (unseen) dataset was performed using 
the mean average precision (mAP).” 
 
2) How are the classification metrics generated? Does for instance the reported F1-score mean an 
average F1 score for a single cell type with the average calculated over all regions and WSIs? Same 
question pertains to the ROI vs. non-ROI classification metrics.  

This is an excellent question, and perhaps we did not clarify this in the paper. All metrics were calculated 
for each single cell type separately and then average values for all these are subsequently calculated. For 
ROI vs. Non-ROI, as it is only two classes, so all the metrics already calculated only on average. We 
updated the text and highlighted in the manuscript as follows: 

In abstract at page 1: 

“The approach achieves high accuracy in region detection (0.97 accuracy and 0.99 ROC AUC), and cell 
detection and cell classification (0.75 mAP, 0.78 average F1-score, Log-average miss rate of 0.31).” 

Also in the last paragraph in Introduction, at page 3: 

“Our approach shows cross-validation accuracy of 0.97 and precision of 0.90 in ROI detection (selecting 
appropriate tiles), and mAP of 0.75 and average F1-score of 0.78 for detecting and classifying 16 key 
cellular and non-cellular objects in aspirate WSIs.“ 



In section 2.2 at page 5: 

“The model achieved a high mean Average Precision (mAP) and average F1 score in object detection and 
classification: mAP, average F1-score, precision and recall are 0.75, 0.78, 0.83, and 0.75, respectively” 

 
3) What is mAP@0.5? Non computer science audience may not be familiar with this term. Please be 
clearer with the methods description.  
 

Thank you for the comment. We explained mAP and other metrics in the manuscript. It is highlighted in 
section 4.5 (Evaluation) at page 17 and 18 of the revised manuscript. 

“To assess the performance of the proposed cell detection and classification method, Average Precision 
(AP) was used with 11-point interpolation (Eq. 8). Also at the end, the mean Average Precision (mAP) [54] 
was calculated for all the AP values (Eq. 10). The value of recall was divided from 0 to 1.0 points and the 
average of maximum precision value was calculated for these 11 values.  It is worth mentioning that the 
value of 0.5 was considered forIntersection over Union (IoU) in AP for each object detection and>0.75 has 
been used for class probability.  In addition, Precision, Recall, F1-score (Eq. 12), average IoU (Eq. 11) and 
log-average miss rate (Eq. 13) have been calculated here for each object type.” 

 

4) It is unclear how the IHCT convergence is accomplished. It looks like this is an iterative process 
but initial conditions of the convergence assessment are not described. How many regions with 
their respective HCTs are required to begin with? How many ROIs are required to achieve 
convergence? What is the minimal and maximal number of ROIs to assure that convergence can be 
achieved? The authors provided ranges of ROi and cell types for the IHCT convergence to be 
achieved, but it is unclear whether these numbers can be universally used (or observed) for 
aspirates from normal vs. abnormal (i.e containing abnormal cells) bone marrow. Why measuring 
convergence is even needed here? BTW, why a simple histogram of cells from all regions across a 
WSI is not a good way of representing the cell frequencies, and why IHCT would be better than this 
histogram? 

 
Thank you very much to the reviewer for bringing up these important points. We address the points raised 
as follows: 
 
- It looks like this is an iterative process but initial conditions of the convergence assessment are 
not described. How many regions with their respective HCTs are required to begin with? How many 
ROIs are required to achieve convergence? What is the minimal and maximal number of ROIs to 
assure that convergence can be achieved? 
 
We modified the following sentences in the revised manuscript, in section 2.4 at page 8 and 10 to 
specifically address this important point: 
 
“To assess for statistical convergence of individual HCTs to a final IHCT, after processing 80 tiles (≈800 
cells), Chi-squared distance was calculated by adding each new ROI tile with an empirically determined 
threshold to assess when the IHCT is converged. Once it’s converged, the bone marrow NDC is completed 
and is represented by the generated IHCT. Otherwise, another ROI tile is extracted and analyzed 
interactively until convergence. Based on analysis of 500 individual patients’ WSIs, we found that in most 
cases, IHCT convergence is reached after counting cells in 100-200 tiles for normal-diagnosed patients, 
300-400 tiles in patients with a MDS-diagnosed patients and 400-500 tiles in patients with a AML-diagnosed 
patients (≈1000-5000 cells) (Fig.5b). 
 



The authors provided ranges of ROI and cell types for the IHCT convergence to be achieved, but it 
is unclear whether these numbers can be universally used (or observed) for aspirates from normal 
vs. abnormal (i.e containing abnormal cells) bone marrow. Why measuring convergence is even 
needed here?  
 
There are no accepted or validated reference ranges for bone marrow cytology. Expert hematopathologists 
learn and accept cell count ranges based on years of training and experience, and this is considered the 
ground truth or reference standard. In terms of the number of cell categories that we used, this is well-

established and based on international ICSH clinical practice guidelines: 1.LEE, S. ‐H., ERBER, W. N., 
PORWIT, A., TOMONAGA, M. & PETERSON, L. C. ICSH guidelines for the standardization of bone marrow 
specimens and reports. Int J Lab Hematol 30, 349 364 (2008). The point of whether the convergence the 
IHCT happens in both normal and abnormal is an excellent one, and we thank the reviewer for bringing this 
to our attention. We modified section 2.4 (as explained above) to show examples of IHCT 
convergence for both normal samples, and for samples with various abnormal hematological 
diagnoses (AML and MDS).  We use convergence here by chi-squared distance as a means to assess 
whether the cell counting algorithm may be stopped, as a stable, converged histogram would on average 
represent the distribution of cell types in that patient specimen.  
 

BTW, why a simple histogram of cells from all regions across a WSI is not a good way of 
representing the cell frequencies, and why IHCT would be better than this histogram? 
 
This is an excellent question, and perhaps we did not clarify this in the paper. An aspirate WSI contains 
only a relatively small number of regions suitable for cytology; these are well-spread, thin areas that are 
free of significant cellular overap, overstaining and debris. These are the regions that are used by practicing 
hematopathologists throughout the world; we therefore designed our technology to reflect current clinical 
practice in hematopathology. The WSI regions that are not used for cytology (roughly 80% of the slide) are 
excluded because hematopathologists cannot accurately or reliably identify cells in these regions. 
Therefore, we could, and should not integrate suboptimal specimen regions in our technology, toward 
designing a real-world clinical diagnostic workflow support tool. We added the following sentence as the 
last sentence of section 2.4 at page 10 of the revised manuscript: 
 
“Looking for only a small number of tiles in this approach is time and computationally efficient in comparison 
to analyzing all regions across a WSI, similar to real-world clinical practice.” 
 

5) What is the value of MSE measured between NDCs by expert 1 and 2? Can the authors provide a 
quantitative evidence that the human operator-performed NDC is subject to increased intra-
category variability? 
 
We appreciate the concern to assess human operator variability in bone marrow counts. There are some 
studies assessing this in the past in an attempt to establish small reference ranges (1.Bain, B. J. The bone 
marrow aspirate of healthy subjects. Brit J Haematol 94, 206–209 (1996). As our study was retrospective, 
many of the NDC were performed historically and therefore could not be feasibly reassessed within the 
scope of this study by multiple hematopathologists. Furthermore, our IHCT assessed more cytological 
object categories than the manual NDC. To avoid confusion, we have removed reference to historic NDC 
from the manuscript, and we now show data for hematopathologist concordance in evaluating the 
performance of the IHCT, which we feel is a more accurate metric of our model performance.. Therefore, 
section 2.5 has been accordingly updated at page 12 of the revised manuscript. 
 

6) I doubt section 2.5 can be called clinical validation of model performance. What the authors did 
here is the identification of differences between human counts vs. IHCT yielded by AI by MSE. A 
clinical validation would include statistical tests showing that results of clinical decisions made 
based on IHCT are similar/concordant or same when compared to those based on manual NDC. At 
this point, is also unclear how useful IHCT would be comparing to NDCs clinically.  



 
Thank you for raising this important point; we agree that clinical validation may not be the most accurate 
way to describe this comparison study. We now rename this section and inherent experiments as 
Concordance Between Hematopathologists and Model Performance. The inference that an IHCT can 
be used clinically, or to influence clinical decisions may be inferred based on the concordance between 
hematopathologists IHCT in this section, however we do not draw this conclusion in the revised manuscript. 
For example, if a manual NDC identified 20% blasts, a clinical decision is made to treat an acute leukemia; 
therefore, if the IHCT shows the same or similar % of blasts; it would likewise influence the same clinical 
decision. We appreciate this comment however, and avoid making any specific conclusions regarding 
utilizing the IHCT for clinical-decision making in the manuscript.  
 
7) The authors said that they used 100 samples (1 sample per patient) in their experiment. What 
kind of samples were used here (say how many from normal bone marrows vs., abnormal ones) ? 
What MSEs per group would be like when this potentially non-uniform sample of aspirates is broken 
down into clinically meaningful groups?  

We thank the reviewer for this comment. As discussed in detail above, the categories analyzed in these 
historical human-performed NDC were less than those analyzed by our model, and these were historic 
counts that could not be feasibly re-assessed within the scope of our study. As mentioned above in (5), we 
now rename this section and present data evaluating concordance between hematopathologists and model 
performance, and between individual hematopathologists. We feel this approach more clearly assesses 
model performance. The text and diagram has been updated at section 2.5 at page 12 accordingly. 

 
8) Another problem here is that the authors used manual ground truth to train and validate their AI. 
However, manual cell labeling is inaccurate and has high intra and inter-rater variability. A more 
appropriate would be to use immunohistochemistry to label cells for training, validation and testing 
purposes. An example of such approach is shown here: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177428/  
Since immunohistochemistry (IHC) is likely to be more accurate for cell labeling, the authors should 
show classification results by their AI on IHC labeled cells or aspirates as the ground truth.  
 
Thank you for the comment. With due respect, to clarify from the perspective and knowledge of the 
numerous hematopathologists and hematologists involved in this work, immunohistochemistry (IHC) or 
immunofluorescence using flow cytometry are not the reference standard for aspirate cell distributions in 
clinical medicine. The reference standard for bone marrow cell distributions is expert-pathologist cell 

counts and manual annotations. This is documented in the ICSH International Guidelines: 1.LEE, S. ‐H., 
ERBER, W. N., PORWIT, A., TOMONAGA, M. & PETERSON, L. C. ICSH guidelines for the standardization 
of bone marrow specimens and reports. Int J Lab Hematol 30, 349 364 (2008); 2. .Torlakovic, E. E. et al. 
ICSH guidelines for the standardization of bone marrow immunohistochemistry. Int J Lab Hematol 37, 431 
449 (2015).  Therefore, pathologist annotation for bone marrow cell counts is considered the ground truth; 
this is well-established in the field, and it is the benchmark for clinical diagnosis and patient care throughout 
the world. We have mentioned this several times, with appropriate references in the revised manuscript, 
including section 4.2 on page 14.  
 
Bone marrow IHC is performed on solid tissue bone marrow specimens that complement cytology but do 
not provide a reference standard. IHC is an ancillary diagnostic test that is to assist pathologists in 
identifying the lineage or maturational stage of cells in bone marrow solid tissue specimens. There is no 
data to support its clinical use in correlating or supporting manual aspirate cell counts, which is a distinct 
and separate test. In regards to using flow cytometry (immunofluorescence) as in the reference cited by the 
reviewer, this an ancillary test to morphology that provides information about cell lineage and maturational 
stage to assist in pathology diagnosis. It is never used clinically to calculate cell distributions, and in fact, 
this would contravene best practice guidelines. Therefore, with respect, the reference cited by the reviewer 
does not accurately reflect the clinical use of bone marrow IHC. We appreciate this  may be different from 
the research domain. We therefore feel that the cell annotation and assessment of our model by a team of 
4 expert hematopathologists and hematologists with 5-35 years of pathology experience is more than 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177428/


sufficient as a reference standard for our work. This again would agree with international best-practice 
clinical guidelines. 
 
To further clarify this point, we added and highlighted the following sentence in section 2.3 at page 7 of 
the revised manuscript: 
“During the first and second training iterations (before implementing active learning), new ROI tiles were 
fully annotated manually by an expert hematopathologist to train our YOLO model, 719 number of tiles 
representing 32 number of WSI were used for full cell annotation. From the third iteration onward, our active 
learning approach was employed to annotate 2766 new tiles representing an additional 74 WSIs, which 
were validated by our team of 4 expert hematopathologists and hematologists with 5-35 years of pathology 
experience (Table 5 and Supplementary  Table S2).” 
 
9) Active learning is not necessarily a new approach in digital pathology. It has been or 
recommended for use before. See these example papers: 
https://link.springer.com/chapter/10.1007/978-3-030-23937-4_3  
https://onlinelibrary.wiley.com/doi/full/10.1002/path.5331 
https://pubmed.ncbi.nlm.nih.gov/32758706/  
Inaccurate or unproven statements: (1) Abstract: “HCT has potential to revolutionize 
hematopathology diagnostic workflows, leading to more cost-effective, accurate diagnosis and 
opening the door to precision medicine”. (2) Pg.2: “YOLO has not been applied to medical domain 
problems such as pathology”. Here are examples where YOLO was used in digital pathology. 
https://pubmed.ncbi.nlm.nih.gov/31476576/, 
https://www.osapublishing.org/osac/fulltext.cfm?uri=osac-4-2-323&id=446861 and there are more.  
 
Thank you for bringing this to our attention, and we agree. 
 
(1)  We now revise the abstract with the following statement:  
“HCT has potential to eventually support more cost-effective and efficient hematopathology diagnostic 
workflows, and support AI-enabled computational pathology.” 
 
(2) Also, the introduction has been modified by adding the following sentence at page 2 of the revised 
manuscript: 
“For example in [36], YOLO has been applied to assess the cell types in bone marrow smears.  However, 
only 7 cell types have been considered in that study. Moreover, the tiles need to be selected manually by 
the user.” 
 

  

https://link.springer.com/chapter/10.1007/978-3-030-23937-4_3
https://onlinelibrary.wiley.com/doi/full/10.1002/path.5331
https://pubmed.ncbi.nlm.nih.gov/32758706/
https://pubmed.ncbi.nlm.nih.gov/31476576/
https://www.osapublishing.org/osac/fulltext.cfm?uri=osac-4-2-323&id=446861


Reviewer #3 (Remarks to the Author): 
 
The authors create a tool for automated evaluation of bone marrow aspirate smears using deep 
learning methodologies. In their method, they identify appropriate regions of interest and use the 
YOLO model to classify cells in the smears. Their method was improved through active learning 
through iterative review of model output by hematopathologists. They ultimately validated their 
model through the review of 2 additional hematopathologists reviewing 100 patient samples. 
 
Overall, this paper describes an exciting new tool for automated bone marrow aspirate differential 
that represents a great opportunity for AI to assist in and streamline diagnoses from bone marrow 
samples. The authors have dealt with one of the major challenges of bone marrow aspirate 
evaluation, the identification of appropriate regions of interest, and have demonstrated the benefits 
of active learning in improving performance of the model.  
Critiques: 
 
1) The authors do not address either the types of disease entities used in this study or how different 
morphologic abnormalities might affect its performance. The numbers of each disease reviewed 
are not described. For example, how many smears represented myelodysplastic syndrome (MDS) 
and did abnormal morphology seen in MDS affect precision? I would expect it to. Furthermore, how 
many pathologist/AI discrepancies resulted from low numbers of a cell type (as mentioned in the 
discussion). E.g., might some of the discrepancy reflect enhanced diagnostic ability through 
counting of so many cells (and detection of very rare blasts not seen by the human, for example)?  
 
Thank you for the very helpful comment. The individual patient-level confusion matrices have been provided 
for Normal, MDS and Leukemia cases in Figure S2 at page 23 of the revised manuscript. Also, the 
number of cases analyzed in our dataset sample for each diagnosis can be found in Table 5 at page 15 of 
the revised manuscript. In addition we have incorporated new data from 27 additional patient WSIs in our 
evaluation there, which includes new 12 Normal, 12 MDS and 3 leukemia cases, where 10 tiles from each 
WSIs were sampled and assessed by a hematopathologist for the cell detection and classification model 
performance, now incorporated into Table 5 and add the following sentence in section 2.2 page 5 of 
the revised manuscript:  
 
Model performance on the specific individual diagnostic categories of normal, MDS and leukemia can be 
found in Supplementary Fig.S2.” 
 

2) How did the model handle other/unidentifiable cells (e.g. cells with very abnormal morphology). 
We thank our clinical colleague for the excellent and important question. As you well know, there are always 
some cells even the most experienced pathologists cannot identify with absolute confidence. We addressed 
specifically as follows: 

1. During the annotation process, where cells that were not identified with absolute confidence by our 
hematopathologists or hemtologists were lablled as “other”. This is similar to clinical practice, as 
you know. Therefore the model would be trained not to assign these to any 1 specific category. 
While there are clear weaknesses in such an approach, due to the requirements of YOLO model 
training, leaving cells without an annotation was not possible. 

2. The model was able to predict cells as belonging to the category “other” if it did not assign a given 
confidence threshold to another cell. While there are caveats to this approach, in the context of an 
early prototype, we felt this approach both reflected clinical practice and allowed for model 
evaluation in handling complex or challenging cytology.  

 
Thank you again for this excellent question. We modified and highlighted the following sentence in 
section 2.2 at page 5: 
 
“Similar to clinical practice, objects that could not be classified with certainty by a hematopathologist were 
labeled as ``other cells''. Therefore the model would be trained not to assign these to any specific category. 



While there are clear weaknesses in such an approach, due to the requirements of YOLO model training, 
leaving cells without an annotation was not possible.” 
 

3) The authors raise the issue of computational time in the introduction. They should describe the 
run time and whether or not it is feasible to implement in clinical practice. 
 

Thank you for the great comment. The following sentence has been added to the manuscript in section 
3 at page 14 of the revised manuscript: 

“Regarding the execution time in model deployment and production phase, it took approximately 4 minutes 
to generate the appropriate tiles (includes reading a digital WSI from disk, creating the tiles with a size of 
512*512 pixels, and applying the proposed ROI detection model). Consequently, the whole process to 
examine each tile takes about 30 milliseconds. For cell detection and classification, 50 milliseconds on 
average take for both detection and classification in each tile. As in most cases, the IHCT is converged in 
almost 400 to 500 tiles, the whole process of generating the IHCT took approximately 5 minutes.” 
 
4) There is a caveat in the discussion that is difficult to follow: “Finally, when compared to manual 
NDC in 100 patients, the model performed well…” This part seems to suggest the possibility of 
interobserver variability; though a high degree of interobserver variability would be unexpected in 
the identification of neutrophils in particular. It would be best for the authors to write these two 
sentences more clearly as they are hard to follow. But also, is it possible that because neutrophils 
are so frequent in aspirate smears, that it might affect the variance in counts, contributing to the 
observations described (or maybe not, just a thought).  
 
Thank you again - to avoid confusion, the comparison between the manual NDC and the model has been 
removed from the revised mansucript, as it was retrospective, and only 10 cell types were considered at 
that study, but our proposed model detects and classifies 19 different cell types. We now rename this 
section, and present data evaluating concordance between individual hematopathologists and model 
performance, and between individual hematopathologists. We feel this approach more clearly assesses 
model performance. The text and diagram has been updated at section 2.5 at page 12 accordingly:  
 
“For comprehensive clinical evaluation of our end-to-end model, performance was evaluated by two 
additional hematopathologists who were not involved in cell labeling. Both hematopathologists showed high 
concordance with model performance, with mAP > 90% overall cell and object types (Fig. 6 for details). 
Additionally, the Cohen’s Kappa has been calculated both between the hematopathologists and model, and 
within experts as well; 0.97 and 0.98 for expert 1 and expert 2, respectively and 0.99 between both experts.” 
 



Reviewers' comments:  

Reviewer #1 (Remarks to the Author):  

The authors have followed reviewer’s comment to improve their manuscript as the rebuttal letter. I 

agree in principle for all responses given by authors. However, I still hope that the author can further 

clarify on the two issues as following.  

1. Original comments: The term "Histogram of Cell Types" is misleading due to a specific term of 

"Image histogram" in computer vision domain. In fact, it just a distribution of each cell type. Please 

revise the name of your paper.  

Authors’ response: Thank you for the comment. We feel that for the purposes of this work, the 

terms distribution and histogram are overlapping and analogous terms. As this paper is clinically-

oriented, rather than oriented at the ML community, the term histogram conveys the purpose of the 

work clearly to the clinical/pathologist audience, i.e., we are automating a bone marrow manual 

nucleated differential count which is a distribution of cells in various categories as a histogram. 

Similarly, a manual nucleated differential count can be called a histogram in clinical medicine. We 

therefore feel that “Histogram of Cell Types” is the most accurate and meaningful way to convey our 

technology and results to our clinical colleagues. This should not be confusing to our readers, as the 

primary audience in this journal will be clinical pathologists versus deep learning / computer vision 

specialists. As well, it is generally understood that a “histogram” is a quantification of counting 

discretized measurements. We also added in Introduction: “A histogram is generally a 

representation of a distribution, a very old graphical technique to count discrete values [37].” My 

additional opinion: I am an expert in deep learning and statistics, and I still considered that term of 

this manuscript, "Histogram of Cell Types", might lead readers misunderstanding. I strongly 

recommend to replace this term to "Proportion of Cell Type". I suggested to seek an external 

statistical expert for additional reviews.  

2. Original comments: There were 3 iterations for data collection in this study. Please provided the 

performance details of each iteration. For example, how many samples (especially in the sample of 

rare cell type) were collected from first, second, and third iterations for training and validation, and 

the performance should be provided. Importantly, is the validation set vary in each iteration?  

Authors’ response: Thank you very much for the comment. The details of each iteration have been 

provided inside the manuscript in Tables 3 page 4. Regarding the second question, yes, in each 

iteration a new Training, and Test-Validation sets were created and the model trained and evaluated 

on them. Regarding “samples of rare cell types”; we randomly selected patient WSI samples from 

our starting dataset. We assume by rare cell types, you mean cells such as blasts, megakaryocytes or 

histiocytes. As can be seen in Table 3, these were all sampled proportionally across iterations.  

My additional opinion: Because the accuracy in different validation set is not comparable, I 

recommend to create an equal validation set for all iterations, which may be helpful for 

understanding the improving by iterations. I think the experiment I requested should at least be 

placed in the supplementary file.  

Reviewer #2 (Remarks to the Author):  

Thank you for addressing my comments. a couple of minor suggestions.  



1) Please make sure the mAP abbreviation is resolved in the abstract or in the text where it first 

appears.  

2) Describe which of the query strategies of active learning (AL) scheme was used in your work. If all 

the wrongly classified cells were re-labeled during a single AL iteration, please say so in the 

manuscript.  

Reviewer #3 (Remarks to the Author):  

The authors create a tool for automated evaluation of bone marrow aspirate smears using deep 

learning methodologies. In their method, they identify appropriate regions of interest and use the 

YOLO model to classify cells in the smears. Their method was improved through active learning 

through iterative review of model output by hematopathologists. Overall, this paper describes an 

exciting new tool for automated bone marrow aspirate differential that represents a great 

opportunity for AI to assist in and streamline diagnoses from bone marrow samples. The authors 

have dealt with one of the major challenges of bone marrow aspirate evaluation, the identification 

of appropriate regions of interest, and have demonstrated the benefits of active learning in 

improving performance of the model. The authors highlight the several ways that this technology 

can transform hematopathology practice and potentially improve diagnostic abilities (e.g. in the 

detection of MRD). This method represents a substantial advancement relative to prior methods 

that required a human operator to identify regions of interest and also only identified a smaller 

number of cell types. In the revised manuscript, the authors have addressed most of my major 

concerns from the initial review. However, the additional data provided raises new questions. I have 

a few remaining and additional critiques:  

1) My biggest concern: How should the pathologist deal with the fact that 24% of blasts are 

misclassified in the MDS cases? Some discussion of how to resolve this major problem with the 

model, beyond explaining that human pathologists also have trouble with this, would be helpful. The 

benefit of the human is that they can recognize the ambiguity and decide on the final classification 

of each cell using additional information (flow cytometry, IHC, clinical impression) whereas it seems 

that the model is simply classifying 14% of blasts as lymphocytes and another 4% as erythroblasts. 

Quantification of blasts in MDS is one of the most important functions of the bone marrow aspirate 

smear and this issue deserves more attention. I find the confusion matrix provided in the main paper 

to be misleading as it seems to represent mostly normal cases. I think the fact that accuracy, 

particularly with regard to blast count, is lost in abnormal cases should be better acknowledged.  

2) Can confusion matrices for the other disease entities evaluated be provided?  

3) I wish that the authors had also discussed the contribution of dysplastic morphology (e.g. in MDS) 

to the accuracy of the model. It seems, from Fig S2, that there was some increase in misclassification 

(aside from the blast issue described above) in MDS compared to other smear types. Whether or not 

these misclassifications represent a major problem should have been discussed (I think that most are 

in cell classes that are not of major clinical significance; eg megakaryocyte nuclei, platelet clumps).  

4) Minor issue: The authors frequently refer to “leukemia” cases without more detail about the type. 

I assume they mean acute leukemia? If it was chronic lymphocytic leukemia or chronic myeloid 

leukemia, this should be clarified as the cell types would differ. It’s especially confusing in the 

tables/figures. 



Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The authors have followed reviewer’s comment to improve their manuscript as the 
rebuttal letter. I agree in principle for all responses given by authors. However, I still 
hope that the author can further clarify on the two issues as following. 

1. Original comments: The term "Histogram of Cell Types" is misleading due to a 
specific term of "Image histogram" in computer vision domain. In fact, it just a 
distribution of each cell type. Please revise the name of your paper. 

Authors’ response: Thank you for the comment. We feel that for the purposes of this 
work, the terms distribution and histogram are overlapping and analogous terms. As 
this paper is clinically-oriented, rather than oriented at the ML community, the term 
histogram conveys the purpose of the work clearly to the clinical/pathologist audience, 
i.e., we are automating a bone marrow manual nucleated differential count which is a 
distribution of cells in various categories as a histogram. Similarly, a manual nucleated 
differential count can be called a histogram in clinical medicine. We therefore feel that 
“Histogram of Cell Types” is the most accurate and meaningful way to convey our 
technology and results to our clinical colleagues. This should not be confusing to our 
readers, as the primary audience in this journal will be clinical pathologists versus deep 
learning / computer vision specialists. As well, it is generally understood that a 
“histogram” is a quantification of counting discretized measurements. We also added 
in Introduction: “A histogram is generally a representation of a distribution, a very old 
graphical technique to count discrete values [37].” My additional opinion: I am an 
expert in deep learning and statistics, and I still considered that term of this 
manuscript, "Histogram of Cell Types", might lead readers misunderstanding. I 
strongly recommend to replace this term to "Proportion of Cell Type". I 
suggested to seek an external statistical expert for additional reviews. 

Response to 1: We thank the reviewer again for the excellent and thoughtful 
comments, which have supported a considerably improved manuscript throughout the 
review process. With regard to the title of the paper, we appreciate your continued 
concern for reader misunderstanding. We agree, if this work was submitted to target 
a computer vision audience, this could be a concern. However, we are primarily 
targeting a clinical pathologist audience, where the term “Histogram of Cell Types” 
conveys the clinical utility of the information representation presented here to this 
demographic. Specifically, the use of histograms for cell counts is a standard and 
established part of hematopathology diagnostic workflows. Therefore, we feel it is 
important to analogously term our bone marrow cell count representation as a 
histogram specifically for clarity to this pathologist audience. We hope the reviewer will 
consider this perspective, and again, we sincerely thank the reviewer for the very 
excellent and thoughtful comments regarding this work.  



2. Original comments: There were 3 iterations for data collection in this study. Please 
provided the performance details of each iteration. For example, how many samples 
(especially in the sample of rare cell type) were collected from first, second, and third 
iterations for training and validation, and the performance should be provided. 
Importantly, is the validation set vary in each iteration? 

Authors’ response: Thank you very much for the comment. The details of each iteration 
have been provided inside the manuscript in Tables 3 page 4. Regarding the second 
question, yes, in each iteration a new Training, and Test-Validation sets were created 
and the model trained and evaluated on them. Regarding “samples of rare cell types”; 
we randomly selected patient WSI samples from our starting dataset. We assume by 
rare cell types, you mean cells such as blasts, megakaryocytes or histiocytes. As can 
be seen in Table 3, these were all sampled proportionally across iterations. 

My additional opinion: Because the accuracy in different validation set is not 
comparable, I recommend to create an equal validation set for all iterations, 
which may be helpful for understanding the improving by iterations. I think the 
experiment I requested should at least be placed in the supplementary file. 

Response to 2: Thank you for bringing this to our attention. Specifically, we now 
include new data demonstrating model performance over all iterations with a single 
validation set, as described in supplementary Table S3, page 2 of supplementary 
data, and referenced on page 7 of the revised manuscript. As can be seen, there 
was also improvement in model performance with a single validation dataset. 

Reviewer #2 (Remarks to the Author): 

Thank you for addressing my comments. a couple of minor suggestions. 

1) Please make sure the mAP abbreviation is resolved in the abstract or in the 
text where it first appears. 

Response to 1: Thank you for the comment. The following sentence has been updated in the 
introduction of the revised manuscript on page 3 and also in the abstract: 

“Our approach shows cross-validation accuracy of 0.97 and precision of 0.90 in ROI detection 
(selecting appropriate tiles), and mAP (mean Average Precision) of 0.75 and average F1-
score of 0.78 for detecting and classifying 16 key cellular and non-cellular objects in aspirate 
WSIs.” 

2) Describe which of the query strategies of active learning (AL) scheme was 
used in your work. If all the wrongly classified cells were re-labeled during a 
single AL iteration, please say so in the manuscript. 

Response to 2: Thank you for the important comment. The following sentence has 
been added to section 2.3 at page 7 of the revised manuscript: 



“In this way, the expected error reduction (EER) approach of active learning was used; 
at each iteration, wrongly classified cells were re-labeled and added to the current 
training dataset to train the model in the next iteration. 

Reviewer #3 (Remarks to the Author): 

The authors create a tool for automated evaluation of bone marrow aspirate smears 
using deep learning methodologies. In their method, they identify appropriate regions 
of interest and use the YOLO model to classify cells in the smears. Their method was 
improved through active learning through iterative review of model output by 
hematopathologists. Overall, this paper describes an exciting new tool for automated 
bone marrow aspirate differential that represents a great opportunity for AI to assist in 
and streamline diagnoses from bone marrow samples. The authors have dealt with 
one of the major challenges of bone marrow aspirate evaluation, the identification of 
appropriate regions of interest, and have demonstrated the benefits of active learning 
in improving performance of the model. The authors highlight the several ways that 
this technology can transform hematopathology practice and potentially improve 
diagnostic abilities (e.g. in the detection of MRD). This method 

represents a substantial advancement relative to prior methods that required a human 
operator to identify regions of interest and also only identified a smaller number of cell 
types. In the revised manuscript, the authors have addressed most of my major 
concerns from the initial review. However, the additional data provided raises new 
questions. I have a few remaining and additional critiques: 

1) My biggest concern: How should the pathologist deal with the fact that 24% 
of blasts are misclassified in the MDS cases? Some discussion of how to 
resolve this major problem with the model, beyond explaining that human 
pathologists also have trouble with this, would be helpful. The benefit of the 
human is that they can recognize the ambiguity and decide on the final 
classification of each cell using additional information (flow cytometry, IHC, 
clinical impression) whereas it seems that the model is simply classifying 14% 
of blasts as lymphocytes and another 4% as erythroblasts. Quantification of 
blasts in MDS is one of the most important functions of the bone marrow 
aspirate smear and this issue deserves more attention. I find the confusion 
matrix provided in the main paper to be misleading as it seems to represent 
mostly normal cases. I think the fact that accuracy, particularly with regard to 
blast count, is lost in abnormal cases should be better acknowledged. 

 

Response to points 1 and 3 from the reviewer: These are excellent and clinically 
relevant points. We now add significant new text to address and clearly acknowledge 
these issues as recommended: 



This is highlighted in the results section of the revised manuscript, page 5, as 
follows: 

“Cell types such as “blasts” and “lymphocytes”', which may show overlapping 
morphological features, also showed lower model performance in accuracy, similar to 
expert human hematopathologists. Model performance in the specific individual 
diagnostic categories of normal, MDS, acute leukemia, plasma cell neoplasm and 
lymphoproliferative disorder can be found in Supplementary Fig. S2.” 

and these important points are addressed in detail in discussion section of the 
revised manuscript page 13, as follows:  

Specifically, ``blasts'' and ``lymphocytes'' showed overlap in classification and lower 
accuracy by our model (Fig S2), which is a similar problem to human 
hematopathologists. A proportion of “Plasma cells” were also misclassified as 
“erythroblasts” in cases diagnosed as “plasma cell neoplasm” (Fig S2).  This may 
reflect biases in model performance, or alternatively, may be a function of the 
overlapping cytological features in these cell types which are often confused in clinical 
practice, specifically in MDS where dysplasia renders morphology challenging. We 
acknowledge this as a weakness in our model, one that is somewhat mitigated in real-
world clinical practice by expert human hematopathologists using integrated, semantic 
interpretation of multiple ancillary data modalities, such as flow cytometry, molecular 
studies and clinical findings. As an early prototype, this problem may be potentially 
addressed in future work by incorporating additional training data, as well as multi-
model ML-analyzed datasets and active learning approaches. It is critical to 
emphasize our ML technology would be intended to support pathologists and expedite 
workflows, requiring substantive human oversight and rigorous clinical validation, 
especially where blast counts represent critical diagnostic cutoffs in diagnosing MDS 
and acute leukemias.  

Morphology in MDS poses a challenge for even the most experienced pathologists, 
with high inter-observer variability, as reflected in our model performance of MDS 
cases (Figure S2b). This is a potential problem in a model that uses discrete class 
probability assignments for individual cells, where there still may be significant intra-
class heterogeneity. Future iterations of our model may use approaches such as deep 
feature extraction from YOLO and dimensionality reduction to explore unsupervised 
relationships between cells in each class, ex, dysplasia within neutrophils, which may 
assist pathologists in interpreting cell subsets in cases with morphological dysplasia. 
This type of approach would yield additional information that goes beyond simple class 
probability assignment, allowing pathologists to understand and visualize cytological 
relationships learned by a model.  

With regard to the concern about the confusion matrix in Figure 2b of the main paper 
being possibly misleading as to the normal/abnormal case balance, we remind the 
reviewer that the cases analyzed and presented here represent 10 diagnostic classes 



and 106 patient WSI, as shown in Table 5 page 15 and previously stated on page 
5 of the revised manuscript. While the “normal cases” have the largest number in a 
single diagnostic category, in fact, they represent a minority of diagnostic tags, as the 
other 74 cases (majority) come from “abnormal” diagnosed cases in 9 additional 
diagnostic categories. We hope the reviewer will agree this is not misleading, and for 
further clarity, we have now highlighted this explicitly in figure 2 and on page 5 of the 
revised manuscript.  

2) Can confusion matrices for the other disease entities evaluated be provided? 

Thank you for the comment. The individual patient-level confusion matrices have been 
updated by now adding the additional diagnostic categories of plasma cell neoplasm and 
lymphoproliferative disorder in Figure S2 page 3 of supplementary data, and 
referenced on page 5 of the revised manuscript. As the reviewer is a clinical 
hematopathology colleague, we hope they will agree that our confusion matrix data now 
represents a broad spectrum of common normal and abnormal diagnostic categories that 
reflect daily hematopathology practice. We genuinely thank our expert clinical colleague for 
the excellent and thoughtful comments which we feel have resulted in a substantially improved 
manuscript. As mentioned, we also add detailed comment on the limitations of our model, and 
possible future strategies to mitigate this in the discussion section on page 13 of the 
revised manuscript.  

3) I wish that the authors had also discussed the contribution of dysplastic 
morphology (e.g. in MDS) to the accuracy of the model. It seems, from Fig S2, 
that there was some increase in misclassification (aside from the blast issue 
described above) in MDS compared to other smear types. Whether or not these 
misclassifications represent a major problem should have been discussed (I 
think that most are in cell classes that are not of major clinical significance; eg 
megakaryocyte nuclei, platelet clumps). 

Thank you and agreed; integrated in discussion with comments on cell 
misclassification in response to comment 1 above, added to the discussion 
section on page 13 of the revised manuscript.  

4) Minor issue: The authors frequently refer to “leukemia” cases without more 
detail about the type. I assume they mean acute leukemia? If it was chronic 
lymphocytic leukemia or chronic myeloid leukemia, this should be clarified as 
the cell types would differ. It’s especially confusing in the tables/figures. 

Yes, we indeed are referring to acute leukemia. We have now resolved this in the text 
and tables / legends in the revised manuscript.  
 



REVIEWERS' COMMENTS:  

Reviewer #1 (Remarks to the Author):  

The authors have made proper language improvements to the manuscript. Thank you, I have 

nothing further to add.  

Reviewer #3 (Remarks to the Author):  

Thank you for responding to my critiques.  

While the concerns about the model's accuracy in in the context of blast and plasma cell counts 

remain, I feel that the authors have sufficiently highlighted this issue in the discussion of the revised 

manuscript and have offered both plans for future improvements and ideas for how the tool, despite 

its limitations, can be used in conjunction with other tools, human oversight, etc.  

Figure S2 still refers to "leukemia" in both the legend and the label. I recommend changing this to 

"acute leukemia" or "acute myeloid leukemia," whichever is more appropriate. 



REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have made proper language improvements to the manuscript. Thank you, I have nothing 
further to add. 
 
Response: We thank the reviewer for their valuable expert-content input throughout the review process.  
 
 
Reviewer #3 (Remarks to the Author): 
 
Thank you for responding to my critiques.  
 
While the concerns about the model's accuracy in in the context of blast and plasma cell counts remain, 
I feel that the authors have sufficiently highlighted this issue in the discussion of the revised manuscript 
and have offered both plans for future improvements and ideas for how the tool, despite its limitations, 
can be used in conjunction with other tools, human oversight, etc. 
 
Figure S2 still refers to "leukemia" in both the legend and the label. I recommend changing this to "acute 
leukemia" or "acute myeloid leukemia," whichever is more appropriate. 
 
Response: We thank the reviewer for their valuable expert-content input throughout the review process.  
We now correct the legend to acute leukemia as indicated.  
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