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Supplementary Methods 

 

Raw data processing: 

Microarray data: Microarray data was normalized using either GeneChip Robust Multiarray 

Average (GCRMA), Robust Multiarray Average (RMA), or normexp background correction 

(NEQC) based on the microarray platform. Outliers and batch effects were identified using 

principal component analysis (PCA) plots. For the dataset with known batch effects, GSE81071, 

raw gene expression values were normalized using 11 housekeeping genes, which were shown 

to not vary significantly across datasets (71). These 11 housekeeping genes were: chromosome 

1 Open Reading Frame 43 (C1orf43), Charged multivesicular body protein 2A (CHMP2A), ER 

membrane protein complex subunit 7 (EMC7), glucose-6-phosphate isomerase (GPI), 

proteosome subunit beta type 2 (PSMB2), proteosome subunit beta type 4 (PSMB4), member 

RAS oncogene family (RAB7A), receptor accessory protein 5 (REEP5), small nuclear 

ribonucleoprotein D3 (SNRPD3), valosin containing protein (VCP), and vacuolar protein sorting 

29 homolog (VPS29). 

 

RNAseq data: SRA toolkit (NCBI Sequence Read Archive, Version 2.10) was used to fetch .sra 

files from GEO and convert them to.fastq files. Quality of the FASTQ files was checked using 

FASTQC software (Babraham Institute Bioinformatics, Version 0.11.9). Adapters were removed 

using Trimmomatic software (Version 0.4) and appropriate head crop parameters. Trimmed 

reads were aligned to the human reference genome (hg38) using STAR aligner (Version 2.7). 

STAR output .sam files were converted to .bam files using sambamba (Version 0.8). Read 

summarization was provided using the featureCounts function of the Subread (Version 2.0) 

package. Count normalization and regularized log transformation were carried out using rlog 

function in DESeq2 (Version 1.32) R package.  

 



 

Gene Set Variation Analysis: Gene Set Variation Analysis (72) (GSVA) is a non-parametric, 

unsupervised method for estimating variations in gene set enrichment among the samples of an 

expression dataset. The GSVA algorithm was implemented using the R Bioconductor open-

source package gsva (version 1.40). GSVA was carried out in one of the following ways: 

 

When individual datasets were analyzed, the preprocessed log2 gene expression matrix of each 

dataset was used as the GSVA input. GSVA was run on each dataset separately. Before 

running GSVA, input genes were filtered and only those with interquartile range (IQR) of 

expression > 0 across all the samples were considered for analysis. All analysis in Figs. 1-6 are 

the result of this GSVA process. A minimum of 2 genes was required for each signature. 

 

For the analysis of pooled nonlesional and control samples, log2 gene expression values 

generated from independent preprocessing of all 16 datasets were concatenated to create a 

matrix whose rows consisted of 8425 genes detected across all datasets and whose columns 

consisted of the 1065 samples comprised of DLE, nonlesional DLE, ACLE, SCLE, PSO, 

nonlesional PSO, AD, nonlesional AD, SSc, and CTLs. Log2 values were then transformed to Z-

scores using scale() function in R. Z-score transformation converts each sample to have 

expression values with mean and unit variance equal to 0 (73, 74). This transformation 

permitted comparison of nonlesional disease samples to control directly. GSVA was then run on 

the following three inputs 1) 21 pooled nonlesional DLE and 168 pooled control samples, 2) 132 

pooled nonlesional AD and 168 pooled control samples, and 3) 163 pooled nonlesional PSO 

and 168 pooled samples. The data presented in Fig. 7A is derived from this GSVA process. A 

minimum of 2 genes was required for each signature. 

 

GSVA Gene Sets: The gene sets used for GSVA can be found in tables S2A-D. 



 

Cellular / pathway signatures: Gene sets employed in our GSVA analysis included 48 annotated 

and novel cellular and pathway signatures that have been implicated in lupus (4, 5, 6) or 

inflammatory skin diseases (7, 8). Immune cell gene sets were previously evaluated (21, 27) or 

amended slightly based upon data from the Human Protein Atlas (75). Non-hematopoietic cell 

signatures were derived from the Human Protein Atlas (75), previously published gene sets 

(76), and literature mining as previously described and employed (table S2A). Pathway gene 

signatures were previously evaluated in lupus (21, 27), previously published (23, 24), or newly 

adopted by literature mining (table S2B). The output GSVA scores of each signature were used 

as features for training and validating ML classifiers. 40 of the 48 cellular and pathway gene 

signatures were used to implement the GSVA analysis on pooled nonlesional and control 

samples. The following signatures were excluded from the pooled nonlesional GSVA analysis 

because of insufficient gene numbers (</= 2) in the 8,425 genes used: LDG, GC B cell, 

erythrocyte, IL1 cytokines, IL12 complex, IL21 complex, IL23 complex, and the 

immunoproteasome. 

 

Keratinocyte signatures: 30 gene sets specific to keratinocytes treated with individual cytokines 

were created from previously published studies. Only those genes that are upregulated in 

keratinocytes when treated with various cytokines were included in these sets (table S2C). 

 

T cell signatures: Gene sets for T cells were created from literature mining and the Human 

Protein Atlas (75) to distinguish seven different T cell subsets that have been implicated in 

inflammatory skin disease (table S2D).  

 

Classification and Regression Tree (CART): The library rpart (Version 4.1) was used to 

implement the CART algorithm for classification described previously (77, 78) and library 



rpart.plot (Version 3.1) was used to visualize classification trees. GSVA enrichment scores of 

cellular and pathway signatures were used as independent variables and specific lesional 

disease (either DLE, PSO, AD, SSC, or CTL) was used as the dependent variable for analysis. 

Classification trees were built independently for each disease. 

 

ML Analysis:  

Creating input for ML: The input for ML was created by pooling GSVA enrichment scores of 

cellular and pathway gene signatures from multiple skin datasets based on sample properties 

(table S3B). For every dataset, GSVA enrichment scores, that range from -1 to +1, were 

concatenated from multiple datasets, providing a sufficiently large cohort to train and validate 

various ML algorithms. 14 input data frames were created for 14 separate binary ML 

classifications (table S3A). Seven of the 14 binary classifications involved comparing control 

samples (164 CTL) with either lesional samples (DLE, PSO, AD or SSc) or nonlesional samples 

(DLE, PSO or AD) of inflammatory skin diseases (table S3A A-D and I-K), whereas the other 

six binary classifications involved comparing lesional DLE samples with lesional samples of 

other diseases (either PSO, AD or SSc) (table S3A E-H) and nonlesional DLE samples with 

nonlesional samples of other diseases (table S3A L-M). In addition, another binary 

classification compared nonlesional PSO and nonlesional AD (table S3A). For lesional skin 

classification, pooled samples resulted in 90 DLE, 132 AD, 97 SSc, and 183 PSO samples. For 

nonlesional skin classification, pooled samples resulted in 21 DLE, 163 PSO, and 132 AD 

samples, and for healthy skin pooled samples were 164 CTL (table S3B). 

 

Class balance strategies: Four class balance strategies, including: random undersampling 

(table S3A C), random oversampling (table S3A E, K) removing samples from an entire dataset 

(table S3A F), and Synthetic Minority Oversampling Technique (SMOTE) (79) (table S3A I, L, 

M) were used for classifications with class imbalance. The random undersampling strategy 



involves randomly selecting samples from the majority class, whereas the random oversampling 

strategy involves randomly duplicating examples from the minority class. SMOTE functions by 

randomly selecting samples from the minority class, finding its k nearest neighbors, randomly 

selecting a neighbor, and generating a synthetic sample at a randomly selected point between 

two samples in the feature space. As previously noted, we used random undersampling to trim 

the number of examples in the majority class then used SMOTE to oversample the minority 

class to balance class distribution. The purpose of all class balancing strategies was to have 

balanced representation of both classes for ML. The dataset was split into 70% training and 

30% validation and class balancing strategies were applied on the training dataset. ML 

algorithms were then implemented, and evaluation matrices were noted. Receiver Operating 

Characteristic (ROC) curves and Precision-Recall (PR) curves were plotted using the matplotlib 

(Version 3.3.4) library of Python. A ROC curve is graphical way to visualize trade-off between 

sensitivity and specificity. High area under the curve represents a low false-positive rate and a 

high true-positive rate. A PR curve is a measure of classification when classes are imbalanced. 

High area under the PR curve represents both high recall and high precision, where high 

precision relates to a low false-positive rate, and high recall relates to a low-false negative rate. 

For our analysis, we were interested in features that contributed the most towards separation of 

classes, hence RF was chosen as the primary ML classifier because it gives impurity-based 

feature importance. The top 15 features with decreasing Gini index from each classification 

were summarized in a bar graph using ggplots2 (Version 3.3.5) library in R. Capability of the top 

15 features alone to separate the two respective classes was tested by repeating the 14 binary 

ML classifications using only the top 15 features. Various overlaps between the top 15 features 

of multiple classifications were visualized in Venn diagrams. 

 

Binary ML classification: 14 separate binary ML classifications were carried out using scikit-

learn (Version 0.24.1) library in Python (Version 3.8.2). For each binary classification, 



performance of several ML algorithms, including: logistic regression (LR), k-nearest neighbor 

(KNN), naïve Bayes (NB), support vector machines (SVM), random forest (RF), and gradient 

boosting (GB) was evaluated based on sensitivity, specificity, Cohen’s kappa score, f-1 score, 

and accuracy. RF was chosen as the primary ML classifier because it gives impurity-based 

feature importance. The top 15 features with decreasing Gini index from each classification 

were summarized in a bar graph using ggplots2 (Version 3.3.5) library in R. Capability of the top 

15 features to separate two respective classes was tested by repeating the 14 binary ML 

classifications using only the top 15 features.  

 

Feature correlation: Before carrying out binary ML classification, feature selection was 

necessary in order to remove noninformative or redundant features. We assessed feature 

redundancy by calculating the Pearson correlation between each feature and every other 

feature. Pearson correlation between features was computed using the cor function in R. corplot 

library in R was used to plot 22 Pearson correlation plots (figs. S7,S10,S14,S16,S25). In 13 of 

these correlation plots, there was a pair of highly correlated features (correlation coefficient > 

0.8), and the feature with the lower correlation was removed using a greedy elimination 

approach; this allowed us to retain the most informative features for ML (table S3A). Pearson 

correlation plots were also plotted for keratinocytes gene signatures and T cell signatures (figs. 

S6,S12). High correlation between the keratinocyte gene signatures made them unsuitable for 

ML analysis (fig. S6).  

 

Statistical Analysis: Statistical differences between cohorts were evaluated using Welch’s t-

test for lesional disease versus control GSVA scores from a single dataset, nonlesional samples 

versus control GSVA scores from combined datasets, mean Z-scores of nonlesional samples 

versus mean Z-scores of control samples of a single gene signature and Paired t-test for 



lesional versus nonlesional comparison. The magnitude of this difference (the effect size) was 

estimated using Hedge’s g calculated as below. 

 

 

where,  

 

 

 

 

 

 

 

cohort 1 and cohort 2 could be either disease and their respective control samples of a single 

dataset or nonlesional samples and control samples from combined dataset or mean z scores of 

nonlesional samples and mean Z-scores of control samples of a single gene signature or 

lesional and their paired nonlesional samples of a single dataset. All the statistical analysis was 

carried out in using effectSize (version 0.8.1) and stats (version 3.6.2) libraries in R. 

 

Data Visualization: Heatmaps of GSVA Hedges’ g effect size and violin plots of GSVA 

enrichment scores were visualized using GraphPad PRISM (Version 9.2.0). GSVA enrichment 

scores of gene signatures were visualized using violin plots in Prism or ComplexHeatmap (80) 

for hierarchical clustering (Version 2.8) package in R. Figures were made using Adobe 

Illustrator Creative Cloud (Version 25.3.1). 

 



Supplemental Figures: 

 



Supplemental Figure 1: Analysis of cellular and molecular pathway signatures in lesional 

DLE shows increased expression of inflammatory pathways regulated by monocyte, B 

cell, T cell and plasmacytoid dendritic cell signatures. GSVA enrichment scores of (A) 

cellular gene signatures and (B) pathway gene signatures in five datasets including DLE 

samples (pink) and control samples (grey). The number of DLE samples per dataset that lie -1 

standard deviation of the mean of the control samples is denoted on the first subtext line. The 

number of DLE samples per dataset that lie +1 standard deviation of the mean of the control 

samples is denoted on the second subtext line. Welch’s t-test: * p < 0.05; ** p < 0.01; *** p < 

0.001; **** p < 0.0001. 



 



Supplemental Figure 2: Analysis of cellular and molecular pathway signatures in lesional 

PSO shows increased expression of keratinocyte cell signatures as well as TNF and Th17 

pathway gene signatures. GSVA enrichment scores of (A) cellular gene signatures and (B) 

pathway gene signatures in three datasets including PSO samples (blue) and control samples 

(grey). The number of PSO samples per dataset that lie -1 standard deviation of the mean of the 

control samples is denoted on the first subtext line. The number of PSO samples per dataset 

that lie +1 standard deviation of the mean of the control samples is denoted on the second 

subtext line. Welch’s t-test: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 



 



Supplemental Figure 3: Analysis of cellular and molecular pathway signatures in lesional 

AD shows increased expression of skin-specific dendritic cell, B cell and IL12 

inflammatory pathway gene signatures. GSVA enrichment scores of (A) cellular gene 

signatures and (B) pathway gene signatures in two datasets including AD samples (yellow) and 

control samples (grey). The number of AD samples per dataset that lie -1 standard deviation of 

the mean of the control samples is denoted on the first subtext line. The number of AD samples 

per dataset that lie +1 standard deviation of the mean of the control samples is denoted on the 

second subtext line. Welch’s t-test: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 



 



Supplemental Figure 4: Analysis of cellular and molecular pathway signatures in lesional 

SSc samples shows increased expression of myeloid-specific cell and TGFb fibroblast 

gene signatures. GSVA enrichment scores of (A) cellular gene signatures and (B) pathway 

gene signatures in three datasets including SSc samples (green) and control samples (grey). 

The number of SSc samples per dataset that lie -1 standard deviation of the mean of the control 

samples is denoted on the first subtext line. The number of SSc samples per dataset that lie +1 

standard deviation of the mean of the control samples is denoted on the second subtext line. 

Welch’s t-test: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 



 

 



Supplemental Figure 5: ML accurately classifies lesional skin and control skin samples. 

ROC curve and PR curve of all ML algorithms to separate lesional samples from healthy control 

samples using all cellular and pathway gene signatures/ features. ML classifiers include: logistic 

regression (LR, blue), k-nearest neighbors (KNN, orange), random forest (RF, green), naïve 

Bayes (NB, red), support vector machine (SVM, purple) and gradient boosting (GB, brown). (A) 

DLE versus control; (B) PSO versus control; (C) AD versus control; and (D) SSc versus control. 

(E) Classification metrics including sensitivity, specificity, Cohen's kappa score, precision, f-1 

score and accuracy to properly separate lesional disease samples (DLE, PSO, AD or SSc) from 

healthy control samples with each ML classifier. Refer to tables S3A-B for details about ML. 

Collinear features were removed (fig. S6) 



 

 



Supplemental Figure 6: Analysis of correlated features from cellular and pathway 

signatures was used to extract collinear features for lesional ML binary classifications. 

Correlation plots of GSVA enrichment scores of pooled control samples and pooled lesional (A) 

DLE, (B) PSO, (C) AD and (D) SSc samples. Black boxes indicate collinear samples with 

Pearson correlation coefficient greater than 0.8, then the feature with the lower correlation was 

removed using a greedy elimination approach.  



 

 

 



Supplemental Figure 7: Direct comparison of DLE and PSO samples using GSVA shows 

key differences in enrichment of inflammatory cell and pathway signatures. (A) 

Hierarchical clustering (k=4 clusters) of GSVA enrichments scores of cellular and pathway gene 

signatures in two datasets that included DLE, PSO and healthy control samples. (B) Heatmap of 

GSVA enrichment scores of DLE compared to PSO samples in two datasets of cellular (left) and 

pathway (right) gene signatures. Heatmap visualization uses red (enriched signature, >0) and 

blue (decreased signature, <0). Welch’s t-test: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 

0.0001. 

 



 



Supplemental Figure 8: ML accurately classifies lesional DLE from lesional PSO, AD and 

SSc. ROC curve and PR curve of all ML algorithms to separate lesional DLE from other 

inflammatory skin diseases using all cellular and pathway gene signatures/ features. ML 

classifiers include: logistic regression (LR, blue), k-nearest neighbors (KNN, orange), random 

forest (RF, green), naïve Bayes (NB, red), support vector machine (SVM, purple) and gradient 

boosting (GB, brown). (A) DLE versus PSO; (B) DLE versus AD; and (C) DLE versus SSc. (D) 

Classification metrics including sensitivity, specificity, Cohen’s kappa score, precision, f-1 score 

and accuracy to properly separate lesional DLE samples from lesional PSO, AD, and SSc 

samples with each ML classifier. Refer to tables S3A-B for details about ML. Collinear features 

were removed (fig. S9). 



 

 



Supplemental Figure 9: Analysis of correlated features from cellular and pathway 

signatures was used to extract collinear features for lesional ML binary classifications 

compared to DLE. Correlation plots of GSVA enrichment scores of lesional DLE and lesional 

(A) PSO, (B) AD and (C) SSc samples. Correlations outlined in black were reduced to only 

include one feature. Black boxes indicate collinear samples with Pearson correlation coefficient 

greater than 0.8, then the feature with the lower correlation was removed using a greedy 

elimination approach. 



 



Supplemental Figure 10: GSVA enrichment of lesional skin compared to nonlesional 

skin. Hedges’ g effect sizes of GSVA enrichment scores for paired lesional and nonlesional 

samples, including two DLE, four AD and three PSO datasets using (A) cellular gene signatures 

and (B) pathway gene signatures. Lesional samples were compared to their respective 

nonlesional paired samples in DLE, AD and PSO. Heatmap visualization uses red (enriched 

signature, >0) and blue (decreased signature, <0). Paired t-test: * p < 0.05; ** p < 0.01; *** p < 

0.001; **** p < 0.0001. 



 

 

 



Supplemental Figure 11: ML accurately classifies nonlesional skin and control skin 

samples. ROC curve and PR curve of all machine learning classification algorithms to separate 

nonlesional samples from healthy control samples using all cellular and pathway gene 

signatures/ features. ML classifiers include: logistic regression (LR, blue), k-nearest neighbors 

(KNN, orange), random forest (RF, green), naïve Bayes (NB, red), support vector machine 

(SVM, purple) and gradient boosting (GB, brown). (A) DLE versus control; (B) PSO versus 

control; and (C) AD versus control. (D) Classification metrics including sensitivity, specificity, 

Cohen’s kappa score, precision, f-1 score and accuracy to properly separate nonlesional 

disease samples (DLE, PSO or AD) from healthy control samples with each ML classifier. Refer 

to tables S3A-B for details about ML. Collinear features were removed (fig. S12). 



 



Supplemental Figure 12: Analysis of correlated features from cellular and pathway 

signatures was used to extract collinear features for nonlesional ML binary classification. 

Correlation plots of GSVA enrichment scores of control samples and nonlesional (A) DLE, (B) 

PSO and (C) AD samples. Correlations outlined in black were reduced to only include one 

feature. Black boxes indicate collinear samples with Pearson correlation coefficient greater than 

0.8, then the feature with the lower correlation was removed using a greedy elimination 

approach. 



 



Supplemental Figure 13: ML distinguishes nonlesional DLE from nonlesional PSO and 

nonlesional AD. ROC curve and PR curve of all machine learning classification algorithms to 

separate nonlesional DLE from other inflammatory skin diseases using all cellular and pathway 

gene signatures/ features. ML classifiers include: logistic regression (LR, blue), k-nearest 

neighbors (KNN, orange), random forest (RF, green), naïve Bayes (NB, red), support vector 

machine (SVM, purple) and gradient boosting (GB, brown). (A) DLE versus PSO and (B) DLE 

versus AD. (C) Classification metrics including sensitivity, specificity, Cohen’s kappa score, 

precision, f-1 score and accuracy to properly separate nonlesional DLE samples from 

nonlesional PSO and nonlesional AD samples with each ML classifier. Refer to tables S3A-B 

for details about ML. Collinear features were removed (fig. S15).  

 



 



Supplemental Figure 14: ML less effectively classifies nonlesional PSO from nonlesional 

AD. (A) ROC curve and PR curve of all ML classification algorithms to separate nonlesional 

PSO from nonlesional AD samples using all cellular and pathway gene signatures/ features. ML 

classifiers include: logistic regression (LR, blue), k-nearest neighbors (KNN, orange), random 

forest (RF, green), naïve Bayes (NB, red), support vector machine (SVM, purple) and gradient 

boosting (GB, brown). (B) Top 15 features important in classifying nonlesional PSO from 

nonlesional AD using Gini feature importance. (C) Classification metrics including sensitivity, 

specificity, Cohen’s kappa score, precision, f-1 score and accuracy to properly separate 

nonlesional PSO samples from nonlesional AD samples with each ML classifier. (D) Correlation 

plots of GSVA enrichment scores of nonlesional PSO and nonlesional AD samples. Black boxes 

indicate collinear samples with Pearson correlation coefficient greater than 0.8, then the feature 

with the lower correlation was removed using a greedy elimination approach. 



 

 

 



Supplemental Figure 15: Analysis of correlated features from cellular and pathway 

signatures was used to extract collinear features for nonlesional ML binary classification 

compared to DLE. Correlation plots of GSVA enrichment scores of nonlesional DLE and (A) 

nonlesional PSO and (B) nonlesional AD samples. Black boxes indicate collinear samples with 

Pearson correlation coefficient greater than 0.8, then the feature with the lower correlation was 

removed using a greedy elimination approach. 



 

 



Supplemental Figure 16: Analysis of cellular and molecular pathway signatures in 

nonlesional DLE shows upregulation of B cell, plasma cell and fatty acid metabolism 

gene signatures. GSVA enrichment scores using Z-score transformation of (A) cellular gene 

signatures and (B) pathway gene signatures in nonlesional DLE (light pink) and control samples 

(grey). The number of nonlesional DLE samples per dataset that lie -1 standard deviation of the 

mean of the control samples is denoted on the first subtext line. The number of DLE samples 

per dataset that lie +1 standard deviation of the mean of the control samples is denoted on the 

second subtext line. Welch’s t-test: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 



 

 



Supplemental Figure 17: Analysis of cellular and molecular pathway signatures in 

nonlesional PSO shows upregulation of innate immune cell and IL-17 gene signatures. 

GSVA enrichment scores using Z-score transformation of (A) cellular gene signatures and (B) 

pathway gene signatures in nonlesional PSO (light blue) and control samples (grey). The 

number of nonlesional PSO samples per dataset that lie -1 standard deviation of the mean of 

the control samples is denoted on the first subtext line. The number of PSO samples per 

dataset that lie +1 standard deviation of the mean of the control samples is denoted on the 

second subtext line. Welch’s t-test: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 

 



 

 



Supplemental Figure 18: Analysis of cellular and molecular pathway signatures in 

nonlesional AD shows upregulation of anti-inflammation, neutrophil, NK cell and Th17 

gene signatures. GSVA enrichment scores using Z-score transformation of (A) cellular gene 

signatures and (B) pathway gene signatures in nonlesional AD (light yellow) and control 

samples (grey). The number of nonlesional AD samples per dataset that lie -1 standard 

deviation of the mean of the control samples is denoted on the first subtext line. The number of 

AD samples per dataset that lie +1 standard deviation of the mean of the control samples is 

denoted on the second subtext line. Welch’s t-test: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 

0.0001. 



 

 



Supplemental Figure 19: Analysis of cellular and molecular pathway signatures in 

nonlesional DLE using mean of Z-score. Box plots of the mean of Z-scores of genes for each 

sample and gene category for (A) cellular gene signatures and (B) pathway gene signatures in 

nonlesional DLE (light pink) and control samples (grey). Welch’s t-test: * p < 0.05; ** p < 0.01; 

*** p < 0.001; **** p < 0.0001. 



 

 



Supplemental Figure 20: Analysis of cellular and molecular pathway signatures in 

nonlesional PSO using mean of Z-score. Box plots of the mean of Z-scores of genes for each 

sample and gene category for (A) cellular gene signatures and (B) pathway gene signatures in 

nonlesional PSO (light blue) and control samples (grey). Welch’s t-test: * p < 0.05; ** p < 0.01; 

*** p < 0.001; **** p < 0.0001. 



 

 



Supplemental Figure 21: Analysis of cellular and molecular pathway signatures in 

nonlesional AD using mean of Z-score. Box plots of the mean of Z-scores of genes for each 

sample and gene category for (A) cellular gene signatures and (B) pathway gene signatures in 

nonlesional AD (light yellow) and control samples (grey). Welch’s t-test: * p < 0.05; ** p < 0.01; 

*** p < 0.001; **** p < 0.0001. 



 



Supplemental Figure 22: Cellular and pathway enrichment in SCLE is quantitatively 

similar to enrichment observed in DLE. (A) Hierarchical clustering (k=4 clusters) of DLE, 

SCLE, ACLE and healthy control samples from five lupus datasets using GSVA enrichment 

scores of cellular and pathway gene signatures. Hedges’ g effect sizes of GSVA enrichment 

scores for (B) cellular gene signatures (left) and pathway gene signatures (right) in lesional 

SCLE and control samples in three datasets. Hedges’ g effect sizes of GSVA enrichment scores 

for (C) cellular gene signatures (left) and pathway gene signatures (right) in lesional DLE and 

SCLE samples in three datasets. Heatmap visualization uses red (enriched signature, >0) and 

blue (decreased signature, <0). Welch’s t-test: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 

0.0001. 



 

 

 



Supplemental Figure 23: DLE and SCLE can be transcriptionally classified using ML. (A) 

Hierarchical clustering (k=4) of DLE, SCLE and control samples from three lupus datasets 

based on GSVA scores of cellular and pathway gene signatures. (B) Correlation plot of GSVA 

enrichment scores of lesional DLE and lesional SCLE samples. (C) ROC curve and (D) PR 

curve separating DLE and SCLE using ML classifiers, including: logistic regression (LR, blue), 

random forest (RF, orange), support vector machine (SVM, green) and gradient boosting (GB, 

red). Random oversampling was used to adjust for class imbalance errors. (E) Top 15 features 

important in classifying DLE from SCLE using Gini feature importance. (F) Classification metrics 

including sensitivity, specificity, Cohen’s kappa score, precision, f-1 score and accuracy to 

properly separate DLE and SCLE. Refer to tables S3A-B for details about ML. 



 



Supplemental Figure 24: Stimulated keratinocyte signatures are highly enriched in skin 

inflammatory diseases. Hedges’ g effect sizes of GSVA enrichment scores for lesional 

disease samples compared to their respective healthy control samples in five DLE, three PSO, 

two AD and three SSc datasets using curated keratinocyte-curated cellular signatures treated 

with various types of cytokines and immune molecules. Heatmap visualization uses red 

(enriched signature, >0) and blue (decreased signature, <0). Welch’s t-test: * p < 0.05; ** p < 

0.01; *** p < 0.001; **** p < 0.0001. 



 



Supplemental Figure 25: Overabundance of correlated features from keratinocyte cell 

gene signatures. Correlation plot of GSVA enrichment scores to find keratinocyte gene 

signatures that are correlated to each other in (A) lesional DLE and control samples; (B) 

lesional PSO and control samples; (C) lesional AD and control samples; and (D) lesional SSc 

and control samples.  



 



Supplemental Figure 26: T cell subtype signatures are highly enriched in skin 

inflammatory diseases. GSVA enrichment scores for (A) T cell cellular signatures in lesional 

disease samples compared to their respective healthy control samples in five DLE, three PSO, 

two AD and three SSc datasets. Heatmap visualization uses red (enriched signature, >0) and 

blue (decreased signature, <0). Welch’s t-test: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 

0.0001. Correlation plots of GSVA enrichment scores to find T cell gene signatures that are 

correlated to each other in (B) DLE and control samples; (C) PSO and control samples; (D) AD 

and control samples; and (E) SSc and control samples. 

 



 

 

Table S1: Publicly available datasets that were used in this study. 

GEO number Reference Platform Samples used in this study Paired/unpaired Description Probes After IQR

GSE52471 (1 )
[HG-U133A_2] Affymetrix 

Human Genome U133A 2.0 
Array

3 PSO, 7 DLE, 3 CTL Unpaired 3 PSO, 7 DLE and 3 CTL samples that belong to the same batch were 
included in this analysis. 22215 10045

GSE72535 (2 ) Illumina HumanHT-12 V4.0 
expression beadchip 9 DLE, 8 CTL Unpaired This is the only Lupus dataset which has clinical information such as SLEDAI, 

CLASI.A, CLASI.D, dsDNA, C3, C4 available. 47322 20762

GSE810171 (3-6 )

[HuGene-2_1-st] Affymetrix 
Human Gene 2.1 ST Array 
[HuGene21st_Hs_ENTREZ

G_19.0.0]

26+21 DLE, 23+20 SCLE, 7+6 
CTL Unpaired

The original data set from GEO, as confirmed by the authors of the paper 
contains 6 batches H1-H6. We observed that batches H1-H4 were uploaded 
on GEO in the year 2017 and batches H5-H6 were uploaded on GEO in the 
year 2019. For the purpose of our analysis we have divided this dataset into 

two parts 2017 (H1-H4) and 2019(H5-H6). Before splitting into two, we 
normlised original eset with 11 HK genes. Method used for normalisation is as 

follows: Take mean expression of HK genes per sample and divide every gene 
expression value of that sample with mean value.

53617 26536

GSE109248 (7 ) Illumina HumanHT-12 V4.0 
expression beadchip 6DLE, 11SCLE, 17PSO ,13CTL Unpaired From the original data on GEO 1 ACU, 1 SUB,1 CTL was removed as outliers 

in the PCA plot. The only clinical information available is fas ligand levels. 47302 31415

GSE100093 (8 )
[HT_HG-U133_Plus_PM] 
Affymetrix HT HG-U133+ 

PM Array Plate
15L,15NL (DLE) Paired

Only lupus dataset with time points skin biopsies available. The clinical trial 
was carried out in two sequences. Sequence 1 (9 patients) were given Amgen 

811, Sequence 2 (7 pateints) were given placebo. The skin biopsies were 
taken at day 0, day 15 and day 57. For the purpose of our analysis, Lesional 
and Non-lesional biopsies from both the sequences patients at day 0 without 
any drug treatment used. 1 outlier patient's L and NL biopsies were removed.

54613 20200

GSE120809 (9 )

[HG-U133A_2] Affymetrix 
Human Genome U133A 
Array (HGU133A2 Hs 

ENTREZG 21.0.0)

6L, 6NL (DLE) Paired
There were total 7 patients. 3 patients had NL biopsies as technical replicates. 

Technical replicates were removed. Plus one outlier patient's L and NL 
biopsies were removed.

22215 10072

GSE117239 (10 )
[HG-U133_Plus_2] 

Affymetrix Human Genome 
U133 Plus 2.0 Array

63L, 63NL (PSO) Paired

These are all psoriasis patients that were treated with three drugs, 15 patients 
with ustekinumab 45 mg, 23 patients with ustekinumab 90 mg and 25 patients 
with ethanercept. Skin biopsies were taken at Baseline, Week 1 and Week 12. 

Clinical information availble is pasi score, respose and batch. This dataset 
does have some batch effects but no analysis issues. For our analysis 

patients at baseline were used.

54613 14627

GSE117468 (11 )
[HG-U133_Plus_2] 

Affymetrix Human Genome 
U133 Plus 2.0 Array

73L, 73NL (PSO) Paired

These are all psoriasis patients that were treated with 4 drugs, 31 patients with 
broadalumab 140 mg, 21 patients with broadalumab 210 mg, 9 patients with 

placebo and 12 patients with Ustekinumab. Skin biopsies were taken at 
Baseline, Week 4 and Week 12. Clinical information availble is pasi score, age, 
race, weight and bmi. This dataset may have some batch effects and overlap 

woth GSE117239 but we have not done nothig specific to deal with this 
problem. For our analysis patients at baseline were used.

54613 20200

GSE130588 (12 )
[HG-U133_Plus_2] 

Affymetrix Human Genome 
U133 Plus 2.0 Array

19L,19NL (AD), 20CTL Paired and 
Unpaired both

These are all atopic dermatitis patients and healthy individuals. Atopic 
dermatitis patients were treated with 2 drugs. 13 patients with Dupilumab and 6 
patients with placebo. Lesional skin biopsies were taken at Baseline, Week 4 
and Week 16.NL were taken only at baseline. Clinical information availble is 

easi, race, sex, and scorad. For our analysis patients at baseline were used.

54613 15738

GSE137430 (13 ) Illumina HiSeq 4000 (Homo 
sapiens) 38L, 38NL (AD) Paired

These are all atopic dermatitis patients. Atopic dermatitis patients were treated 
with 2 drugs. 14 patients with Secukinumab and 8 patients with placebo. 
Lesional skin biopsies were taken at Baseline, Week 4 and Week 16. No 

clinical information is availble.For our analysis patients at baseline were used.

18195 16594

GSE157194 (14 ) Illumina HiSeq 3000 (Homo 
sapiens) 54L, 54NL (AD) Paired

These are all atopic dermatitis patients. Atopic dermatitis patients were treated 
with 2 drugs. 7 patients with cyclosporin and 17 patients with dupilumab. 
Lesional skin biopsies were taken at month 0 and month 3. No clinical 
information is availble. For our analysis patients at baseline were used. 

16873 15713

GSE121212 (15 ) Illumina HiSeq 2500 (Homo 
sapiens)

27L & 27NL (PSO), 21L & 
21NL (AD), 38CTL

Paired and 
Unpaired both

The original data on GEO also had chronic AD patients. I removed them from 
analysis because we not interested in subtype of atopic dermatitis disease. It 
has lesional and non-lesional biopsies of ATD patients and PSO patients. As 

well as biopsiy from control individuals.

15660 14696

GSE95065 not published

[HG-U133A_2] Affymetrix 
Human Genome U133A 2.0 

Array (HGU133A2 Hs 
ENTREZG 19.0.0)

18 SSc,4CTL Unpaired The original data on GEO had 4 batches, only used patients from batch 2. 22215 9765

GSE58095 (16 ) Illumina HumanHT-12 V4.0 
expression beadchip 39 SSc, 36 CTL Unpaired The original data on GEO had limited and diffuse scleroderma patients. Only 

diffuse scleroderma patients and healthy patients skin biopsies were used. 47279 31399

GSE130955 (17 ) Illumina HiSeq 2500 (Homo 
sapiens) 58 SSc, 33 CTL Unpaired This dataset may have some batch effect. And patients could have been 

treated earlier with Mycophenolate, Methotrexate / Cyclophosphamid. 18972 16800
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Table S2A: Genes within cell signatures. 

Cell Signature Genes in the signature

B Cell
AICDA, BANK1, BLK, BLNK, CD19, CD22, CD79A, CD79B, CLEC17A, CR2, DAPP1, DTX1, FCRL1, 
FCRL2, FCRL3, FCRL4, FCRL5, HLA-DOB, IGHD, IGHM, LY6D, MS4A1, PAX5, POU2AF1, SH2B2, 
TNFRSF13B, TNFRSF13C, VPREB1, VPREB3, ZBTB32, ZNF318

Endothelial Cell DLC1, ECSCR, EMCN, FLT1, KDR, LDB2, LRRC32, MEIS2, PLAT, PTPRB, SELE, TM4SF1, TM4SF18, 
VWF

Erythrocyte BSG, GFI1B, GYPA, GYPB, GYPE, ICAM4, KEL, NFE2, RHD, SLC4A1, TRIM10, TSPO2

Fibroblast

43894, ADAM33, ADAMTS6, AGTR1, ALPK2, ANGPTL2, ANKRD45, ANO2, ANPEP, ARMC9, ASPN, 
BDKRB2, BDNF, BMPER, C11orf87, C1R, C1S, CATSPER3, CCDC102B, CCDC80, CCDC81, CEMIP, 
CHAC1, CHRM2, CLMP, CNN1, COL14A1, COL3A1, COL5A1, COLEC10, CPXM2, CPZ, CRABP2, 
CXCL12, DCN, DDR2, DKK1, DMRTA1, EGFL6, ELOVL2, EMILIN1, FAM180A, FBLN7, FBN1, FGF5, 
FMN2, FOXF2, FST, FSTL1, GFRA1, GLIS1, GLT8D2, GPR176, GREM1, GREM2, GRIK2, GUCY1A2, 
HSD17B2, HSPA2, HSPB3, IL19, IQCD, KCNMB2, KIRREL3, KRT34, KRTAP1-5, KRTAP3-1, L1CAM, 
LAYN, LMOD1, LOXL4, LUM, LY6K, MFAP4, MFAP5, MGARP, MGP, MKX, MMP2, MXRA5, MXRA8, 
MYPN, NEXN, NFASC, NID2, NTF3, OLFML3, P3H3, P4HA3, PAMR1, PAX3, PCDHGA2, PCDHGA3, 
PCDHGA7, PDE8B, PDGFRA, PDGFRL, PDZRN3, PLA2R1, PLEKHA4, PLPP4, PLPPR4, PRKG1, 
PSG5, PTPRQ, PTRF, SEMA3A, SEMA5A, SEMA6D, SHOX, SLC16A2, SMIM2, SPARCL1, SPHKAP, 
SSTR1, STC1, STXBP6, SUSD5, SVEP1, TBX15, THBS2, TIMP2, TIMP3, TMEM119, TMEM130, 
TMEM47, TRHDE, TRPC4, UACA, UBL4B, VAT1L, VEGFC, WNT5A, WNT5B, ZFPM2

GC B Cell FCRLA, GCSAM, KLHL6, LRMP, NUGGC, RGS13
Granulocyte CLC, HSH2D, MS4A2, PGLYRP1, PRG2, SYNE1

Keratinocyte

ABLIM, AKR1C1, ALDH8, ALOX12B, ANXA8, AQP3, ATDC, BPAG1, CA12, CCND2, CD24, CDH3, 
CDKN1A, CDSN, COL17A1, CST6, CSTA, DD96, DSC1, DSG1, DSP, EGFR, EVPL, FLG, G0S2, GJA1, 
GLUL, GNA15, HBP17, IFI27, IFITM1, IGFBP7, ITGA3, ITGB4, IVL, JUNB, JUP, KLK11, KLK7, KLK8, 
KRT1, KRT14, KRT15, KRT16, KRT2A, KRT5, KRT6A, LAMA3, LGALS7, LOR, NOTCH3, PPL, PRDX2, 
PRSS11, PRSS2, PRSS4, S100A2, SERPINB2, SERPINB3, SERPINB4, SERPINB5, SERPINB7, 
SERPINE1, SFN, SPINK5, SPRR1B, TACSTD2, TFAP2A, TGM1, TP63, TUBA1, XP5

Langerhans Cell CD1B, CD1C, CD1E, CD207

LDG AZU1, CAMP, CEACAM3, CEACAM4, CEACAM6, CEACAM8, CTSG, DEFA4, ELANE, MPO, OLFM4, 
RNASE3

Melanocyte ASIP, CITED1, DCT, GPNMB, GPR143, MITF, MLANA, MLPH, OCA2, PMEL, SLC24A5, SLC45A2, TYR, 
TYRP1

Monocyte ADGRE1, C1QA, C1QB, C1QC, C2, CD14, CD300C, CD300E, CD5L, CD68, CLEC5A, CSF1R, CYBB, 
FOLR2, LILRA1, MARCO, MERTK, MS4A7, MSR1, SPIC

Monocyte/Myeloid Cell

ADGRE2, ADGRE3, AIF1, APOC1, BPI, BST1, C4A, C4B, C4BPA, C4BPB, C5, C6, C8A, C9, CD163, 
CD1D, CD209, CD300LF, CD33, CFD, CFP, CHIT1, CLEC12A, CLEC12B, CLEC1A, CLEC4A, 
CLEC4D, CLEC4E, CLEC4G, CLEC6A, CLEC7A, CRISP3, CSF2RA, CSF2RB, CST3, CTSS, F12, 
FCER1A, FCER1G, FCGR1A, FCGR1B, FCGR2A, FCGR2C, FLT3, GRN, IGSF6, ITGAX, LGALS12, 
LGALS4, LGALS9, LILRA2, LILRA5, LILRA6, LILRB2, LY86, LYVE1, LYZ, MEFV, MMP8, MNDA, 
MPEG1, MS4A4A, MS4A6A, NLRP12, NLRP3, NOD2, OLR1, OSCAR, OSM, PILRA, PRAM1, RETN, 
S100A12, S100A8, S100A9, SCARB1, SECTM1, SEMA4A, SERPING1, SGK1, SIGLEC1, SIGLEC10, 
SIGLEC14, SIGLEC5, SLC11A1, SLITRK4, SMPDL3B, SPI1, TEK, THBD, TLR2, TLR8, TNFSF13B, 
TREM1, TREML4, TYROBP, VENTX, VSIG4, VSTM1

Neutrophil ARG1, BMX, CD177, CSF3R, DEFA1, DEFA1B, DEFA3, DEFB103A, DEFB103B, DEFB106B, DEFB136, 
DEFB4A, FPR2, OR1J2, PRTN3, SLC2A3, SLPI

NK Cell KIR2DL4, KLRC3, KLRF1, NCAM1, NCR1, SH2D1B, TNFSF11, TXK
pDC CLEC4C, IRF7, LILRA4, NRP1, PACSIN1, PLA2G5, PLAC8, PTCRA, SERPINF1, SLC15A4, TCF4

Plasma Cell CD38, CRELD2, ELL2, FKBP11, IGKV4-1, IGLV2-14, ITM2C, JCHAIN, MANF, MZB1, PDIA4, PRDX4, 
SDF2L1, SPATS2, TNFRSF17, UAP1

Platelet GP1BA, GP5, GP6, GP9, PF4, PF4V1, PLEK, PPBP, SLC35D3
Skin-specific DC CLEC10A, CLEC9A, GPR31, MRC1, XCR1
T Cell BCL11B, CAMK4, CD28, CD3D, CD3G, CD5, CD6, GPR171, ITK, RGCC, TESPA1, THEMIS, TRAT1
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Table S2B: Genes within pathway signatures. 

Pathway Signature Genes in pathway signature

AA Metabolism
AASS, AGXT, AGXT2, ALDH4A1, ALDH7A1, ARG1, GAD1, GLUD1, GOT1, GPT2, GRHPR, IVD, MCCC2, OAT, OTC, OXCT1, PC, PSAT1, SDS, IL1RN, 
SOCS3, TNFAIP3

Anti-inflammation IL1RN, SOCS3, TNFAIP3

Apoptosis AIFM1, BAD, BAK1, BAX, BID, CASP10, CASP3, CASP6, CASP7, CASP8, CASP9, ENDOG, FAS, HTRA2, TNFRSF1A

Cell Cycle ASPM, AURKA, AURKB, BRCA1, CCNB1, CCNB2, CCNE1, CDC20, CENPM, CEP55, E2F3, GINS2, MCM10, MCM2, MKI67, NCAPG, NDC80, PTTG1, TYMS

Complement Proteins C1QA, C1QB, C1QC, C1R, C1S, C2, C3, C4A, C4B, C5, C6, C7, C8A, C8B, C8G, C9
FAAO HAAO, HACL1, PEX13, PHYH, SLC27A2

FABO
ABCD1, ABCD2, ABCD3, ACAA2, ACACB, ACAD11, ACADL, ACADM, ACADS, ACADVL, ACAT1, ACAT2, ACOX1, ACOX2, ACOX3, ACOXL, ACSBG2, ACSL5, 
ADIPOQ, AKT2, AUH, BDH2, CPT1A, CPT2, CROT, DECR1, ECHDC1, ECHDC2, ECHS1, ECI1, ECI2, EHHADH, ETFA, ETFB, ETFDH, FABP1, GCDH, HADH, 
HADHA, HADHB, HIBCH, HSD17B4, IRS1, IRS2, IVD, LEP, PEX2, PEX5, PEX7, SESN2, SLC25A17, SLC27A2, TWIST1

Glycolysis
ALDOA, ALDOB, ALDOC, ENO1, ENO2, ENO3, GAPDH, GCK, GPI, HK1, HK2, HK3, HKDC1, LDHA, LDHAL6A, LDHAL6B, LDHB, LDHC, PFKFB1, PFKFB2, 
PFKFB3, PFKFB4, PFKL, PFKM, PFKP, PGAM1, PGAM2, PGK1, PGK2, PKM, SLC2A1, SLC2A3, SLC2A4, TPI1

IFN
EIF2AK2, GBP1, GBP2, GBP4, HERC5, HERC6, IFI27, IFI30, IFI35, IFI44, IFI44L, IFI6, IFIT1, IFIT2, IFIT3, IFIT5, IFITM1, IFITM2, IFITM3, ISG15, ISG20, MX1, 
MX2, OAS1, OAS2, OAS3, OASL, RSAD2, SAMD9, SAMD9L, SP100, SP110

IL1 Cytokines IL18, IL1B
IL12 Complex IL12A, IL12B, IL12RB1, IL12RB2

IL12
ACLY, AKAP10, APOL3, BACH2, BRCA2, CALD1, CASK, CASP1, CCR5, CDKN3, CXCL10, CXCL9, CYBB, DEFA1, ETAA1, FASLG, FBXL2, FCER2, FCGR1A, 
GBP1, GBP2, GLS, GNPDA1, GSTM5, GZMB, HHEX, HP, HSPA6, IFNG, IL16, IL18BP, IL18R1, IL1A, INPP5D, INSIG1, IRF1, KLF2, KRT8, LIMK1, LINC00597, 
LY75, MMP25, NIN, NLRP1, PCDH9, SELL, SERPIND1, SLAMF1, SOCS1, STAT1, TAP2, TBX21, TFF1, TNFAIP2, TNFAIP3, TNFSF10, TXK

IL17 Complex IL17A, IL17F, IL17RA, IL17RC, TRAF3, TRAF3IP2
IL21 Complex IL21, IL21R, IL2RG
IL23 Complex IL12B, IL12RB1, IL23A, IL23R
Immunoproteasome PSMB10, PSMB8, PSMB9
Inflammasome AIM2, CASP1, CASP5, CTSB, GSDMB, GSDMD, NAIP, NEK7, NLRC4, NLRP1, NLRP3, NOD2, P2RX7, PANX1, PYCARD, RIPK1

OXPHOS

ATP5A1, ATP5B, ATP5D, ATP5E, ATP5F1, ATP5G1, ATP5G2, ATP5G3, ATP5H, ATP5I, ATP5J, ATP5J2, ATP5L, ATP5O, ATP5S, BCS1L, CEP89, COA1, 
COA3, COA4, COA5, COA6, COA7, COX10, COX10-AS1, COX11, COX14, COX15, COX16, COX17, COX18, COX19, COX20, COX4I1, COX4I2, COX5A, 
COX5B, COX6A1, COX6A2, COX6B1, COX6B2, COX6C, COX7A1, COX7A2, COX7A2L, COX7B, COX7B2, COX7C, COX8A, COX8C, CYC1, CYCS, DNAJC15, 
MT-ATP6, MT-ATP8, MT-CO1, MT-CO2, MT-CO3, MT-CYB, MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6, NDUFA1, NDUFA10, 
NDUFA11, NDUFA12, NDUFA13, NDUFA2, NDUFA3, NDUFA4, NDUFA4L2, NDUFA5, NDUFA6, NDUFA7, NDUFA8, NDUFA9, NDUFAB1, NDUFAF1, 
NDUFAF2, NDUFAF3, NDUFAF4, NDUFAF5, NDUFAF6, NDUFAF7, NDUFAF8, NDUFB1, NDUFB10, NDUFB11, NDUFB2, NDUFB2-AS1, NDUFB3, NDUFB4, 
NDUFB5, NDUFB6, NDUFB7, NDUFB8, NDUFB9, NDUFC1, NDUFC2, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS5, NDUFS6, NDUFS7, NDUFS8, 
NDUFV1, NDUFV2, NDUFV3, NUBPL, OXA1L, RFESD, SCO1, SCO2, SLC25A4, SURF1, TACO1, TIMMDC1, TMEM126B, TRAP1, TTC19, UQCC1, UQCC2, 
UQCC3, UQCR10, UQCR11, UQCRB, UQCRC1, UQCRC2, UQCRFS1, UQCRH, UQCRHL, UQCRQ

Pentose Phosphate G6PD, H6PD, PGD, PRPS1, PRPS1L1, PRPS2, RBKS, RGN, RPE, RPIA, TALDO1, TKT, TKTL1, TKTL2

Peroxisome ABCD3, ACAA1, ACOX1, ACOX2, ACOX3, CAT, DDO, DECR2, EHHADH, HAO2, HMGCL, HSDL2, ISOC1, KXD1, PAOX, PEX1, PEX10, PEX11A, PEX12, 
PEX16, PEX19, PEX26, PEX3, PEX5, PEX6, PEX7, PHYH, PIPOX, PMVK, PXMP2, SCP2, SLC25A17

Proteasome

ADRM1, NGLY1, PAAF1, POMP, PSMA1, PSMA2, PSMA3, PSMA3-AS1, PSMA4, PSMA5, PSMA6, PSMA7, PSMA8, PSMB1, PSMB11, PSMB2, PSMB3, PSMB4, 
PSMB5, PSMB6, PSMB7, PSMC1, PSMC2, PSMC3, PSMC4, PSMC5, PSMC6, PSMD1, PSMD10, PSMD11, PSMD12, PSMD13, PSMD14, PSMD2, PSMD3, 
PSMD4, PSMD5, PSMD5-AS1, PSMD6, PSMD6-AS2, PSMD7, PSMD8, PSMD9, PSME1, PSME2, PSME3, PSME4, PSMF1, PSMG1, PSMG2, PSMG3, PSMG3-
AS1, PSMG4, RAD23B, SHFM1, UBLCP1, UBQLN1, UCHL5, ZFAND2A

ROS Production GPX1, GPX3
T Cell IL12 Signature CCL5, CXCR1, GZMH, IFNG, IL12RB2, IL1RL1, LIFR, TNFSF10, TNFSF13B
T Cell IL23 Signature CCL17, CCL20, CCL22, CCL7, CCR1, CSF2, CXCL2, CXCR5, IL17A, IL17F, IL17RC, IL1R1, IL23R, IL6, ITGA3, PDGFB, TNF

TCA Cycle ACO2, CS, DLAT, DLD, DLST, FH, GLUD1, IDH1, IDH2, IDH3A, IDH3B, IDH3G, MDH2, MPC1, MPC2, OGDH, OGDHL, PDHA1, PDHA2, PDHB, PDHX, PDK1, 
PDK2, PDK3, PDK4, PDP1, PDP2, PDPR, SDHA, SDHAF1, SDHAF2, SDHAF3, SDHAF4, SDHB, SDHC, SDHD, SUCLA2, SUCLG1, SUCLG2, SUGCT

Th17 CCR6, CXCR3, IL17A, IL17F, IL22, IL26, KLRB1, RORA, RORC

TNF

ACLY, ACSL1, ADGRE2, AK3, AKAP10, AMPD3, APOL3, ARID3A, ARSE, ASAP1, B4GALT5, BCL2A1, BHLHE41, BHMT, BIRC3, BRCA1, CALD1, CASP1, 
CASP10, CCL15, CCL20, CCL23, CCL3L1, CD37, CD38, CD83, CDKN3, CKB, CR2, CTNND2, CXCL1, CXCL2, CXCL3, CXCL8, CYP27B1, DAB2, EBI3, EGR1, 
EGR2, EPB41, EREG, ETAA1, F3, FABP1, FBXL2, FCER2, FCGR2A, FLJ11129, FLNA, G0S2, GBP1, GCH1, GJB2, GLS, GMIP, GP1BA, GRK3, HCAR3, 
HHEX, HOMER2, HP, ICAM1, IDO1, IFI44, IKBKG, IL16, IL18, IL1A, IL1B, IL1RN, IL6, INHBA, INSIG1, ITGA6, KITLG, KLF1, KMO, LGALS3BP, MAP3K4, 
MARCKS, MGLL, MMP19, MN1, MRPS15, MSC, MTF1, MX1, NAMPT, NELL2, NFKB1, NFKB2, NFKBIA, NFKBIZ, NKX3-2, NR3C1, OAS3, PATJ, PDE4DIP, 
PDPN, PIAS4, PLAUR, PTGES, PTGS2, RELB, RPGR, RPS9, SDC4, SERPIND1, SFRP1, SH3BP5, SLAMF1, SLC30A4, SOD2, SPI1, SSPN, STAT4, TAF15, 
TAP2, TBX3, TFF1, TNF, TNFAIP2, TNFAIP3, TNFRSF11A, TRAF1, TSC22D1, TYROBP, UBE2C, VEGFA, WT1

Unfolded Protein
B4GALT3, CALR, CALU, CANX, CDS2, CHST12, CHST2, DERL1, DERL2, DNAJC3, EDEM2, EDEM3, EMC9, ERAP1, ERGIC2, ERO1L, EXT1, GALNT2, 
GOLT1B, HERPUD1, HYOU1, IER3IP1, IMPAD1, KDELC1, KDELR2, LMAN2, LPGAT1, MAN1A1, MANEA, MANF, NUCB2, PDIA4, PDIA6, PIGK, PPIB, SEC24D, 
SEC61G, SPCS3, SSR1, SSR3, TRAM1, TRAM2, UGGT1, XBP1

TGFB Fibroblast

ABTB2, ACOX1, ACTA2, ACTC, ACTN1, ACTN3, ADAM12, ADAM19, ADAMTS4, ADCY7, AK3, ALS2CR4, AMIGO2, ANGPTL4, AQP1, ARK5, ARL4A, ARNTL, 
ASE-1, ASNS, ATOH8, ATP10A, ATP1B1, AVP, AXUD1, B4GALT1, BAG3, BFAR, BHLHB2, BLOC1S2, BM039, BMP6, BMPR2, C10orf22, C10orf30, C14orf138, 
C14orf31, C16orf30, C18orf1, C20orf139, C20orf39, C21orf93, C5orf13, C6orf145, C6orf85, C9orf19, C9orf3, C9orf62, CALM2, CARD4, CBFB, CCDC8, CCL2, 
CDH2, CDKN2B, CEBPA, CH25H, CHIC2, CHST11, CHST5, CHSY1, CLC, CMKOR1, CNN3, COL4A1, COL4A2, COL5A1, COL5A2, COMP, CREB3L2, CRLF1, 
CRY1, CSRP1, CSRP2, CTGF, CTPS, CXCL12, CXXC5, CYR61, DACT1, DDIT4, DLC1, DLX2, DNAJB4, DNAJB5, DNAJB9, DOK5L, DSP, DTR, DUSP1, 
DYRK2, E2F7, EIF4EBP1, ELN, ENC1, ENPP1, EPHB3, ERN1, EYA2, FBXO32, FGF18, FGF2, FGFR3, FGFRL1, FHL2, FLJ10350, FLJ10357, FLJ10378, 
FLJ14054, FLJ20364, FLJ20366, FLJ20701, FLJ22938, FLJ39370, FLJ45248, FN5, FOXP1, FSTL3, FUS, FZD8, GABRE, GADD45B, GARS, GAS7, GATA6, 
GDF15, GDF6, GEM, GLS, GNPNAT1, GOPC, GPAM, GPR68, GPT2, GSTT2, HCMOGT-1, HES1, HIF1A, HILS1, HNRPAB, HNRPK, HOMER1, HOXB2, 
HOXC8, HSPA5, HSPB7, HSXIAPAF1, ID1, ID3, ID4, IER3, IER5L, IGF1, IL11, IL21R, IL4R, IL6, ITR, IVNS1ABP, JUNB, K-ALPHA-1, KCNE4, KCNG1, KCNK1, 
KCNN4, KCNS3, KCTD11, KIAA0033, KIAA0280, KIAA1102, KIAA1644, KIAA1754, KLF10, KLF13, KLF2, LDHA, LHFPL2, LIF, LIM, LIMK1, LIMK2, LIMS3, 
LMCD1, LMO4, LOC222171, LOC283824, LOC284454, LOC339047, LOC440502, LOC51333, LRIG1, LRRC8, LTBP2, MAP3K2, MBD4, MGC14376, MGC15476, 
MGC16121, MGC29875, MGC4504, MGC45871, MGC8685, MGLL, MICAL2, MICAL-L1, MIR100HG, MONDOA, MRC2, MSX1, MTCH1, MTHFD2, NEDD4, 
NEDD9, NET1, NFATC1, NFYC, NGEF, NID67, NKD2, NLF1, NNMT, NP, NPAS1, NPTX1, NRBF2, NRG1, NUP98, ODC1, P4HA2, P4HA3, PACSIN2, PAWR, 
PDGFA, PDLIM4, PFKP, PGK1, PGM2L1, PGM3, PHF17, PHLDA2, PHLDB1, PICALM, PIM1, PITX2, PKM2, PLAU, PLAUR, PLEKHA1, PLK3, PLOD2, PNMA1, 
PODXL, POFUT2, PPP1R13L, PPP1R14C, PPP1R3B, PRICKLE2, PRKAB2, PRO1855, PRPS1, PRPS1L1, PRRX2, PSAT1, PTDSR, PTPNS1, RAI14, RAI17, 
RASL11B, RGS3, RKHD3, RNF126, RPL21, RPL5, RTTN, RUNX1, RUNX2, RUSC2, S100A16, SAMD11, SARS, SCD, SCHIP1, SDFR1, SERP1, SERPINE1, 
SERTAD1, SERTAD4, SGCG, SGK, SH3MD1, SIAT4A, SKIL, SLC10A3, SLC16A3, SLC19A2, SLC1A5, SLC20A1, SLC26A1, SLC2A1, SLC38A5, SLC39A14, 
SLC4A2, SLC7A11, SLC7A5, SMAD7, SMARCB1, SNAI1, SNF1LK, SNX24, SOX4, SOX9, SPARC, SPHK1, SRF, STC2, STCH, STK38L, SYNJ2, SYVN1, TBX3, 
TD-60, TES, TGFB1, TGFBR1, TGM2, TIMP3, TIPARP, TMEPAI, TMPO, TNC, TNFRSF12A, TNFRSF19L, TPM1, TRIB1, TRIB2, TRIB3, TSK, TUBA3, TUBA6, 
TUBB2, TUBB3, TUBB4, TUBB6, TUFT1, UAP1, UCK2, UGDH, ULK1, UNC5B, UPP1, USP35, VEGF, VLDLR, VMP1, WNT5B, XBP1, ZNF281, ZNF336, ZNF469, 
ZNF537 

Supplemental Table 2B: Genes within pathway signatures.



 

 

Table S2C: Genes within keratinocyte signatures.  

Keratinocyte 
signature Genes in the signature Reference

IFNa2a
IFIT1, IFIT2, IFIT3, RSAD2, ISG15, MX1, DDX58, IFI44, PARP9, IFIH1, LAMP3, USP18, IFI44L, IFITM1, STAT1, OAS2, GBP1, 
PLSCR1, DTX3L, SP110, IFIT5, HERC5, IRF7, CXCL10, DDX60L, HERC6, TRIM21, EPSTI1, MX2, NLRC5, HELZ2, OAS1, 
DDX60

(1 )

IFNb
IFIT1, IFIT2, IFIT3, RSAD2, ISG15, MX1, IFI44, PARP9, IFIH1, USP18, LAMP3, CXCL10, OAS2, DDX58, STAT1, IFI44L, GBP1, 
DTX3L, IFITM1, IFIT5, NLRC5, IRF7, MX2, DDX60L, HERC5, HERC6, TRIM21, XAF1, EPSTI1, PLSCR1, CH25H, PARP12, 
SP110, SAMD9

(1 )

IFNg_A
CXCL10, CXCL9, UBD, CXCL11, C1S, HLA-DRA, C1R, HLA-DRB5, PLAAT4, CCL2, RSAD2, HLA-DMA, PSMB9, APOL3, 
GBP2, CD74, HLA-DRB1, ICAM1, ISG20, BST2, IRF1, CTSS, SERPING1, AIM2, IDO1, APOL1, HLA-DPA1, GLDC, IL32, 
RARRES1, SECTM1, ETV7, APOL6, IL15, GBP1, IFI35, HLA-DRB4, IFIT3, XAF1, CCL8, CFB, CEACAM1, CFH

(2 )

IFNg_B S100A7, S100A8, MMP1, MMP3, KLK7, KRTDAP, KRT10 (3 )

IFNg_C
CXCL10, PARP9, NLRC5, GBP1, PSMB9, CXCL9, IRF1, DTX3L, PSMB8, IFIT5, TAP1, TRIM69, SERPING1, SECTM1, WARS1, 
RAD50, INPP1, MCUB, BTN3A3, TLDC2, APOL6, SP110, EDNRA, CASP7, NMI, IFIH1, IFIT3, IFIT2, APOL2, BTN3A2, GBP2, 
DDX58, STAT1, CACHD1, TRIM21, IRF9

(1 )

IFNg_D STAT1, MX2, MX1, ISG15, IRF7, IFI6 (4 )

IFN
IFIT1, IFIT3, IFIT2, ISG15, RSAD2, MX1, IFI44, PARP9, IFIH1, LAMP3, USP18, STAT1, OAS2, DDX58, DTX3L, IFITM1, IFIT5, 
IRF7, IFI44L, PLSCR1, HERC6, TRIM21, IRF9, GBP1, PARP12, EIF2AK2, SP110, DDX60L, HERC5, HELZ2, OAS1, ZC3HAV1, 
EPSTI1, NLRC5, TRIM14

(1 )

IL1 SERPINB4, SERPINB3, SLC6A14, TGFA, HEPHL1 (5 )
IL1a SERPINB4, SERPINB3, SLC6A14, TGFA, HEPHL1 (5 )

IL1b

NCF2, SAA2, C3, GBP1, IFIT2, IFIT3, IRF1, PRDM1, CFB, CTSC, SERPINB1, SERPINB3, SERPINB4, MMP9, PLAT, 
SERPINA3, PSMB9, CCL20, CCL5, CXCL1, CXCL2, CXCL3, TYMP, EDN1, IL1A, IL1B, IL36G, CXCL8, INHBA, TGFA, 
TNFAIP2, MPZL2, NINJ1, IL32, TNFAIP6, CLDN4, KRT34, S100A12, S100A7, S100A8, S100A9, SPRR2B, PDZK1IP1, RHCG, 
PTP4A3, LYN, PLAU, SGK1, HCAR3, IFNGR1, IL1RN, HBEGF, PLAUR, PPIF, NDRG2, NFKB1, NFKB2, NFKBIA, NFKBIE, 
RELB, WNT4, NOD2, RIPK2, TNFSF10, BIRC3, IER3, TNFAIP3, PPP1R15A, RCAN1, BHLH340, MAFF, REL, TNIP1, ZFP36, 
ALDH1A3, APOBEC3A, OAS3, EPHX3, CYB5R2, SOD2, TAPBP, ATP1B1, C1QTNF1, LCN2, SLC11A2, SLC6A14, TFRC

(6 )

IL17_A

SPRR2A, DEFB4A, IL36G, SPRR2C, SPRR2E, SPRR2F, NFKBIZ, ZC3H12A, PI3, LCN2, SERPINB4, SPRR2B, CXCL8, 
S100A8, S100A9, SPRR2D, NDRG2, SAA1, RHCG, IL1B, ATP1B1, IER3, CCL20, PDZK1IP1, ALDH1A3, CXCL2, C15orf48, 
NOD2, ALOX12B, ARHGEF37, SOX7, SLC11A2, ANKK1, NFKBIA, GJB6, TYMP, SAT1, MAFF, DNER, ISG20L2, RBM14, F2R, 
ACTA2, TNNI2, CPA4

(7 )

IL17_B
CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, CXCL9, CXCL10, CXCL11, CCL2, CCL5, CCL7, CCL11, CXCL12, CCL20, IL6, 
IL19, CSF2, CSF3, ICAM1, PTGS2, NOS2, LCN2, DEFB4A, S100A7, S100A8, S100A9, MUC5AC, MUC5B, EREG, SOCS3, 
TNFSF11, MMP1, MMP3, MMP9, MMP13, TIMP1, ADAMTS4, CEBPB, CEBPD, NFKBIZ

(8 )

IL17_C
DEFB4A, S100A7, S100A12, CCL20, SERPINB4, CXCL6, PDZK1IP1, SAA2, SPRR2C, ZC3H12A, IL36G, CXCL8, SLC6A14, 
CXCL1, CXCL2, RHCG, CXCL5, NDRG2, NOD2, LCN2, PI3, C3, CXCL3, MAP3K8, SPRR2D, IL1B, CRABP2, NMB, SLC11A2, 
S100A9, SLC25A12, TFRC, NAV3, CYB5R2, IER3, SAT1, RPS6KA5, NAMPT, S100A8, ALDH1A3, TYW1

(2 )

IL17a_D C1orf68, LY6G6C, LCE1B, NIPAL4, SLC46A2, SERPINB4, SERPINB3, SLC6A14, TGFA, HEPHL1 (5 )

IL17_TNF IL19, CXCL8, IL23A, CCL20, IL6, CXCL1, TNF, IL17C, CXCL5, DEFB4A, CFB, S100A7A, S100A7, PLAT, IL36G, CXCL6, IL1B, 
IL36RN, TNFSF18, PI3, LCN2, S100A9, MAP3K8, S100P, S100A8

(7 )

IL17a_TNF CNFN, TREX2, SPRR2B, SPRR2D, SULT2B1 (5 )
IL17c_3hr CSF3, CXCL8, CXCL1, CXCL2, CXCL3, IL1B, IL36G, CCL2, CCL20, IL17D, NFKBID, NFKBIZ, TNFAIP6, IL1RL1, MMP12 (9 )

IL17c_24hr CSF3, CXCL1, IL1B, IL36G, CCL20, IL17D, C3, NFKBID, NFKBIZ, TNFAIP6, TNIP3, IL1RL1, MMP12, SAA4, VNN3, S100A7, 
S100A7A, S100A8, S100A9, DEFB1, DEFB4A

(9 )

IL22_A S100A7, SERPINB4, S100P, SERPINB1, CARHSP1, HRH1, CYP27B1, TM4SF1, CASP4, RAB27A, IL13RA1 (2 )
IL22_B S100A7, S100A8, MMP1, MMP3 (3 )

IL4_IL13

HSD3B1, NTRK1, CLDN5, CCL26, NNMT, LOXL4, TNC, SERPINB3, SERPINB4, PDZK1IP1, KCNJ12, CA2, HSD3B2, RFLNA, 
IL33, MGAM, ST8SIA1, CXCL6, ANOS1, SIDT1, CAPN14, CISH, CYP1B1, TOX, P2RY1, MYH15, ID3, LSP1, CSF3, GJB2, 
GKN1, LRRC8B, TREML2, OGDHL, CTSC, PALMD, GUCA1C, SLCO2A1, BRINP1, E2F2, MYB, NPNT, NR3C2, PPFIBP2, 
EDNRA, GDPD2, SERPINB13, HAS3, BATF3, MMP7, CPM, APOL3, RGS16, MEST, MYOZ2, CENPV, STAR, KIF24, CRABP2, 
GJB6, TMEM45B, TENM2, MAP2K6, PCDH7, NRG1, SLC5A12, KLRG1, CFH, GLS2, KITLG, SLC7A4, BTBD3, NMU, POU2F3, 
RASL11B, KRT24, KLHL23, TF, HPDL, SLC2A5, MAN1C1, ZNF367, CFHR1, KIRREL3, NEFH, MMP12, DUSP19, PHGDH, 
VSNL1, LRFN2, KIAA1958, JADE1, DUOX1, FABP6, KCNRG, SEMA3A, PNPT1, C10orf82, RTP5, UFD1, NABP1, NPW, IL7R, 
TP73, HLA-DOA, CTRL, DESI2, RTKN2, FOLH1, SIPA1L2, DUSP13, SLC15A2, FJX1, IL15RA, GATA3, MAP3K14, KRT8, 
KRT18P45, TP53AIP1, SHF, TPK1, HSPD1, FZD10-AS1, ZNF697, CRACR2A, BLMH, SLC35G1, PRDM13, ANO1, CYP27B1, 
SNX5, LYAR, LDLRAD3, GPD1L, ELAVL2, MAL2, GAS2, PBX1, CD302, DEPDC4, ITPR1, SLIRP, SCN2B, NUP107, 
KRT18P32, RBM47, KRT18P28, SLC39A8, KRT18P20, CENPL, MESP1, SLC26A2, POLR1B, PTPN4, HS6ST2, RAE1, CFD, 
COBLL1, CHAC2, EAF2, PLA2G4A, CD47, NOX1

(10 )

TGFa_30min EREG, VEGFA, HBEGF, IL1B, IL6, IL1A, CXCL3, CXCL2, CXCL8, EDN1, ZYX, DUSP1, PTGS2, DUSP6, ARHGEF2, PHLDA1, 
JUN, EGR1, FOS, CITED2, DDIT3, DUSP4, PPP1R15A, TNFAIP3, NOP14-AS1

(11 )

TGFa_60min

ARTN, VEGFA, HBEGF, IL1B, LIF, IL11, IL1A, IL36G, SERPINE1, FSTL3, SLPI, PI3, THBD, CLDN4, EPHA2, PLAUR, JMJD6, 
YRDC, RHCG, ULBP2, SPRY4, GNE, PLEKHG3, PTPRE, TUBB2A, TUBB2B, PKP1, MAT2A, PTGS2, HS3ST1, FUT1, PLK3, 
FBXL18, SLC20A1, ALAS1, ISG20L2, SPRR2B, NLRP1, GRPEL1, CAPN3, SPRR1A, IVL, PHLDA1, FOSL1, EGR3, ID1, FOS, 
ZFP36L2, CDKN1A, IER2, DDIT4, COA1, KDM6B, INAVA, LGALSL, LRRC8E, AKIP1, NUAK2, C1orf56, PDXDC1

(11 )

TGFa_120min EREG, IL1B, IL36G, CXCL2, CXCL8, MMP1, MMP10, PTP4A1, MAT2A, CYP27B1, SCG5, PHLDA1, ARL4C (11 )
TNF_A CNFN, TREX2, SPRR2B, SPRR2D, SULT2B1 (5 )

TNFa_B
MMP9, C1QTNF1, IL36G, TNFAIP3, CXCL8, IRAK2, CXCL10, TYMP, IL1B, SOD2, NFKBIA, S100A9, HBEGF, PLAU, HLA-B, 
MMP10, PI3, BIRC3, KREMEN2, WNT4, ISG15, PRDM1, TNFSF10, IL1RN, TNIP1, SERPINB2, IRF1, S100A8, DRAM1, LYN, 
NFKBIZ, CCL27, C1orf74, MUC1, ELF3, IFIT3, RELB, RHCG, DUSP1, C1R, CSF2, TNFRSF6B, CXCL16, PIK3IP1

(7 )

TNFa_C
BIRC3, ZC3H12C, CXCL10, NINJ1, LACC1, PPP1R3C, RELB, CPNE8, COL12A1, BID, PLAU, STEAP4, DDX58, DRAM1, 
BDKRB1, GCH1, SDC4, IFIH1, TNFAIP3, TAP1, BCL3, SRCAP, CCL20, CYLD, SOD2, PSMB8, TNFRSF10B, FZD8, FAS, 
PSTPIP2, TSLP, MMP28

(1 )

TNFa_early
CEP135, EFNA1, MARCKSL1, ICAM1, NINJ1, CFLAR, CFB, IVL, S100A8, S100A9, SPRR2A, TGM1, NEFM, TPST1, H1-10, 
IFIT3, KRT34, PDPN, SCO2, MMP10, MMP9, RAB32, TNFAIP2, CCL20, CCL27, CCL5, CXCL10, CXCL11, CXCL1, CXCL2, 
CXCL3, CXCL8, BMP2, IL1RN, LTB, IL32, TNF, TNFSF10, VEGFC, IRF1, NFKBIA, SOX4, TNFAIP3, TAP1, ATP12A

(12 )

TNFa_late

KYNU, TNC, TRAF1, PSME2, PSMB10, PSMB9, BTG3, C1R, C1S, NEDD9, CSPG4, COL16A1, GALT, H2AC18, H2AC20, HLA-
F, HLA-A, MR1, SAA1, OAS1, OASL, CD47, ITGB6, CDH3, KRT2, LYN, ACOX1, CD58, PDZK1IP1, GPD2, SOD2, PML, DUSP1, 
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Table S2D: Genes within T cell signatures. 

T cell Signature Genes in the signature Reference

Dermal Aner/Act T Cell CD160, CTLA4, ICOS, KLRG1, LAG3, PDCD1

Dermal CD8 T Cell CD8A, CD8B

Dermal Tfh BTLA, IL21, SH2D1A

Dermal Th1 CCL5, CXCR3, EOMES, IFNG, PRF1, TBX21, GZMK

Dermal Th17 CCR6, IL12RB1, IL17A, IL17F, IL22, IL23R, IL26, KLRB1, RORC

Dermal Th2 GATA3, IL13, IL4, IL4R, IL5

Dermal Treg FOXP3, IKZF2, TNFRSF9
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Table S3A: Class balance strategy used for machine learning classification.  

Skin Type Original Samples ML Samples Class balance stratagy Greedy Elimination
Class 0 CTL
Class 1 DLE
Class 0 CTL
Class 1 AD
Class 0 CTL
Class 1 SSc
Class 0 CTL
Class 1 PSO

Class 0 SUB
Class 1 DLE
Class 0 PSO
Class 1 DLE
Class 0 AD
Class 1 DLE
Class 0 SSc
Class 1 DLE

Class 0 CTL
Class 1 DLE
Class 0 CTL
Class 1 PSO
Class 0 CTL
Class 1 AD

Class 0 PSO
Class 1 DLE
Class 0 AD
Class 1 DLE

Class 0 AD
Class 1 PSO

Supplemental Table 3A: Class balance stratagy used for machine learning classification.

(K)

(L)

(M)

Comparison

(F)

(G)

(H)

(I)

(J)

(A)

(B)

(C)

(D)

(E)

Class

Lesional Skin

DLE vs CTL 90 DLE vs 164 CTL 90 DLE vs 164 CTL None

SSc vs CTL 97 SSc vs 164 CTL 97 SSc vs 97CTL Random Undersampling

90 DLE vs 90 SUB Random Oversample

IL12, Monocyte / Myeloid Cell

AD vs CTL 132 AD vs 164 CTL 132 AD vs 164 CTL None Monocyte, IL12, Peroxisome

Monocyte, IL12, Complement Proteins, 
Peroxisomes, Monocyte /Myeloid Cell

PSO vs CTL 183 PSO vs 164 CTL 183 PSO vs 164 CTL None IL12, Monocyte

None

DLE vs PSO 90 DLE vs 183 PSO 90 DLE vs 110 PSO Excluded GSE117468 None

DLE vs SUB 90 DLE vs 54 SUB

Monocyte

Monocyte / Myeloid Cell, TNF

DLE vs SSc 90 DLE vs 97 SSc 90 DLE vs 97 SSc None FABO, TNF

DLE vs AD 90 DLE vs 132 AD 90 DLE vs 132 AD None

DLE vs PSO 21 DLE vs 163 PSO 97 DLE vs 121 PSO SMOTE over and undersample

DLE vs CTL 21 DLE vs 164 CTL 98 DLE vs 122 CTL SMOTE over and undersample

AD vs CTL Monocyte

None

PSO vs CTL 163 PSO vs 164 CTL 163 PSO vs 164 CTL Excluded PSO from GSE52471 
and GSE109248

(N)

Nonlesional Skin

Monocyte/Myeloid Cell, Complement Proteins, 
Peroxisome, IL12

NonePSO vs AD 163 PSO vs 132 AD 163 PSO vs 132 AD

Monocyte, FABO, IL12

DLE vs AD 21 DLE vs 132 AD 79 DLE vs 98 AD SMOTE over and undersample Monocyte, T Cell, FABO,IL12

132 AD vs 164 CTL 164 AD vs 164 CTL Random Oversample



 
Table S3B: Number of samples pooled from each skin dataset to create input for machine 

learning.  

Samples Datasets
Number of 

samples
Samples Datasets

Number of 

samples
Samples Datasets

Number of 

samples

GSE52471 7 GSE100093 15 GSE52471 3

GSE72535 9 GSE120809 6 GSE72535 8

GSE81071_A 26 GSE81071_A 7

GSE81071_B 21 GSE130588 19 GSE81071_B 6

GSE109248 6 GSE137430 38 GSE109248 13

GSE100093 15 GSE157194 54 GSE130588 20

GSE120809 6 GSE121212 21 GSE121212 38

GSE58065 36

GSE130588 19 GSE117239 63 GSE130955 33

GSE137430 38 GSE117468 73

GSE157194 54 GSE121212 27

GSE121212 21

GSE52471 3

GSE109248 17

GSE117239 63

GSE117468 73

GSE121212 27

GSE58095 39

GSE130955 58

Supplemental Table 3B: Number of samples pooled from each skin dataset to create input for machine learning.

Lesional 

samples

Non Lesional 

samples

90 DLE

132 AD

183 PSO

97 SSc

Healthy 

control 

samples

164 CTL

21 DLE

132 AD

163 PSO



 

Table S4: Comparison between mean of Z-score per gene signature and GSVA enrichment 

scores using Z-score transformation of nonlesional samples. Left indicates statistics from 

Welch's t-test between NL and CTL samples. Right indicates statistics from Hedges' g Effect 

size of NL compared to CTL samples. 

 

 

Gene Signature # of genes Z-score mean GSVA score Z-score mean GSVA score Z-score mean GSVA score Z-score mean GSVA score Z-score mean GSVA score Z-score mean GSVA score
AA Metabolism 12 ** * * ** * ns 0.85 0.44 0.25 0.35 -0.23 0.17

Anti inflammation 3 ns ns ns ns ns * -0.12 -0.12 0.00 0.16 0.07 0.25
Apoptosis 13 * ns **** **** **** **** 0.24 0.15 -0.89 -1.08 -1.08 -1.23

B Cell 4 ** *** ns ns ns ns 0.72 0.95 0.08 0.10 -0.17 -0.08
Cell Cycle 18 ns ns **** ns **** ns -0.01 -0.19 0.88 -0.01 0.46 0.14

Complement Proteins 7 ** **** ns * **** **** 0.38 0.45 -0.10 0.24 -1.87 -1.85
Endothelial Cell 11 **** **** **** **** **** **** -1.79 -1.71 -1.16 -0.61 -0.84 -0.93

FAAO 4 **** **** **** **** ** ** 1.46 1.47 1.72 1.67 -0.35 -0.39
FABO 44 * ** **** *** ** ns 1.09 0.92 -0.53 -0.36 -0.36 -0.13

Fibroblast 63 **** **** **** *** **** **** 1.64 1.00 1.33 0.43 1.73 1.35
Glycolysis 20 * ** **** **** ns * -0.86 -0.82 -2.07 -1.83 0.08 0.24

Granulocyte 2 **** **** **** * **** **** -1.26 -1.44 -0.67 -0.23 -0.60 -0.74
IFN 21 ns ns **** **** **** **** 0.39 -0.04 -0.63 -0.63 -1.53 -0.69
IL12 36 **** **** **** **** ns * -1.54 -2.16 -0.99 -0.63 0.13 0.26

IL17 Complex 4 * **** **** **** * ** 0.46 0.87 0.84 0.89 0.26 0.36
Inflammasome 12 **** **** ns ns **** **** -0.78 -1.20 0.02 -0.17 -0.66 -0.83

Keratinocyte 57 ns ns *** * ns ns 0.74 0.62 -0.40 -0.26 -0.18 -0.09
Langerhans Cell 4 **** **** **** **** ns ns -1.44 -1.37 -1.19 -1.31 -0.16 -0.21

Melanocyte 8 **** ** **** **** **** * 0.91 0.62 0.68 0.62 0.75 0.28
Monocyte 8 ns ns ns ns ns ns -0.19 -0.21 0.10 0.14 0.08 -0.03

Monocyte/Myeloid Cell 40 **** **** **** **** ns ns 0.67 0.71 1.24 1.15 -0.15 -0.12
Neutrophil 5 **** ** **** **** **** **** 0.62 -0.40 0.68 0.79 0.68 0.87

NK Cell 2 ns * **** **** **** **** 0.18 0.56 1.16 1.13 1.69 1.79
OXPHOS 74 ns ns **** **** ns ns 0.49 0.12 -0.94 -1.15 0.02 0.15

pDC 3 ns * **** **** ns ns -0.74 -0.87 -1.89 -1.79 -0.05 -0.01
Pentose Phosphate 9 ** ** **** **** **** **** -0.91 -1.14 -1.17 -1.18 1.48 0.95

Peroxisome 25 **** **** **** ** ns ns 1.36 1.12 1.31 0.31 0.13 -0.01
Plasma Cell 10 **** *** **** ** **** **** 0.79 0.58 0.62 0.36 0.72 0.49

Platelet 3 **** **** **** **** **** **** -1.18 -0.89 -0.86 -0.44 -0.61 -0.66
Proteasome 41 ns ns **** **** * ns -0.17 -0.32 -1.13 -0.98 0.29 0.15

ROS Production 2 ns * ns **** **** **** 0.47 0.75 0.16 0.77 1.17 1.64
Skin-specific DC 3 ns *** **** * **** **** 0.17 -0.92 1.00 0.24 2.03 1.79

T Cell 9 ns ns **** **** ** ns -0.20 -0.10 0.78 0.66 -0.35 -0.08
T Cell IL12 Signature 3 **** **** **** **** ns ns -0.89 -0.78 -1.00 -0.71 0.08 0.19
T Cell IL23 Signature 7 * ns ns ns ** **** -0.46 0.31 -0.11 -0.16 -0.32 0.46

TCA Cycle 32 ns ns **** **** *** **** 0.34 0.73 -1.32 -0.72 0.39 0.75
Th17 2 ** ns ns *** *** **** -0.34 -0.09 -0.18 0.41 0.39 0.74
TNF 86 **** **** ns * **** **** -1.02 -1.09 -0.08 -0.26 0.72 0.55

TGFB Fibroblast 229 ns ns **** **** ns ns 0.24 0.10 -0.84 -0.63 0.03 0.22
Unfolded Protein 40 ns ns **** **** ns * -0.21 -0.24 -0.90 -0.65 -0.08 0.24

Supplemental Table 4: Comparison between mean of Z-score per gene signature and Z-score GSVA enrichment of nonlesional skin samples. 

P value Welch's T test Hedges' g Effect Size
NL DLE and CTL NL PSO and CTL NL ATD and CTL NL DLE and CTL NL PSO and CTL NL ATD and CTL
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