Electronic Supplementary Material (ESI) for RSC Advances.

This journal is © the Owner Societies 2020

Switching Xe/Kr adsorption Selectivity in the Modified SBMOF-1: A Theoretical Study

Jiao-jiao Qian,^a Guang-hui Chen,^{*a} Song-tao Xiao,^b Hui-bo Li,^b Ying-gen Ouyang,^b Qiang Wang^c

^{a.}epartment of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong515063, China. E-mail: <u>ahchen@stu.edu.cn</u>

^{b.} Institute of Radiochemistry, China Institute of Atomic Energy (CIAE), Beijing, 102413, People's Republic of China.

^c Department of Applied Chemistry, College of Science, Nanjing Tech University, Nanjing 211816, People's Republic of China.

	compound	Mg-SBMOF-1	
	crystal system	Monoclinic	
	space group	P21/N	
	a (Å)	11.8819	
	b (Å)	5.5555	
	c (Å)	22.6411	
	A (deg)	90.0000	
	β (deg)	101.3020	
	γ (deg)	90.0000	
coordina	te information		
Mg	1.302877215	4.249901945	1.297709219
S	4.463027919	3.083191390	2.415803937
0	11.151640648	4.029404150	1.285942138
0	2.318243970	5.449334395	8.514926255
0	4.484505091	1.436818965	2.452215282
0	10.277164372	5.988829000	0.450479385
0	3.507131407	3.949904945	1.349217951
0	2.660195853	3.191690305	8.806883076
С	3.372922813	4.156125105	6.782279079
С	4.103405741	3.604741730	4.196185498
С	6.235770211	3.618019375	2.050358364
С	8.793321228	4.415566955	1.446462885
С	4.108354576	2.992747850	6.498981053
Н	4.308918551	2.278643880	7.298032460
С	10.172437840	4.841784915	1.035725151
С	8.583839765	3.190801425	2.101645075
Н	9.442911116	2.550696715	2.309678187
С	3.073110335	5.080171420	5.763427478
Н	2.491449065	5.971106955	5.997881017
С	2.764021590	4.294845940	8.156585334
С	7.280351149	2.766139005	2.422908589
Н	7.103917556	1.822092890	2.937107828
С	4.489737663	2.695250825	5.184620304
Н	5.036762454	1.783148835	4.949278684
С	6.401736333	4.845673765	1.433363681
Н	5.550547472	5.497945020	1.238207752
С	3.438501165	4.797396470	4.435745506
Н	3.221800480	5.500056110	3.628257323
С	7.703705937	5.243058680	1.107215718
Н	7 877060062	6 155160670	0 533515013

Table S1. Crystal coordinate data of Mg-SBMOF-1.

atom	٤ /k(KJ/mol)	σ (Å)	atom	٤ /k(KJ/mol)	σ (Å)
Ca	0.24	3.40	Ti	0.07	2.83
Mg	0.46	2.69	Zn	0.52	2.46
Cd	0.95	2.54	Kr	1.38	3.64
Xe	1.84	4.10	S	1.44	3.59

 Table S2. modified force field parameters for MOF atoms.

	Q _{st} (KJ/mol)		E _{ads} (KJ/mol)			
MOF	Kr		Х	e	Kr	Xe
energy						
Mg-SBMOF-1	-24.23	5	-22.61		-28.53	-18.56
	-21.19ª	-0.09 ^b	-19.58ª	-0.05 ^b		
SBMOF-1	-27.21		-34.46		-30.21	-36.39
	-23.37ª	-0.86 ^b	-29.32ª	-2.16 ^b		
Zn-SBMOF-1	-25.8	6	-30	.63	-29.86	-33.84
	-22.42 ^a	-0.47 ^b	-26.61ª	-1.04 ^b		
Cd-SBMOF-1	-26.24	4	-30	.09	-28.24	-31.43
	-22.81ª	-0.45 ^b	-26.23ª	-0.88 ^b		
Ti-SBMOF-1	Ti-SBMOF-1 -13.61		-13.04		-14.91	-14.47
	-12.93ª	0.00 ^b	-12.81ª	0.00 ^b		

 Table S3.
 Adsorption Energies for Kr and Xe in X-SBMOF-1(X = Ca, Mg, Ti, Zn, Cd).

 E_{ads} were calculated at GGA-PBE/DNP level.

a. represents the adsorption heat contributed by the host- guest interaction; b. represents the adsorption heat contributed by the host- guest interaction.

	S-F-2	S-CH₃-2	S-OH-2	S-NH ₂ -2	6NH ₂ -MgSBMOF-1
ΔE _{elec}	-0.57	-0.49	-0.58	-0.918	-0.75
percentage	3.5%	2.1%	3.4%	4.9%	3.5%
ΔE _{exc}	1.58	9.40	1.23	2.072	1.75
ΔE _{indu}	-8.40	-4.88	-7.34	-7.924	-10.36
percentage	51.1%	20.5%	42.5%	42.1%	48.0%
ΔE _{disp}	-7.47	-18.44	-9.34	-9.986	-10.48
percentage	45.4%	77.4%	54.1%	53.0%	48.5%
ΔE_{tot}	-14.86	-14.41	-16.03	-16.756	-19.83

Table S4. Energy decomposition analysis of interaction between modified MOFs and Kr (unit: KJ/mol).

 ΔE_{elec} , ΔE_{exc} , ΔE_{indu} , ΔE_{disp} , ΔE_{tot} represent electrostatic interaction, exchange interaction, induction interaction, disperation interaction and total interaction respectively.

Figure Captions

Fig. S1 Unit cell structure diagram of X-SBMOF-1(X=Ca(a), Mg(b), Ti(c), Zn(d), Cd(e)) and SBMOF-1-Y (Y = -F(f), - CH3(g), -OH(h), -NH2(i)).

Fig. S2 Simulated (a) Xe and (b) Kr adsorption isotherm on SBMOF-1 along with the previously reported experimental data at 298 K.

Fig. S3(a) Energy-time curve of simulated annealing process by Forceite module;(b) Cell structure of Mg-SBMOF-1 after annealing simulation.

Fig. S4 The optimized single-substitution modified ligand SDB structure. Gray, red, dark blue, baby blue, yellow and white balls denote C, O, N, F, S, H atoms respectively.

Fig. S5 Calculated ground cavity diameter (GCD), pore limiting diameter (PLD) and largest cavity diameter (LCD) of single substitution modified Mg-SBMOF-1.

Fig. S6 Electrostatic potential map of single substitution modified Mg-SBMOF-1, (a) Mg-SBMOF-1; (b) 2-F-Mg-SBMOF-1; (c) 2-CH₃-Mg-SBMOF-1; (d) 2-OH-Mg-SBMOF-1; (e) 2-NH₂-Mg-SBMOF-1.

Fig. S7 Structure of organic ligand modified by amino poly-substitution.

Fig. S8 Simulated unary (a) Xe, (b) Kr adsorption isotherms on Mg-SBMOF-1 modified by -NH₂ with various number at deferent position with GCMC; (c) Calculated ground cavity diameter (GCD), pore limiting diameter (PLD) and largest cavity diameter (LCD) of double or multiple -NH₂ modified Mg-SBMOF-1; (d) Calculated unary Kr adsorption isotherms and polarizability on Mg-SBMOF-1 modified by -NH₂ with various number at deferent position with GCMC.

Fig. S9 The calculated Xe and Kr adsorption sites in SBMOF-1 at B3LYP/6-31+G(d)/SDD level.

Fig. S10 Intermolecular interactions (iso-surfaces: 0.005 a.u.) for different models using IGM analysis. (a) SBMOF-1 based host Xe; (b) SBMOF-1 based host Kr. All iso-surfaces are colored according to a BGR (blue-green-red, blue represents a strong attraction, green represents Vdw interaction, red denotes a strong repulsion) scheme over the electron density range $-0.05 < \rho(r) < 0.05$ a.u.

Fig. S11 (a)Simulated adsorption selectivity of Mg-SBMOF-1 for Kr/Xe at different molar fractions with GCMC; simulated the different molar ratios binary mixtures (Kr/Xe) isotherms with various temperature (b) 243 K; (c) 263K; (d) 298 K; (e) 313 K.

(a)

(a)

(b)

2-CH₃

2-0H

 $1-NH_2$

2-NH_z

(c)

(d)

(e)

D-NH2-1

D-NH2-3

D-NH2-4

D-NH2-5

D-NH2-6

(a)

(b)

(a)

