Electronic supplementary data to accompany

The shiny side of copper: Bringing copper(I) light-emitting electrochemical cells closer to application

Sarah Keller,^{*a*} Alessandro Prescimone,^{*a*} Maria-Grazia La Placa,^{*b*} José M. Junquera-Hernández,^{*b*} Henk J. Bolink,^{*b*} Edwin C. Constable,^{*a*} Michele Sessolo,^{**b*} Enrique Ort(^{**b*} and Catherine E. Housecroft^{**a*}

^a Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland; email: catherine.housecroft@unibas.ch

^b Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna (Valencia), Spain; email: enrique.orti@uv.es

Contents

Ele	ectroni	c supplementary data to accompany1
1.	Expe	erimental2
	1.1.	General2
	1.2.	Syntheses2
	1.3.	Crystallography6
	1.4.	Computational details7
	1.5.	Device fabrication and characterization8
2.	Data	۹9
	2.1.	NMR spectra9
	2.2.	Mass spectra16
	2.3.	Electrochemistry21
	2.4.	Theoretical calculations25
	2.5.	Photophysical properties27
	2.6.	Device performance properties
	2.7.	References

1. Experimental

1.1. General

¹H, ¹³C and ³¹P NMR spectra were recorded at room temperature using Bruker Avance III-600, III-500 or III-400 NMR spectrometers. ¹H and ¹³C NMR chemical shifts were referenced to residual solvent peaks with respect to δ (TMS) = 0 ppm, and ³¹P NMR chemical shifts with respect to δ (85% aqueous H_3PO_4) = 0 ppm. Solution absorption and emission spectra were measured using an Agilent 8453 spectrophotometer and a Shimadzu RF-5301PC spectrofluorometer, respectively. Electrospray ionization (ESI) mass spectra were recorded on a Bruker esquire 3000plus or Shimadzu LCMS-2020 instrument. Quantum yields for CH₂Cl₂ solution and powder samples were measured using a Hamamatsu absolute photoluminescence (PL) quantum yield spectrometer C11347 Quantaurus-QY. Emission lifetimes and powder emission spectra were measured with a Hamamatsu Compact Fluorescence lifetime Spectrometer C11367 Quantaurus-Tau, using an LED light source with λ_{exc} = 365 nm. Thin films were analyzed using a Xe lamp coupled to a monochromator as the excitation source and an integrated sphere coupled to a spectrometer (Hamamatsu C9920-02 with a Hamamatsu PMA-11 optical detector) in order to quantitatively determine the PLQY. Low temperature emission and lifetime experiments were performed using an LP920-KS instrument from Edinburgh Instruments. 410 nm excitation was obtained from pulsed third-harmonic radiation from a Quantel Brilliant b Nd:YAG laser equipped with a Rainbow optical parameter oscillator (OPO). The laser pulse duration was ~10 ns and the pulse frequency 10 Hz, with a typical pulse energy of 7 mJ. Detection of the spectra occurred on an iCCD camera from Andor. Single-wavelength kinetics were recorded using a photomultiplier tube.

1.2. Syntheses

2-Chloro-4,5,6-trimethylpyridine,¹ 2-*tert*-butyl-6-chloropyridine² and $[Cu(MeCN)_4][PF_6]^3$ were synthesized using literature methods and the spectroscopic data matched those reported. POP was purchased from Acros, xantphos from Fluorochem, and 6,6'-dimethyl-2,2'-bipyridine (6,6'-Me₂bpy) and 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me₂bpy) from Sigma-Aldrich. All chemicals were used as received.

6-(*tert*-Butyl)-2,2'-bipyridine (6-*t*Bubpy), 2-*tert*-butyl-6-chloropyridine (420 mg, 2.48 mmol), 2-pyridinylzinc bromide (7.4 mL, 0.5 M in THF, 3.7 mmol) and $[Pd(PPh_3)_4]$ (218 mg, 0.19 mmol, 7.1 mol%) were weighed into a microwave vial under argon together with degassed THF (7 mL). The vial was then heated in the microwave reactor (4h, 110 °C, medium absorption) and purified by chromatography on a silica column (cyclohexane-EtOAc, 4:1). The product was obtained as a colourless oil (268 mg, 1.26 mmol, 51 %). The ¹H NMR spectrum matched that reported in the literature.⁴

4,5,6-Trimethyl-2,2'-bipyridine (4,5,6-Me₃bpy), 2-chloro-4,5,6-trimethylpyridine (2.17 g, 13.9 mmol), 2-pyridinylzinc bromide (42 mL, 0.5 M in THF, 21 mmol) and $[Pd(PPh_3)_4]$ (1.16 g, 1.0 mmol, 6.7 mol%) were weighed into a flask under argon with degassed THF (20 mL) and stirred overnight. The workup was performed according to the general procedure reported in the literature for similar compounds.⁵ After having been stirred overnight, the mixture was poured into an aqueous EDTA/Na₂CO₃ solution. Upon dissolution of the precipitate, the mixture was extracted with Et₂O (4 × 70 mL), and dried over Na₂SO₄. All volatiles were removed *in vacuo*, the residue was purified by chromatography on an alumina column (neutral, hexane:EtOAc gradient) and the product was obtained as a colourless oil in modest yield (0.106 g, 0.53 mmol, 4 %). ESI MS: m/z 199.1 [M+H]⁺ (base peak, calc. 199.1). ¹H NMR (500 MHz, 298 K, CDCl₃) δ/ppm: 8.65 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H, H^{A6}), 8.38 (dt, *J* = 8.0, 1.1 Hz, 1H, H^{A3}), 8.00 (s, 1H, H^{B3}), 7.77 (td, *J* = 7.7, 1.8 Hz, 1H, H^{A4}), 7.25 (ddd, *J* = 7.7, 4.9, 1.1, Hz, 1H, H^{A5}), 2.60 (s, 3H, Me^{B6}), 2.36 (s, 3H, Me^{B4}), 2.25 (s, 3H, Me^{B5}). ¹³C NMR (126 MHz, 298 K, CDCl₃) δ/ppm: 156.9 (C^{A2}), 156.3 (C^{B2}), 152.3 (C^{B4}), 149.1 (C^{A6}), 146.2 (C^{B6}), 136.9 (C^{A4}), 130.7 (C^{B5}), 123.2 (C^{A5}), 121.0 (C^{A3}), 120.3 (C^{B3}), 23.6 (Me^{B6}), 20.2 (Me^{B4}), 14.9 (Me^{B5}). Found: C 77.97, H 7.01, N 13.39; C₁₃H₁₄N₂ requires C 78.75, H 7.12, N 14.13.

2-Ethyl-1,10-phenanthroline (2-Etphen), In a 250 mL three-necked round-bottom flask under nitrogen and equipped with a condenser, 1,10-phenanthroline (1.982 g, 11 mmol) was dissolved in dry THF (50 mL) and the colourless solution cooled to -78 °C. A solution of ethyllithium (56 mL, 0.5 M in cyclohexane, 28 mmol, 2.5 eq) was slowly added via syringe, resulting in a colour change to dark red. The reaction mixture was stirred overnight, allowing it to warm to room temperature (RT). After refluxing the reaction mixture for 4 h, it was then cooled first to RT and then in an ice bath. A mixture of water and ice (100 mL) was added and the slurry stirred for 15 min. The organic solvents (THF and cyclohexane) were evaporated using a rotary evaporator. The aqueous phase was extracted with CH₂Cl₂ (5 × 50 mL). All organic phases were combined and dried over MgSO₄. While cooling in an ice bath, MnO₂ (30 g, 345 mmol) was added and the mixture was stirred for 45 min. After filtration over silica, all solvents were removed in vacuo to yield a yellow oil, which was purified by column chromatography (Silica pentane-EtOAc 99:1 – 80: 20, 1–2 % NEt₃). The title compound was obtained as a colourless oil (121 mg, 0.6 mmol, 5%) and the NMR spectroscopic data matched that previously reported.⁶ ¹H NMR (500 MHz, CDCl₃, 298 K) δ /ppm: 9.21 (dd, J = 4.3, 1.8 Hz, 1H, H^{B9}), 8.22 (dd, J = 8.1, 1.8 Hz, 1H, H^{B7}), 8.17 (d, J = 8.2 Hz, 1H, H^{B4}), 7.76 (d, J = 8.8 Hz, 1H, H^{B5}), 7.72 (d, J = 8.8 Hz, 1H, H^{B6}), 7.60 (dd, J = 8.0, 4.3 Hz, 1H, H^{B8}), 7.56 (d, J = 8.2 Hz, 1H, H^{B3}), 3.26 (q, J = 7.7 Hz, 2H, H^{Et-CH2}), 1.46 (t, J = 7.7 Hz, 3H, H^{Et-CH3}). ¹³C NMR (126 MHz, CDCl₃, 298 K) δ/ppm: 164.8 (C^{B2}), 150.4 (C^{B9}), 146.3 (C^{B10a}), 145.8 (C^{B10b}), 136.5 (C^{B4}), 136.1 (C^{B7}), 128.9 (C^{B6a}), 127.0 (C^{B4a}), 126.6 (C^{B5}), 125.6 (C^{B3}), 122.8 (C^{B8}), 122.4 (C^{B3}), 32.7 (C^{Et-CH2}), 14.7 (C^{Et-CH3}).

[Cu(POP)(5,5'-Me₂bpy)][PF₆], A colourless solution of [Cu(MeCN)₄][PF₆] (93 mg, 0.25 mmol) and POP (134 mg, 0.25 mmol) in CH₂Cl₂ (40 mL) was stirred for 2 h, after which 5,5'-Me₂bpy (46 mg, 0.25 mmol) was added and the yellow solution stirred for another 2 h. The solution was filtered and the solvent from the filtrate was removed in vacuo. The yellow powder was redissolved in CH₂Cl₂ and layered with Et₂O. This gave yellow crystals, which were powdered and washed with hexane, giving [Cu(POP)(5,5'-Me₂bpy)][PF₆] in good yield (160 mg, 0.17 mmol, 69%). ¹H NMR (500 MHz, (CD₃)₂CO, 298 K) δ /ppm: 8.41 (d, *J* = 8.4 Hz, 2H, H^{B3}), 8.40–8.38 (m, 2H, H^{B6}), 7.91 (m, 2H, H^{B4}), 7.45–7.41 (m, 2H, H^{C5}), 7.38 (t, *J* = 7.4 Hz, 4H, HD⁴), 7.27 (t, *J* = 7.6 Hz, 8H, HD³), 7.22 (dtd, *J* = 5.8, 3.1, 1.0 Hz, 2H, H^{C6}), 7.16–7.12 (m, 8H, HD²), 7.09 (td, *J* = 7.5, 0.6 Hz, 2H, H^{C4}), 6.78 (dtd, *J* = 7.8, 4.3, 1.6 Hz, 2H, H^{C3}), 2.15 (s, 6H, H^{bpy-Me}). ¹³C NMR (126 MHz, (CD₃)₂CO, 298 K) δ /ppm: 159.2 (C^{C1}), 150.7 (C^{B6}), 150.5 (C^{B2}), 139.8 (C^{B4}), 137.0 (C^{B5}), 135.0 (C^{C3}), 134.1 (t, *J* = 8.2 Hz, C^{D2}), 133.1 (C^{C5}), 131.9 (t, *J* = 17.1 Hz, C^{D1}), 131.0 (C^{D4}), 129.6 (t, *J* = 4.8 Hz, C^{D3}), 126.1 (t, *J* = 2.2 Hz, C^{C4}), 124.8 (t, *J* = 14.7 Hz, C^{C2}), 122.6 (C^{B3}), 121.5 (C^{C6}), 18.1 (CH₃). ³¹P{¹H} NMR (202 MHz, (CD₃)₂CO, 298 K) δ /ppm: -11.1 (broad, FWHM = 305 Hz, POP), -144.2 (septet, *J*_{PF} = 708 Hz, [PF₆]⁻). ESI MS: *m/z* 785.5 [M–PF₆]⁺ (base peak, calc. 785.2). Found: C 60.63, H 4.49, N 3.19; C₄₈H₄₀CuF₆N₂OP₃·H₂O requires C 60.73, H 4.46, N 2.95.

 $[Cu(xantphos)(5,5'-Me_2bpy)][PF_6]$, A colourless solution of xantphos (145 mg, 0.25 mmol) and 5,5'-Me_2bpy (46 mg, 0.25 mmol) in CH₂Cl₂ (20 mL) was added dropwise to a colourless solution of $[Cu(MeCN)_4][PF_6]$ (93 mg, 0.25 mmol) in CH₂Cl₂ (20 mL). After stirring for 2h, the yellow solution was filtered and the solvent was removed in vacuo. The yellow powder was redissolved in CH₂Cl₂ and

layered with Et₂O. This yielded yellow crystals, which were powdered and washed with hexane, giving [Cu(xantphos)(5,5'-Me₂bpy)][PF₆] in good yield (215 mg, 0.22 mmol, 88%). ¹H NMR (500 MHz, (CD₃)₂CO, 298 K) δ /ppm: 8.48 (d, *J* = 9.0 Hz, 2H, H^{B3}), 7.95 (m, 2H, H), 7.94 (m, 2H, H^{B4}), 7.89 (dd, *J* = 7.8, 1.4 Hz, 2H, H^{C5}), 7.35–7.31 (m, 4H, H^{D4}), 7.28 (t, *J* = 7.7 Hz, 2H, H^{C4}), 7.22–7.18 (m, 8H, H^{D3}), 7.07–7.02 (m, 8H, H^{D2}), 6.55–6.51 (m, 2H, H^{C3}), 2.10 (s, 6H, H^{bpy-Me}), 1.83 (s, 6H, H^{xantphos-Me}). ¹³C NMR (126 MHz, (CD₃)₂CO, 298 K) δ /ppm: 155.9 (t, *J* = 6.2 Hz, C^{C1}), 150.5 (t, *J* = 2.1 Hz, C^{B2}), 150.2 (C^{B6}), 140.1 (C^{B4}), 137.2 (C^{B5}), 135.1 (t, *J* = 1.5 Hz, C^{C6}), 133.8 (t, *J* = 8.1 Hz, C^{D2}), 132.4 (t, *J* = 17.2 Hz, C^{D1}), 132.0 (C^{C3}), 130.9 (C^{D4}), 129.7 (t, *J* = 4.8 Hz, C^{D3}), 128.4 (C^{C5}), 126.2 (t, *J* = 2.4 Hz, C^{C4}), 122.9 (C^{B3}), 120.8 (t, *J* = 13.7 Hz, C^{C2}), 37.0 (t, *J* = 1.5 Hz, C^{xantphos-bridge}), 28.3 (C^{xantphos-Me}), 18.0 (C^{bpy-Me}). ³¹P NMR (162 MHz, (CD₃)₂CO, 294 K) δ /ppm: –11.6 (broad, FWHM = 230 Hz, xantphos), –144.2 (septet, *J*_{PF} = 708 Hz, [PF₆]⁻). ESI MS: *m/z* 825.4 [M–PF₆]⁺ (base peak, calc. 825.2). Found: C 62.87, H 4.77, N 3.26; C₅₁H₄₄CuF₆N₂OP₃ requires C 63.06, H 4.57, N 2.88.

[Cu(POP)(2-Etphen)][PF₆], A colourless solution of [Cu(MeCN)₄][PF₆] (108 mg, 0.29 mmol) and POP (156 mg, 0.29 mmol) in CH₂Cl₂ (40 mL) was stirred for 2 h, after which 2-Etphen (60 mg, 0.29 mmol) was added and the yellow solution was stirred for another 2 h. The solution was filtered and the solvent from the filtrate was removed in vacuo. The yellow powder was redissolved in CH₂Cl₂ and layered with Et₂O. This yielded yellow crystals, which were powdered and washed with hexane, giving $[Cu(POP)(2-Etphen)][PF_6]$ in good yield (247 mg, 0.26 mmol, 90%). ¹H NMR (500 MHz, (CD₃)₂CO, 298 K) δ/ppm: 9.12 (m, 1H, H^{B9}), 8.75 (d, J = 8.4 Hz, 1H, H^{B4}), 8.67 (dd, J = 8.2, 1.2 Hz, 1H, H^{B7}), 8.21 (d, J = 8.8 Hz, 1H, H^{B5}), 8.14 (d, J = 8.9 Hz, 1H, H^{B6}), 7.90 (d, J = 8.4 Hz, 1H, H^{B3}), 7.79 (dd, J = 8.2, 4.7 Hz, 1H, H^{B8}), 7.47 (ddd, J = 8.2, 7.5, 1.7 Hz, 2H, H^{C5}), 7.33 (q, J = 7.5 Hz, 4H, H^{D4/D4'}), 7.26 (m, 2H, H^{C6}), 7.23 (m, 4H, H^{D3/D3'}), 7.19 (m, 4H, H^{D3/D3'}), 7.16 (m, 4H, H^{D2/D2'}), 7.14 (td, J = 7.6, 1.0 Hz, 2H, H^{C4}), 7.01 (q, J = 6.1 Hz, 4H, H^{D2/D2'}), 6.86 (dtd, J = 7.8, 4.1, 1.6 Hz, 2H, H^{C3}), 2.99 (q, J = 7.7 Hz, 2H, H^{Et-} ^{CH2}), 0.75 (t, J = 7.7 Hz, 3H, H^{Et-CH3}). ¹³C NMR (126 MHz, (CD₃)₂CO, 298 K) δ/ppm: 165.8 (C^{B2}), 159.0 (t, J = 6.0 Hz, C^{C1}), 150.7 (C^{B9}), 144.5 (C^{B10a}), 143.6 (C^{B10b}), 139.4 (C^{B4}), 138.7 (C^{B7}), 135.0 (C^{C3}), 134.2 (t, J = 7.6 Hz, $C^{D2/D2'}$), 133.7 (t, J = 7.4 Hz, $C^{D2/D2'}$), 133.2 (C^{C5}), 132.2 (t, J = 16.7 Hz, $C^{D1/D1'}$), 131.0 (d, J = 12.3 Hz, C^{D4/D4'}), 130.7 (C^{B6a}), 129.7 (m, C^{D3/D3'}), 129.1 (C^{B4a}), 128.1 (C^{B5}), 127.2 (C^{B6}), 126.1 (t, *J* = 2.2 Hz, C^{C4}), 125.6 (C^{B8}), 125.0 (d, J = 14.0 Hz, C^{C2}), 124.9 (C^{B3}), 121.3 (t, J = 1.8 Hz, C^{C6}), 34.8 (C^{Et-CH2}), 13.2 (C^{Et-CH3}). ³¹P NMR (162 MHz, (CD₃)₂CO, 294 K) δ/ppm: -12.7 (broad, FWHM = 375 Hz, xantphos), -144.2 (septet, $J_{PF} = 708$ Hz, $[PF_6]^-$). ESI MS: m/z 809.4 $[M-PF_6]^+$ (base peak, calc. 809.2). Found: C 62.76, H 4.52, N 3.30; C₅₀H₄₀CuF₆N₂OP₃ requires C 62.86, H 4.22, N 2.93.

[Cu(xantphos)(2-Etphen)][PF₆], A colourless solution of xantphos (168 mg, 0.29 mmol) and 2-Etphen (60 mg, 0.29 mmol) in CH₂Cl₂ (20 mL) was added dropwise to a colourless solution of [Cu(MeCN)₄][PF₆] (108 mg, 0.29 mmol) in CH₂Cl₂ (20 mL). After stirring for 2h, the yellow solution was filtered and the solvent was removed in vacuo. The yellow powder was redissolved in CH₂Cl₂ and layered with Et₂O. This yielded yellow crystals, which were powdered and washed with hexane, giving [Cu(xantphos)(2-Etphen)][PF₆] in good yield (259 mg, 0.26 mmol, 90%). ¹H NMR (500 MHz, (CD₃)₂CO, 298 K) δ /ppm: 9.10 (d, *J* = 4.3 Hz, 1H, H^{B9}), 8.76 (d, *J* = 8.4 Hz, 1H, H^{B4}), 8.68 (dd, *J* = 8.1, 1.1 Hz, 1H, H^{B7}), 8.20 (d, *J* = 8.9 Hz, 1H, H^{B5}), 8.12 (d, *J* = 8.9 Hz, 1H, H^{B6}), 7.90 (d, *J* = 5.8 Hz, 1H, H^{B3}), 7.89 (dd, *J* = 6.5, 1.3 Hz, 2H, H^{C5}), 7.88 (dd, *J* = 8.2, 4.7 Hz, 1H, H^{B8}), 7.41–7.36 (m, 2H, H^{D4/D4'}), 7.30 (m, 2H, H^{C5}), 7.29–7.24 (m, 8H, H^{D2/D2'+D3/D3'}), 7.20–7.16 (m, 2H, H^{D4/D4'}), 7.00–6.94 (m, 4H, H^{D3/D3'}), 6.79 (ddd, *J* = 8.3, 6.6, 3.2 Hz, 4H, H^{D2/D2'+D3/D3'}), 7.50–7.5, 5.5, 2.4 Hz, 2H, H^{C3}), 2.59 (q, *J* = 7.7 Hz, 2H, H^{Et-CH2}), 1.99 (s, 3H, H^{xantphos-CH3}), 1.66 (s, 3H, H^{xantphos-CH3}), 0.57 (t, *J* = 7.7 Hz, 3H, H^{Et-CH3}). ¹³C NMR (126 MHz, (CD₃)₂CO, 298 K) δ /ppm: 165.2 (C^{B2}), 155.9 (t, *J* = 6.3 Hz, C^{C1}), 150.4 (C^{B9}), 144.5 (C^{B10a}), 143.5 (C^{B10b}), 139.4 (C^{B4}), 138.7 (C^{B7}), 135.0 (t, *J* = 1.6 Hz, C^{C6}), 133.8 (t, *J* = 8.1 Hz, C^{D2/D2'}), 133.5 (t, *J* = 7.8 Hz, C^{D2/D2'}),

132.7 (t, J = 16.2 Hz, $C^{D1/D1'}$), 132.5 (t, J = 17.9 Hz, $C^{D1/D1'}$), 131.7 (C^{C3}), 130.9 ($C^{D4/D4'}$), 130.8 (C^{B6a}), 129.9 (t, J = 4.8 Hz, $C^{D3/D3'}$), 129.5 (t, J = 4.6 Hz, $C^{D3/D3'}$), 129.3 (C^{B4a}), 128.6 (C^{C5}), 128.1 (C^{B5}), 127.3 (C^{B6}), 126.2 (t, J = 2.4 Hz, C^{C4}), 125.9 (C^{B8}), 124.9 (C^{B3}), 121.4 (m, C^{C2}), 37.0 (t, J = 1.4 Hz, $C^{xantphos-bridge}$), 35.0 (C^{Et-CH2}), 31.4 ($C^{xantphos-Me}$), 25.7 ($C^{xantphos-Me}$), 13.1 (C^{Et-CH3}). ³¹P NMR (162 MHz, (CD_3)₂CO, 300 K) δ /ppm: -12.7 (broad, FWHM = 340 Hz, xantphos), -144.5 (septet, $J_{PF} = 708$ Hz, [PF_6]⁻). ESI MS: m/z 849.4 [M–PF₆]⁺ (base peak, calc. 849.2). Found: C 63.51, H 4.71, N 3.14; $C_{53}H_{44}CuF_6N_2OP_3$ requires C 63.95, H 4.46, N 2.81.

 $[Cu(POP)(6-tBubpy)][PF_6]$, A colourless solution of $[Cu(MeCN)_4][PF_6]$ (93 mg, 0.25 mmol) and POP (134 mg, 0.25 mmol) in CH_2Cl_2 (40 mL) was stirred for 2 h. Then 6-tBubpy (53 mg, 0.25 mmol) was added and the yellow solution was stirred for another 2 h. The solution was filtered and the solvent from the filtrate was removed in vacuo. The title compound $[Cu(POP)(6-tBubpy)][PF_6]$ was washed with hexane and isolated as a pale yellow powder (220 mg, 0.23 mmol, 92%). ¹H NMR (500 MHz, (CD₃)₂CO, 298 K) δ/ppm: 8.42 (d, J = 8.1 Hz, 1H, H^{A3}), 8.39 (d, J = 4.8 Hz, 1H, H^{A6}), 8.26 (dd, J = 7.9, 0.7 Hz, 1H, H^{B3}), 8.05 (t, J = 7.9 Hz, 1H, H^{B4}), 8.04 (td, J = 7.9, 1.7 Hz, 1H, H^{A4}), 7.63 (dd, J = 7.9, 0.6 Hz, 1H, H^{B5}), 7.45 (ddd, J = 8.2, 7.5, 1.7 Hz, 2H, H^{C5}), 7.41 (t, J = 7.4 Hz, 4H, H^{D4}), 7.30 (t, J = 7.1 Hz, 8H, H^{D3}), 7.23 (m, 3H, H^{A5+C6}), 7.15 (td, J = 7.5, 1.1 Hz, 2H, H^{C4}), 7.10 (broad signal, 8H, H^{D2}), 6.93 (dtd, J = 7.8, 4.0, 1.7 Hz, 2H, H^{C3}), 1.27 (s, 9H, H^{tBu}). ¹³C NMR (126 MHz, (CD₃)₂CO, 298 K) δ/ppm: 170.9 (C^{B6}), 158.3 (t, J = 6.3 Hz, C^{C1}), 154.9 (C^{A2}), 154.3 (C^{B2}), 150.0 (C^{A6}), 139.9 (C^{B4}), 139.6 (C^{A4}), 135.2 (C^{C3}), 134.1 (t, J = 8.2Hz, C^{D2}), 133.3 (C^{C5}), 131.5 (t, J = 16.1 Hz, C^{D1}), 131.1 (C^{D4}), 129.8 (t, J = 4.8 Hz, C^{D3}), 126.1 (t, J = 2.4 Hz, C^{C4}), 125.9 (C^{A5}), 124.6 (t, J = 14.6 Hz, C^{C2}), 124.2 (C^{A3}), 123.2 (C^{B5}), 121.7 (C^{B3}), 120.7 (C^{C6}), 37.9 $(C(CH_3)_3)$, 31.0 $(C(CH_3)_3)$. ³¹P NMR (162 MHz, $(CD_3)_2CO$, 295 K) δ /ppm: -15.1 (br, FWHM = 125 Hz, POP), -144.2 (sept, J_{PF} = 708 Hz, [PF₆]⁻). ESI MS: m/z 813.3 [M–PF₆]⁺ (base peak, calc. 813.2). Found: C 61.82, H 5.23, N 3.29; C₅₀H₄₄CuF₆N₂OP₃·0.5MeCN requires C 62.51, H 4.68, N 3.57%.

[Cu(xantphos)(6-tBubpy)][PF₆], A colourless solution of xantphos (145 mg, 0.25 mmol) and 6-tBubpy (53 mg, 0.25 mmol) in CH₂Cl₂ (20 mL) was added dropwise to a colourless solution of [Cu(MeCN)₄][PF₆] (93 mg, 0.25 mmol) in CH₂Cl₂ (20 mL). After stirring for 2h, the yellow solution was filtered and the solvent was removed in vacuo. The solid was washed with hexane, giving [Cu(POP)(6tBubpy)][PF₆] as a light yellow powder in good yield (225 mg, 0.23 mmol, 92%). ¹H NMR (500 MHz, (CD₃)₂CO, 298 K) δ/ppm: 8.47 (dt, J = 8.2, 1.0 Hz, 1H, H^{A3}), 8.29 (dd, J = 7.9, 1.0 Hz, 1H, H^{B3}), 8.24 (broad signal, 1H, H^{A6}), 8.16 (t, J = 7.9 Hz, 1H, H^{B4}), 8.11 (td, J = 8.0, 1.5 Hz, 1H, H^{A4}), 7.86 (dd, J = 7.8, 1.4 Hz, 2H, H^{c5}), 7.79 (d, J = 7.9 Hz, 1H, H^{B5}), 7.43 (m, 1H, H^{A5}), 7.38 (t, J = 7.0 Hz, 4H, H^{D4}), 7.28 (t, J = 7.7 Hz, 2H, H^{c4}), 7.21 (t, J = 7.7 Hz, 8H, H^{D3}), 7.07 (q, J = 5.5 Hz, 8H, H^{D2}), 6.72 (dtd, J = 7.6, 3.8, 1.4 Hz, 2H, H^{C3}), 1.81 (s, 6H, Me^{xantphos}), 1.13 (s, 9H, H^{tBu}). ¹³C NMR (126 MHz, (CD₃)₂CO, 298 K) δ/ppm: 171.4 (C^{B6}), 155.4 (t, J = 6.2 Hz, C^{C1}), 154.3 (C^{B2}), 149.4 (C^{A2}), 140.2 (C^{B4}), 140.0 (C^{A4}), 134.6 (t, J = 1.8 Hz, C^{C6}), 134.1 (broad signal, C^{D1}), 131.7 (C^{C3}), 131.1 (broad signal, C^{D1+D4}), 129.8 (t, J = 4.9 Hz, C^{D3}), 128.6 (C^{C5}), 126.4 (C^{A5}), 126.2 (t, J = 2.7 Hz, C^{C4}), 124.8 (C^{A3}), 123.9 (C^{B5}), 122.4 (C^{B3}), 121.1 (t, J = 13.5 Hz, C^{C2}), 37.9 (C(CH₃)₃), 36.82 (C^{xantphos-bridge}), 36.80(Me^{xantphos}, 31.1 (C(CH₃)₃). ³¹P NMR (162 MHz, (CD₃)₂CO, 295 K) δ /ppm: –13.0 (br, FWHM = 133 Hz, xantphos), –144.2 (sept, J_{PF} = 709 Hz, $[PF_6]^-$). ESI MS: m/z 853.4 [M–PF₆]⁺ (base peak, calc. 853.3). Found: C 63.30, H 5.37, N 3.17; C₅₃H₄₈CuF₆N₂OP₃ requires C 63.69, H 4.84, N 2.80%.

 $[Cu(POP)(4,5,6-Me_3bpy)][PF_6]$, A colourless solution of $[Cu(MeCN)_4][PF_6]$ (93 mg, 0.25 mmol) and POP (134 mg, 0.25 mmol) in CH₂Cl₂ (40 mL) was stirred for 2 h. Then 4,5,6-Me₃bpy (50 mg, 0.25 mmol) was added and the yellow solution was stirred for another 2 h. The solution was filtered and the solvent from the filtrate was removed in vacuo. The yellow powder was redissolved in CH₂Cl₂ and

layered with Et₂O. This gave yellow crystals, which were powdered and washed with hexane, giving $[Cu(POP)(4,5,6-Me_3bpy)][PF_6]$ in excellent yield (230 mg, 0.24 mmol, 96%). ¹H NMR (500 MHz, (CD₃)₂CO, 298 K) δ /ppm: 8.67 (dd, *J* = 5.1, 0.7 Hz, 1H, H^{A6}), 8.44 (d, *J* = 8.2 Hz, 1H, H^{A3}), 8.24 (s, 1H, H^{B3}), 8.03 (td, *J* = 8.1, 1.6 Hz, 1H, H^{A4}), 7.44–7.34 (m, 7H, H^{A5+C5+D4}), 7.30–7.23 (m, 8H, H^{D3}), 7.20–7.12 (8H, H^{D2/D2'+C4+C6}), 7.08–7.03 (m, 4H, H^{D2/D2'}), 6.89 (dtd, 2H, *J* = 7.7, 4.1, 1.6 Hz, H^{C3}), 2.49 (s, 3H, Me^{B6}), 2.31 (s, 3H, Me^{B4}), 2.15 (s, 3H, Me^{B5}). ¹³C NMR (126 MHz, 298 K, (CD₃)₂CO, 298 K) δ /ppm: 158.9 (t, *J* = 6.0 Hz, C^{C1}), 157.9 (C^{B2}), 154.1 (t, *J* = 2.3 Hz, C^{A2}), 150.2 (C^{A6}), 149.7 (C^{B6}), 149.3 (t, *J* = 1.7 Hz, C^{B4}), 139.5 (C^{A4}), 135.0 (C^{B5}), 134.9 (C^{C3}), 134.2 (t, *J* = 8.3 Hz, C^{D2/D2'}), 133.7 (t, *J* = 8.2 Hz, C^{D2/D2'}), 133.1 (C^{C5}), 132.4–132.1 (m, C^{D1/D1'}), 131.0 (C^{D4/D4'}), 130.9 (C^{D4/D4'}), 129.8–129.6 (m, C^{D3}), 126.1 (C^{A5}), 126.0 (t, *J* = 2.2 Hz, C^{C4}), 125.2 (d, *J* = 1.37 Hz, C^{C2/C2'}), 125.1 (d, *J* = 1.38 Hz, C^{C2/C2'}), 123.0 (C^{A3}), 122.9 (C^{B3}), 121.2 (t, *J* = 1.9 Hz, C^{C6}), 25.8 (Me^{B6}), 20.3 (Me^{B4}), 15.4 (Me^{B5}). ³¹P NMR (162 MHz, (CD₃)₂CO, 295 K) δ /ppm: -12.9 (br, FWHM = 252 Hz, POP), -144.2 (sept, *J*_{PF} = 708 Hz, [PF₆]⁻). ESI MS: *m/z* 799.2 [M–PF₆]⁺ (base peak, calc. 799.2). Found: C 62.13, H 4.78, N 2.93; C₄₉H₄₂CuF₆N₂OP₃ requires C 62.26, H 4.48, N 2.96%.

 $[Cu(xantphos)(4,5,6-Me_3bpy)][PF_6]$, A colourless solution of xantphos (111 mg, 0.19 mmol) and 4,5,6- Me_3bpy (38 mg, 0.19 mmol) in CH_2Cl_2 (20 mL) was added dropwise to a colourless solution of [Cu(MeCN)₄][PF₆] (71 mg, 0.19 mmol) in H₂Cl₂ (20 mL). After stirring for 2h, the yellow solution was filtered and the solvent was removed in vacuo. The yellow powder was redissolved in CH₂Cl₂ and layered with Et₂O. This yielded yellow crystals, which were powdered and washed with hexane, giving [Cu(xantphos)(4,5,6-Me₃bpy)][PF₆] in excellent yield (182 mg, 0.18 mmol, 95 %). ¹H NMR (500 MHz, (CD₃)₂CO, 298 K) δ/ppm: 8.49 (d, J = 8.1 Hz, 1H, H^{A3}), 8.40 (d, J = 4.7 Hz, 1H, H^{A6}), 8.29 (s, 1H, H^{B3}), 8.05 (t, J = 7.8 Hz, 1H, H^{A4}), 7.85 (d, J = 7.7 Hz, 2H, H^{C5}), 7.43–7.31 (m, 5H, H^{A5+D4}), 7.28 (t, J = 7.8 Hz, 2H, H^{C4}), 7.24 (t, J = 7.5 Hz, 4H, H^{D3/D3'}), 7.19–7.12 (m, 8H, H^{D2/D2'+D3/D3'}), 6.98–6.93 (m, 4H, H^{D2/D2'}), 6.67-6.63 (m, 2H, H^{C3}), 2.51 (s, 3H, Me^{B6}), 2.18 (s, 3H, Me^{B4}), 2.13 (s, 3H, Me^{B5}), 1.88 (s, 3H, Me^{xantphos}), 1.71 (s, 3H, Me^{xantphos}). ¹³C NMR (126 MHz, 298 K, (CD₃)₂CO, 298 K) δ/ppm: 157.2 (C^{B2}), 155.8 (t, J = 6.3 Hz, C^{C1}), 154.0 (t, J = 2.3 Hz, C^{A2}), 150.1 (C^{B6}), 149.6 (C^{A6}), 149.1 (t, J = 1.7 Hz, C^{B4}), 139.7 (C^{A4}), 135.1 (C^{C6}), 135.0 (t, J = 1.7 Hz, C^{B5}), 133.9 (t, J = 8.0 Hz, C^{D2/D2'}), 133.5 (t, J = 7.8 Hz, C^{D2/D2'}), 132.7 (q, J = 17.7, 16.8 Hz, $C^{D1/D1'}$), 131.5 (C^{C3}), 131.0 ($C^{D4/D4'}$), 130.9 ($C^{D4/D4'}$), 129.8 (t, J = 4.7 Hz, C^{D3/D3'}), 129.7 (t, J = 4.7 Hz, C^{D3/D3'}), 128.4 (C^{C5}), 126.4 (C^{A5}), 126.2 (t, J = 2.4 Hz, C^{C4}), 123.2 (C^{A3}), 123.0 (C^{B3}), 121.5 (d, J = 12.8 Hz, C^{C2/C2'}), 121.4 (d, J = 12.8 Hz, C^{C2/C2'}), 30.0 (Me^{xantphos}), 26.8 (Me^{xantphos}), 25.5 (Me^{B6}), 20.4(Me^{B4}), 15.4 (Me^{B5}). ³¹P NMR (162 MHz, (CD₃)₂CO, 295 K) δ /ppm: –13.1 (br, FWHM = 375 Hz, xantphos), -144.2 (sept, $J_{PF} = 708$ Hz, $[PF_6]^-$). ESI MS: m/z 839.2 $[M-PF_6]^+$ (base peak, calc. 839.2). Found: C 63.00, H 4.71, N 2.84; C₅₂H₄₆CuF₆N₂OP₃ requires C 63.38, H 4.71, N 2.84%.

1.3. Crystallography

Single crystal X-ray diffraction data were collected on a Bruker Kappa Apex2 diffractometer with data reduction, solution and refinement using the programs APEX⁷ and CRYSTALS.⁸ Structural analysis was carried out using Mercury v.4.0.0.^{9,10}

[Cu(POP)(5,5'-Me₂bpy)][PF₆], C₄₈H₄₀CuF₆N₂OP₃, M = 931.31, yellow block, monoclinic, space group $P2_1/n$, a = 18.554(2), b = 11.4743(12), c = 22.167(2) Å, $b = 113.880(4)^\circ$, U = 4315.1(8) Å³, Z = 4, $D_c = 1.433$ Mg m⁻³, μ (Cu-Kα) = 2.326 mm⁻¹, T = 123 K. Total 43751 reflections, 7916 unique, $R_{int} = 0.031$. Refinement of 7850 reflections (550 parameters) with $I > 2\sigma(I)$ converged at final $R_1 = 0.0284$ (R_1 all data = 0.0287), $wR_2 = 0.0639$ (wR_2 all data = 0.0640), gof = 0.9127. CCDC 1978436.

 $[Cu(xantphos)(5,5'-Me_2bpy)][PF_6], C_{51}H_{44}CuF_6N_2OP_3, M = 971.38, yellow block, monoclinic, space group P2_1, a = 10.1954(10), b = 21.104(2), c = 10.7666(10) Å, b = 102.835(3)^\circ, U = 2258.7(4) Å^3, Z = 2,$

 $D_c = 1.428 \text{ Mg m}^{-3}, \ \mu(\text{Cu-K}\alpha) = 2.246 \text{ mm}^{-1}, \ T = 123 \text{ K}.$ Total 18116 reflections, 7503 unique, $R_{\text{int}} = 0.024$. Refinement of 7456 reflections (578 parameters) with $I > 2\sigma(I)$ converged at final $R_1 = 0.0195$ (R_1 all data = 0.0195), $wR_2 = 0.0220$ (wR_2 all data = 0.0220), gof = 1.0919. CCDC 1978439.

[Cu(POP)(6-*t*Bubpy)][PF₆], C₅₀H₄₄CuF₆N₂OP₃, *M* = 959.37, yellow plate, monoclinic, space group *P*2₁/*c*, *a* = 12.3597(8), *b* = 16.6878(11), *c* = 21.4238(14) Å, *b* = 99.561(2)°, *U* = 4357.4(5) Å³, *Z* = 4, *D_c* = 1.462 Mg m⁻³, μ (Cu-Kα) = 2.320 mm⁻¹, *T* = 123 K. Total 55483 reflections, 7969 unique, *R*_{int} = 0.031. Refinement of 7917 reflections (568 parameters) with *I* >2*σ*(*I*) converged at final *R*₁ = 0.0479 (*R*₁ all data = 0.0480), *wR*₂ = 0.0476 (*wR*₂ all data = 0.0477), gof = 1.0970. CCDC 1978441.

 $[Cu(POP)(4,5,6-Me_3bpy)][PF_6] \cdot 1.5Et_2O$, $C_{55}H_{57}CuF_6N_2O_{2.5}P_3$ or $C_{49}H_{42}CuF_6N_2OP_3 \cdot 1.5C_4H_{10}O$, M = 1056.52, green block, triclinic, space group P-1, a = 9.7384(7), b = 14.1543(10), c = 18.9271(13) Å, a = 74.958(2), $\beta = 84.595(2)$, $\gamma = 87.789(3)^\circ$, U = 2508.1(3) Å³, Z = 2, $D_c = 1.40$ Mg m⁻³, μ (Cu-K α) = 2.088 mm⁻¹, T = 130 K. Total 30758 reflections, 9047 unique, $R_{int} = 0.023$. Refinement of 8371 reflections (559 parameters) with $I > 2\sigma(I)$ converged at final $R_1 = 0.0490$ (R_1 all data = 0.0521), $wR_2 = 0.1441$ (wR_2 all data = 0.1501), gof = 0.9723. CCDC 1978440.

 $[Cu(xantphos)(4,5,6-Me_3bpy)][PF_6] \cdot 2.33CH_2Cl_2, C_{54.33}H_{50.66}Cl_{4.66}CuF_6N_2OP_3 or C_{52}H_{46}CuF_6N_2OP_3 + 2.33(CH_2CL_2), M = 1183.30, yellow block, triclinic, space group P-1, a = 11.8055(3), b = 15.0529(4), c = 18.6132(5) Å, a = 113.589(2), b = 92.960(2), y = 108.444(2)^\circ, U = 2814.51(15) Å^3, Z = 2, D_c = 1.40 Mg m^{-3}, \mu(Cu-K\alpha) = 4.312 mm^{-1}, T = 130 K. Total 99434 reflections, 10831 unique, R_{int} = 0.0573. Refinement of 6531 reflections (586 parameters) with <math>I > 2\sigma(I)$ converged at final $R_1 = 0.0987 (R_1 all data = 0.1253), wR_2 = 0.2929 (wR_2 all data = 0.3222), gof = 1.0878. CCDC 1978438.$

[Cu(POP)(2-Etphen)][PF₆], C₅₀H₄₀CuF₆N₂OP₃, M = 955.33, yellow block, triclinic, space group P-1, a = 10.1640(8), b = 13.9335(11), c = 18.7219(14) Å, $\alpha = 102.552(2)$, $\beta = 97.085(2)$, $\gamma = 107.584(2)^\circ$, U = 2415.7(3) Å³, Z = 2, $D_c = 1.43$ Mg m⁻³, μ (Cu-K α) = 3.133 mm⁻¹, T = 123 K. Total 32433 reflections, 8856 unique, $R_{int} = 0.026$. Refinement of 8704 reflections (568 parameters) with $I > 2\sigma(I)$ converged at final $R_1 = 0.0340$ (R_1 all data = 0.0344), $wR_2 = 0.0808$ (wR_2 all data = 0.0808), gof = 0.9218. CCDC 1978437.

[Cu(xantphos)(2-Etphen)][PF₆], C₅₃H₄₄CuF₆N₂OP₃, *M* = 995.40, yellow block, monoclinic, space group $P2_1/n$, *α* = 10.5631(8), *b* = 21.3906(16), *c* = 20.2696(15) Å, *β* = 93.185(3)°, *U* = 4572.9(6)Å³, *Z* = 4, *D_c* = 1.446 Mg m⁻³, μ (Cu-K α) = 2.234 mm⁻¹, *T* = 123 K. Total 31841 reflections, 8090 unique, *R*_{int} = 0.029. Refinement of 7552 reflections (595 parameters) with *I* >2 σ (*I*) converged at final *R*₁ = 0.0444 (*R*₁ all data = 0.0471), *wR*₂ = 0.1010 (*wR*₂ all data = 0.1019), gof = 0.8993. CCDC 1978442.

1.4. Computational details

The complexes of interest were theoretically investigated by density functional theory (DFT) calculations. The $[Cu(P^P)(N^N)]^+$ cations $((P^P) = xantphos, POP; (N^N) = 5,5'-Me_2bpy, 4,5,6-Me_3bpy, 6-tBubpy and 2-Etphen)$ were studied using the A.03 revision of Gaussian 16.¹¹ The geometries of the singlet ground electronic state (S₀) and the lowest-energy triplet excited state (T₁) were optimized for each system without the imposition of any symmetry restriction. The B3LYP exchange-correlation functional^{12,13} was employed, the unrestricted UB3LYP approximation being used for the calculation of the triplet states. To better describe the intramolecular non-covalent interactions, which are expected to influence significantly the molecular geometry of the complexes, the Grimme's D3 dispersion term with Becke–Johnson damping was added to the B3LYP functional (B3LYP-D3).^{14,15} Regarding the basis set, the "double- ζ " quality def2-SVP basis set was employed for the C, H, P, N and O atoms and the "triple- ζ " quality def2-TZVP basis set was used for Cu atoms.^{16,17}

The time-dependent DFT (TD-DFT) approach^{18,19,20} was employed to calculate the lowest-lying excited states of each cation (five singlets and five triplets), at the minimum-energy geometry computed for S_0 . The solvent was considered via the self-consistent reaction field (SCRF) theory and using the polarized continuum model (PCM) approach.^{21,22,23} The solvent used in all calculations was CH₂Cl₂.

1.5. Device fabrication and characterization

LECs were prepared on top of patterned indium tin oxide (ITO, 15 Ω sq⁻¹) coated glass substrates previously cleaned by chemical and UV-ozone methods. Prior to the deposition of the emitting layers, 80 nm thick films of poly-(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, CLEVIOS™ P VP AI 4083, Heraeus) were coated in order to flatten the ITO electrode and to increase its work function. The emitting layer (approximately 100 nm thick) was prepared by spin-coating a dichloromethane solution of the emitting compound with the addition of the ionic liquid 1-ethyl-3methylimidazolium hexafluorophosphate [EMIM][PF₆] (>98.5%, Sigma-Aldrich), in a 4:1 molar ratio. The devices were then transferred to an inert atmosphere glovebox (<0.1 ppm O_2 and H_2O), where the aluminium cathode (100 nm) was thermally deposited in high vacuum using an Edwards Auto500 chamber integrated in the glovebox. The thickness of all films was determined with an Ambios XP-1 profilometer. The active area of the devices was 6.5 mm². LECs were not encapsulated and were characterized inside the glovebox at room temperature. The device lifetime was measured by applying a pulsed current and monitoring the voltage and luminance vs time by a true colour sensor MAZeT (MTCSiCT Sensor) with a Botest OLT OLED Lifetime-Test System. The electroluminescence (EL) spectra were measured using an Avantes AvaSpec-2048 Fiber Optic Spectrometer during device lifetime measurement.

2. Data

Fig. S1 ³¹P NMR spectra of the $[Cu(P^P)(N^N)][PF_6]$ complexes in acetone- d_6 or CD_2Cl_2 (marked with an asterisk).

Fig. S2 ¹H NMR spectra of [Cu(POP)(5,5'-Me₂bpy)][PF₆] in acetone- d_6 , 300 K, 400 MHz.

Fig. S3 ¹H NMR spectra of [Cu(xantphos)(5,5'-Me₂bpy)][PF₆] in acetone-d⁶, 298 K, 500 MHz.

Fig. S4 ¹H NMR spectra of [Cu(POP)(2-Etphen)][PF₆] in acetone-*d*₆, 298 K, 500 MHz.

Fig. S5 ¹H NMR spectra of [Cu(xantphos)(2-Etphen)][PF₆] in acetone-*d*₆, 298 K, 500 MHz.

Fig. S6 ¹H NMR spectra of [Cu(POP)(6-*t*Bubpy)][PF₆] in acetone-*d*₆, 298 K, 500 MHz.

Fig. S7 ¹H NMR spectra of [Cu(xantphos)(6-*t*Bubpy)][PF₆] in acetone- d_6 , 298 K, 500 MHz.

Fig. S8 ¹H NMR spectra of [Cu(POP)(4,5,6-Me₃bpy)][PF₆] in acetone-*d*₆, 298 K, 500 MHz.

Fig. S9 ¹H NMR spectra of [Cu(xantphos)(4,5,6-Me₃bpy)][PF₆] in acetone- d_6 , 298 K, 500 MHz.

Fig. S10 ¹H NMR spectra of 4,5,6-Me₃bpy in $CDCl_3$, 298 K, 500 MHz.

Fig. S11 ¹H NMR spectra of 6-*t*Bubpy in CDCl₃, 298 K, 500 MHz.

Fig. S12 1 H NMR spectra of 2-Etphen in CDCl₃, 298 K, 500 MHz.

Fig. S13 ESI-MS of [Cu(POP)(5,5'-Me₂bpy)][PF₆].

Fig. S14 ESI-MS of [Cu(xantphos)(5,5'-Me₂bpy)][PF₆].

MS Spectrum Positive Full Scan

641.26

Line#:1 R.Time:0.000(Scan#:1) MassPeaks:8 Spectrum Mode:Single 0.000(1) Base Peak:825.39(7082545) BG Mode:None Segment 1 - Event 1

100

50

17

Line≠:1 R.Time:0.000(Scan≠:1) MS Spectrum Positive MassPeaks:9 Spectrum Mode:Single 0.000(1) Base Peak:601.17(8211386) BG Mode:None Segment 1 - Event 1 100

Fig. S16 ESI-MS of [Cu(xantphos)(2-Etphen)][PF₆].

100

50

MS Spectrum Positive Full Scan

MS Spectrum Positive Full Scan Line#:1 R.Time:----(Scan#:----) MS Spectrum Positive Full Scan MassPeaks:9 Spectrum Mode:Averaged 1.650-1.750(100-106) Base Peak:849.43(2799391) BG Mode:Calc Segment 1 - Event 1

Line≠:1 R.Time:0.000(Scan≠:1)^{MS} Spectrum Positive Full Scan Zoomed View MassPeaks:9 Spectrum Mode:Single 0.000(1) Base Peak:641.16(7876928) BG Mode:None Segment 1 - Event 1

Fig. S18 ESI-MS of [Cu(xantphos)(6-*t*Bubpy)][PF₆].

Fig. S19 ESI-MS of [Cu(POP)(4,5,6-Me₃bpy)][PF₆].

Fig. S20 ESI-MS of [Cu(xantphos)(4,5,6-Me₃bpy)][PF₆].

Fig. S21 ESI-MS of 4,5,6-Me₃bpy.

Fig. S22 Cyclic voltammogram of a CH_2Cl_2 solution of $[Cu(POP)(5,5'-Me_2bpy)][PF_6]$ (vs. Fc^+/Fc , $[nBu_4N][PF_6]$ supporting electrolyte, scan rate = 0.1 V s⁻¹).

Fig. S23 Cyclic voltammogram of a CH_2Cl_2 solution of $[Cu(xantphos)(5,5'-Me_2bpy)][PF_6]$ (vs. Fc^+/Fc , $[nBu_4N][PF_6]$ supporting electrolyte, scan rate = 0.1 V s⁻¹).

Fig. S24 Cyclic voltammogram of a CH_2Cl_2 solution of $[Cu(POP)(2-Etphen)][PF_6]$ (vs. Fc^+/Fc , $[nBu_4N][PF_6]$ supporting electrolyte, scan rate = 0.1 V s⁻¹).

Fig. S25 Cyclic voltammogram of a CH_2Cl_2 solution of [Cu(xantphos)(2-Etphen)][PF₆] (vs. Fc⁺/Fc, [*n*Bu₄N][PF₆] supporting electrolyte, scan rate = 0.1 V s⁻¹).

Fig. S26 Cyclic voltammogram of a CH_2Cl_2 solution of $[Cu(POP)(6-tBubpy)][PF_6]$ (vs. Fc^+/Fc , $[nBu_4N][PF_6]$ supporting electrolyte, scan rate = 0.1 V s⁻¹).

Fig. S27 Cyclic voltammogram of a CH_2Cl_2 solution of [Cu(xantphos)(6-*t*Bubpy)][PF₆] (vs. Fc⁺/Fc, [*n*Bu₄N][PF₆] supporting electrolyte, scan rate = 0.1 V s⁻¹).

Fig. S28 Cyclic voltammogram of a CH_2Cl_2 solution of $[Cu(POP)(4,5,6-Me_3bpy)][PF_6]$ (vs. Fc^+/Fc , $[nBu_4N][PF_6]$ supporting electrolyte, scan rate = 0.1 V s⁻¹).

Fig. S29 Cyclic voltammogram of a CH_2Cl_2 solution of [Cu(xantphos)(4,5,6-Me₃bpy)][PF₆] (vs. Fc⁺/Fc, [*n*Bu₄N][PF₆] supporting electrolyte, scan rate = 0.1 V s⁻¹).

Table S1. Selected structural parameters calculated at the B3LYP-D3/(def2-SVP+def2-TZVP) level in CH_2Cl_2 solution for the $[Cu(P^P)(N^N)]^+$ complexes in their electronic ground state S_0 . The angle formed by the P–Cu–P and N–Cu–N planes (last column) is reported for both the S_0 and T_1 (within parentheses) states at their respective optimized geometries.

Complex	Cu–P bond length (Å)	Cu–N bond length (Å)	P–Cu–P chelating angle (°)	N–Cu–N chelating angle (°)	P–Cu–P/N–Cu–N angle (°)
[Cu(POP)(bpy)]+	2.284; 2.246	2.069; 2.096	113.74	80.10	80.25 (59.31)
[Cu(xantphos)(bpy)] ⁺	2.270; 2.269	2.068; 2.104	114.40	79.75	86.94 (57.42)
[Cu(POP)(5,5'-Me ₂ bpy)] ⁺	2.247; 2.288	2.070; 2.096	113.65	80.16	79.51 (59.01)
[Cu(xantphos)(5,5'-Me ₂ bpy)] ⁺	2.268; 2.271	2.065; 2.109	114.07	79.76	86.01 (57.00)
[Cu(POP)(6-tBubpy)] ⁺	2.317; 2.278	2.206; 2.085	113.25	78.33	80.64 (68.35)
[Cu(xantphos)(6-tBubpy)] ⁺	2.317; 2.284	2.209; 2.084	112.73	78.90	85.55 (76.72)
[Cu(POP)(4,5,6-Me₃bpy)]⁺	2.268; 2.281	2.107; 2.085	113.14	79.86	79.34 (60.96)
[Cu(xantphos)(4,5,6-Me ₃ bpy)] ⁺	2.278; 2.281	2.107; 2.088	113.71	79.89	84.20 (65.54)
[Cu(POP)(2-Etphen)]+	2.270; 2.280	2.102; 2.103	113.41	80.71	83.30 (61.53)
[Cu(xantphos)(2-Etphen)] ⁺	2.275; 2.284	2.103; 2.109	113.66	80.59	86.66 (67.21)

Fig. S30 Energy diagram showing the energies calculated for the HOMO-1, HOMO, LUMO and LUMO+1 of the $[Cu(xantphos)(N^N)]^+$ complexes. The HOMO-LUMO energy gap is also quoted. Isovalue contour plots (±0.03 a.u.) are shown for the reference complex $[Cu(xantphos)(bpy)]^+$.

Fig. S31 Solution absorption spectra of the $[Cu(POP)(N^N)][PF_6]$ complexes $(CH_2Cl_2, 2.5 \times 10^{-5} \text{ mol } dm^{-3})$.

Fig. S32 Zoom into the low-energy MLCT region of the solution absorption spectra of the $[Cu(POP)(N^N)][PF_6]$ complexes $(CH_2Cl_2, 2.5 \times 10^{-5} \text{ mol dm}^{-3})$.

Fig. S33. Zoom into the MLCT region of the solution absorption spectra of the $[Cu(xantphos)(N^N)][PF_6]$ complexes $(CH_2Cl_2, 2.5 \times 10^{-5} \text{ mol dm}^{-3})$.

Table S2	. Absorption	maxima	and	respective	extinction	coefficients	of	the	MLCT	region	of	the
complexes in solution (CH ₂ Cl ₂ , 2.5 × 10 ⁻⁵ mol dm ⁻³).												

Complex	λ_{abs}^{max} [nm]	ε [dm ³ cm ⁻¹ mol ⁻¹]
[Cu(POP)(bpy)]+	388	3780
[Cu(xantphos)(bpy)]+	383	3574
[Cu(POP)(6-Mebpy)] ⁺	378	2204
[Cu(xantphos)(6-Mebpy)] ⁺	381	4024
[Cu(POP)(6,6'-Me ₂ bpy)] ⁺	371	3031
[Cu(xantphos)(6,6'-Me ₂ bpy)] ⁺	375	3363
[Cu(POP)(5,5'-Me ₂ bpy)] ⁺	374	3473
[Cu(xantphos)(5,5'-Me ₂ bpy)] ⁺	367	4074
[Cu(POP)(6-tBubpy)] ⁺	362	2093
[Cu(xantphos)(6-tBubpy)] ⁺	366	2537
[Cu(POP)(4,5,6-Me ₃ bpy)] ⁺	369	3744
[Cu(xantphos)(4,5,6-Me ₃ bpy)] ⁺	371	4438
[Cu(POP)(2-Etphen)] ⁺	390	4150
[Cu(xantphos)(2-Etphen)] ⁺	388	4096

Fig. S34 Normalized solution emission spectra of the [Cu(POP)(N^N)][PF₆] complexes (CH₂Cl₂, 2.5 × 10^{-5} mol dm⁻³). For λ_{exc} see Table 4.

Fig. S35 Normalized emission spectra of solid [Cu(POP)(N^N)][PF₆] complexes, λ_{exc} = 365 nm.

Fig. S36 Normalized emission spectra of $[Cu(POP)(N^N)][PF_6]$ complexes in Me-THF at 77 K, λ_{exc} = 410 nm.

Complex cation	CH ₂ Cl ₂ solution, non-deaerated				CH ₂ Cl ₂ solution, deaerated ^a				Powder ^b			
	PLQY	τ [ns]	k _r	kn _r	PLQY	τ [ns]	k _r	kn _r	PLQY	τ [µs]	k _r	kn _r
	[%]		[ns ⁻¹]	[ns ⁻¹]	[%]		[ns ⁻¹]	[ns ⁻¹]	[%]		[ns ⁻¹]	[ns ⁻¹]
[Cu(POP)(bpy)] ⁺	0.4	43	9.3E-	2.3E-	0.5	46	1.1E-	2.2E-	3.0	1.5	20.0	646.
			05	02			04	02				7
[Cu(xantphos)(bpy)] ⁺	0.5	75	6.7E-	1.3E-	0.5	104	4.8E-	9.6E-	1.7	1.3	13.1	756.
			05	02			05	03				2
[Cu(POP)(6-Mebpy)] ⁺	0.6	126	4.8E-	7.9E-	1.2	172	7.0E-	5.7E-	9.5	2.6	36.5	348.
			05	03			05	03				1
[Cu(xantphos)(6-Mebpy)] ⁺	1	272	3.7E-	3.6E-	1.8	784	2.3E-	1.3E-	33.8	9.7	34.8	68.2
			05	03			05	03				
[Cu(POP)(6,6'-Me ₂ bpy)] ⁺	1.3	310	4.2E-	3.2E-	13.8	4032	3.4E-	2.1E-	43.2	10.5	41.1	54.1
			05	03			05	04				
[Cu(xantphos)(6,6'-	1.6	451	3.5E-	2.2E-	10	3406	2.9E-	2.6E-	37.3	11.4	32.7	55.0
Me₂bpy)]*			05	03			05	04				
[Cu(POP)(5,5'-Me₂bpy)]⁺	0.5	57	8.8E-	1.7E-	0.7	108	6.5E-	9.2E-	2.7	2.3	11.7	423.
			05	02			05	03				0
[Cu(xantphos)(5,5'-	0.4	153	2.6E-	6.5E-	0.9	338	2.7E-	2.9E-	6.3	5.1	12.4	183.
Me ₂ bpy)] ⁺			05	03			05	03				7
[Cu(POP)(6- <i>t</i> Bubpy)] ⁺	0.5	39	1.3E-	2.6E-	0.5	45	1.1E-	2.2E-	1.1	0.4	27.5	2472
			04	02			04	02				.5
[Cu(xantphos)(6-tBubpy)] ⁺	0.4	76	5.3E-	1.3E-	0.5	93	5.4E-	1.1E-	9.6	3.3	29.1	273.
			05	02			05	02				9
[Cu(POP)(4,5,6-Me ₃ bpy)] ⁺	1	202	5.0E-	4.9E-	1.5	730	2.1E-	1.3E-	42.7	9.3	45.9	61.6
			05	03			05	03				
[Cu(xantphos)(4,5,6-	0.9	228	3.9E-	4.3E-	3.3	1595	2.1E-	6.1E-	58.8	9.8	60.0	42.0
Me₃bpy)]⁺			05	03			05	04				
[Cu(POP)(2-Etphen)] ⁺	0.8	240	3.3E-	4.1E-	6	2401	2.5E-	3.9E-	27.5	8.7	31.6	83.3
			05	03			05	04				
[Cu(xantphos)(2-Etphen)] ⁺	0.9	262	3.4E-	3.8E-	9.6	4987	1.9E-	1.8E-	9.8	10.2	9.6	88.4
			05	03			05	04				

Table S3. Radiative and non-radiative decay rates, k_r and k_{nr} of the [Cu(POP)(N^N)][PF₆] complexes. The following formula were used for calculation: $k_r = PLQY / \tau_{1/2}$ and $PLQY = k_r / (k_r + k_{nr})$.

Fig. S37. Schematic representation of a LEC in the configuration used in this work.

Table S4. Performance of ITO/PEDOT:PSS/[Cu(P^P)(N^N)][PF₆]:[Emim][PF₆] 4:1 molar ratio/Al LECs measured using a pulsed current driving (average current density 50 or 100 A m⁻², 1 kHz, 50% duty cycle, block wave).

Complex	J _{avg} [A m ⁻²]	t _{on} ª [min]	Lum ₀ ^b [cd m ⁻²]	Lum _{max} ^c [cd m ⁻²]	t _{1/2} ^d [hours]	EQE _{max} ^e [%]	PCE _{max} ^f [Im W ⁻¹]	Efficacy _{max} ^g [cd A ⁻¹]	λ_{EL}^{max} h [nm]
[Cu(POP)(5,5'-Me ₂ bpy)] ⁺	50	320	0	33	54.6	0.30	0.4	0.7	588
[Culventabes)/[[' Me bay)]+	50	138	0	58	16.5	0.50	0.8	1.2	F 90
[Cu(xantprios)(3,5 -we2ppy)]*	100	19	20	130	7.7	1.20	0.9	1.3	269
[Cu(POP)(6-tBubpy)] ⁺	100	71	0	13	15.0	0.05	0.1	0.1	585
[Cu(xantphos)(6-tBubpy)] ⁺	100	110	0	34	27.8	0.15	0.2	0.3	586

^{*a*} Time to reach the maximum luminance. ^{*b*} Initial luminance. ^{*c*} Maximum luminance. ^{*d*} Time to reach half of the maximum luminance. ^{*e*} Maximum external quantum efficiency. ^{*f*} Maximum power conversion efficiency. ^{*g*} Maximum current efficiency. ^{*h*} Wavelength at the maximum intensity of the electroluminescence spectrum.

Fig. S38 Electroluminescence spectra for ITO/PEDOT:PSS/[Cu(P^P)^N^N)][PF₆]:[Emim][PF₆] 4:1 molar ratio/Al LECs measured using a pulsed current driving and under continuous operation.

Fig. S39 Time evolution of average voltage for ITO/PEDOT:PSS/[Cu(P^P)^N^N)][PF₆]:[Emim][PF₆] 4:1 molar ratio/Al LECs measured using a pulsed current driving and under continuous operation.

Fig. S40 Time evolution of power conversion efficiency for $ITO/PEDOT:PSS/[Cu(P^P)^N^N)][PF_6]:[Emim][PF_6] 4:1 molar ratio/Al LECs measured using a pulsed current driving and under continuous operation.$

Fig. S41 Time evolution of external quantum efficiency for $ITO/PEDOT:PSS/[Cu(P^P)^N^N)][PF_6]:[Emim][PF_6] 4:1 molar ratio/Al LECs measured using a pulsed current driving and under continuous operation.$

References

2 L. Hintermann, L. Xiao and A. Labonne, Angew. Chem. Int. Ed., 2008, 47, 8246.

- 7 Bruker Analytical X-ray Systems, Inc., 2006, APEX2, version 2 User Manual, M86-E01078, Madison, WI.
- 8 P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, J. Appl. Cryst., 2003, 36, 1487.

¹ Y. Sekiguchi, Y. Kanuma, K. Omodera, K. Abe, M. Hayashi, S. Yamamoto, Assignee: Taisho Pharmaceutical Co., Ltd., Japan; Arena Pharmaceutical Inc., Jpn. Kokai Tokkyo Koho (2007), JP 2007291087 A 20071108.

³ G. J. Kubas, Inorg. Synth., 1979, 19, 90.

⁴ A. Zucca, M. A. Cinellu, M. V. Pinna, S. Stoccoro, G. Minghetti, M. Manassero and M. Sansoni, Organometallics, 2000, 19, 4295.

⁵ Y.-Q. Fang, G. S. Hanan, Synlett., 2003, 6, 852.

⁶ Y. Cheng, X. Han, H. Ouyang, Y. Rao, Chem. Commun., 2012, 48, 2906.

⁹ I. J. Bruno, J. C. Cole, P. R. Edgington, M. K. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta Crystallogr., Sect. B, 2002, 58, 389.

¹⁰ C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Cryst.*, 2008, **41**, 466.

¹¹ Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

¹² C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 1988, 37, 785.

¹³ A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

¹⁴ S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.

- 15 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456.
- 16 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297.
- 17 F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057.
- 18 M. Petersilka, U. J. Gossmann and E. K. U. Gross, Phys. Rev. Lett., 1996, 76, 1212.
- 19 C. Jamorski, M. E. Casida and D. R. Salahub, J. Chem. Phys., 1996, 104, 5134.
- 20 M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 1998, 108, 4439.
- 21 J. Tomasi and M. Persico, Chem. Rev., 1994, 94, 2027.
- 22 C. J. Cramer and D. G. Truhlar, in Solvent Effects and Chemical Reactivity. O. Tapia and J. Bertrán (Eds.), Kluwer, 1996, pp. 1–80.
- 23 J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999.