Electronic Supplementary Information

Bilayered microelectrodes based on electrochemically deposited MnO₂/polypyrrole towards fast charge transport kinetics for micro-supercapacitor

Waqas Ali Haider,^a Liang He,^{*a} Hameed A. Mirza,^{b,c} Muhammad Tahir,^a Aamir Minhas Khan,^d Kwadwo Asare Owusu,^a Wei Yang,^a Zhuqing Wang^e and Liqiang Mai^{*a}

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China.

*E-mail: hel@whut.edu.cn, mlq518@whut.edu.cn

^bDepartment of Chemistry, York University, Toronto M3J 1P3, Ontario, Canada.

^cA.S. Chemical Laboratories Inc., Concord L4K 4M4, Ontario, Canada.

^dDepartment of Electrical Engineering and Computer Science, York University, Toronto, M3J 1P3 Canada.

^eGraduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.

Fig. S1. Configuration and dimension of the microelectrodes.

Fig. S2. (a) Optical microscope image and (b) SEM image of MnO_2/PPy microelectrodes.

Fig. S3. EDS characterization results of MnO_2/PPy .

Fig. S4. Electrochemical performance of $MnO_2/PPy-MSC$. (a) Cyclic voltammetry curves at different scan rates and (b) charge-discharge curves at different current densities.

Fig. S5. Comparison of (a) CV and (b) GCD curves of MnO₂/PPy-MSC and PPy@MnO₂-MSC.

Fig. S6. Rate capability and corresponding voltage drop of MnO₂/PPy-MSC at different current densities.

Fig. S7. Energy and power densities of MnO₂/PPy-MSC at different current densities.